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While there is a growing body of functional magnetic resonance imaging

(fMRI) evidence implicating a corpus of brain regions in value-based

decision-making in humans, the limited temporal resolution of fMRI

cannot address the relative temporal precedence of different brain regions

in decision-making. To address this question, we adopted a computational

model-based approach to electroencephalography (EEG) data acquired

during a simple binary choice task. fMRI data were also acquired from

the same participants for source localization. Post-decision value signals

emerged 200 ms post-stimulus in a predominantly posterior source in the

vicinity of the intraparietal sulcus and posterior temporal lobe cortex, along-

side a weaker anterior locus. The signal then shifted to a predominantly

anterior locus 850 ms following the trial onset, localized to the ventromedial

prefrontal cortex and lateral prefrontal cortex. Comparison signals between

unchosen and chosen options emerged late in the trial at 1050 ms in dor-

somedial prefrontal cortex, suggesting that such comparison signals may

not be directly associated with the decision itself but rather may play a

role in post-decision action selection. Taken together, these results provide

us new insights into the temporal dynamics of decision-making in the

brain, suggesting that for a simple binary choice task, decisions may be

encoded predominantly in posterior areas such as intraparietal sulcus,

before shifting anteriorly.
1. Introduction
Considerable progress has been made in uncovering the brain systems involved

in encoding predictions about future rewards and in using those predictions

to guide behaviour [1–5]. Studies in both humans and other animals have

identified contributions for a number of brain regions in valuation, learning

and choice. Within the cortex, three regions that have received particular atten-

tion are the ventromedial prefrontal cortex (vmPFC) composed of medial

orbital and adjacent medial prefrontal cortex, the lateral intraparietal sulcus

(LIP) and the dorsomedial prefrontal cortex (dmPFC) extending from the anterior

cingulate cortex dorsally along the medial wall. These regions have been found to

encode value signals for decision options and actions [6–8], as well as signals cor-

responding to the difference in value between actions and/or options that are

ultimately chosen versus those that are not [9–11]. However, the precise func-

tions of these regions in the decision-making process remain controversial,

particularly as regards where value signals from different options are ultimately

compared in order to generate a choice. One possibility that has been proposed is

that the vmPFC is involved in comparing stimulus values in order to generate a

decision in at least certain types of choice processes [12]. Another viewpoint

suggests that the comparison between the values of possible actions in order to

yield a decision over which action to ultimately select is mediated within LIP
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Figure 1. Task illustration. For both choice trials (left) and neutral no-choice
trials (right) one trial of the task consists of four phases. (a,e) Intertrial inter-
val (ITI) of 2 – 9 s uniformly distributed. (b) Choice(s) displayed on screen for
maximum 2 s. (c) Participants make their choice and the choice is displayed
for 2.5 s. (d ) The outcome of the trial is displayed for 1 s with the winning
amount in euros and a picture of either euro coins (win), euro coins crossed
out (no win) or a scrambled image (no-choice trials). (2-Reaction time) (2-RT)
seconds are added to the ITI to ensure mean trial time is 11 s. One block of
trials consists of 72 choice trials and 24 no-choice trials totalling 17.6 min.
Participants complete three blocks of trials. (Online version in colour.)
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[6,13], whereas yet another viewpoint has implicated the

dmPFC in the choice process [10,11].

Distinguishing between these different possible accounts is

challenging. One way to potentially address this question

would be to determine when these different brain areas

become engaged during the evolving temporal dynamics of

the choice process. More specifically, if computational signals

related to the choice process can be found to emerge earlier in

one region than the other, this might provide relevant infor-

mation about which brain region is initially involved in

computing the choice. When using functional magnetic reson-

ance imaging (fMRI), it is not feasible to determine reliable

information about the relative timing of decision signals because

of the relatively poor temporal resolution of the blood-oxygen-

level dependent signal alongside confounding variability in

neurohaemodynamic coupling between regions. Techniques

such as electroencephalography (EEG, and magnetoencephalo-

graphy, MEG) offer much better temporal resolution, and are

therefore better candidates for non-invasive measurement of

the temporal sequencing of decision-related signals [13–15].

However, such methods suffer from poor spatial resolution aris-

ing from pervasive difficulties in ascertaining the location of the

underlying neural sources. One way to potentially resolve

the spatial localization weakness of EEG is to combine this

method with fMRI, and acquire both types of data in the same

participants, using the spatial evidence acquired from the

fMRI data to constrain the source localization of the EEG data,

while acquiring the necessary evidence about the timing of

neural processes from the EEG measurements.

In the present study, we use a computational model-based

approach in combination with EEG measurements acquired

from a group of participants performing a simple binary

choice task to detect computational signals pertaining to the

decision-process with sufficient temporal resolution to deter-

mine when these signals emerge in different brain areas.

Furthermore, we used fMRI data acquired in the same group

of participants to inform the spatial localization of the EEG

data. Previous fMRI evidence from our own group found that

the dmPFC showed evidence of value comparison signals that

could underpin the decision process itself, whereas the

vmPFC and LIP showed evidence of chosen value signals corre-

sponding to the value of the option that is ultimately chosen

[10,11]. On the basis of this fMRI evidence, we hypothesized

that we would find evidence for similar signals in our EEG

data, and that moreover these signals would emerge at different

times in the choice process. The value comparison signal was

predicted to emerge earlier in timewithin a trial, after the partici-

pant is presented with the options available but before the

participant makes a behavioural choice, because this signal is

a putative correlate of the actual choice process itself, whereas

the chosen value signal was predicted to emerge later in the

trial as such a signal reflects the consequence of the choice pro-

cess. We further hypothesized on the basis of our prior fMRI

evidence that the value comparison and chosen value signals

would be differentially localized to the dmPFC and the

vmPFC and LIP, respectively.
2. Methods
(a) Participants
Forty-one right-handed participants (19 males, average age 22)

participated in the EEG experiment. The experiments were
conducted at Trinity College Institute of Neuroscience, Trinity

College Dublin, Ireland. Of those EEG participants, 35

(16 males) also participated in an fMRI study using exactly the

same task. Nineteen of the 41 participants took part in the EEG

experiment first, whereas the other 22 took part in the

fMRI experiment first. The gap between the EEG and fMRI

experiments was 13–15 days for most participants; however,

for six participants, it was 20–21 days, and for two participants,

it was 5 weeks.

(b) Task description
On each trial (figure 1), the participant is presented with two easily

distinguishable decision options (coloured circles on black back-

ground), one on each side of a monitor, and is tasked with

making a choice between them in order to obtain monetary

rewards. To reduce the possibility that the participant makes a

decision in advance of the options being presented on a particular

trial, three decision options were used in total, two of which are

then selected at random on a given trial. Thus, a participant

does not know in advance which two decision options will be

presented in advance of the onset of a particular decision trial.

On each particular trial, the decision options presented on

that trial are randomly presented on either the left or the right

of the screen, so as to enable value signals to the decision options

per se to be disambiguated from value signals pertaining to par-

ticular actions. For the purpose of obtaining a neutral baseline,

on 25% of the trials, a single white target was presented,

followed by non-rewarding outcome.

Each decision option has a drifting probability of reward inde-

pendent of the others. To ensure that the underlying reward

distributions attached to each decision option are distinguishable

enough for the participants to learn independently, three sets of

three drifting probabilities (one set per block of trials) were cre-

ated as noisy sine waves with a period between p and 2p, and

with starting points distributed evenly (for an example set, see

figure 2a). The participant indicates his/her choice by pressing a

button with their left or right hand. Left choices were made

with the left hand, right choices with the right hand.
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Figure 2. (a) Example of the reward contingencies used in the task for each
of the alternatives (shown in different line types) over one block of trials.
(b) Percentage of trials participants choose the objectively higher-valued
alternative, binned by the difference in objective values between the two
alternatives presented on a given trial. (c) Percentage of trials participants
choose the subjectively higher-valued alternative, binned by difference in
model-predicted values between the two alternatives on a given trial.
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A single trial consists of the following (see figure 1 for more

details):

(1) A fixation cross presented for 1 s with no targets present will

indicate that a choice is coming up. After the first trial, this

will be part of the intertrial interval (ITI) screen.

(2) A choice screen (maximum duration 2 s) during which the

two decision options (or else the single option on the neutral

trials) are presented. The participant is required to indicate

their choice by means of a button press. The fixation cross

remains present. If the participant fails to respond in 2 s,

the trial terminates and the remaining trial time is added

to the ITI.

(3) After a choice is made, a white triangle appears pointing in

the direction of the chosen option, thereby signalling the

choice made. This screen is shown for 2.5 s.

(4) An outcome screen is then presented for 1 s. On trials in

which rewards are obtained, the reward is denoted by text
indicating the amount won alongside a small picture of

some euro coins. The ‘non-reward’ screen is visually similar,

but has a red cross over the euro coins. For the neutral trials,

a scrambled euro picture is shown at the time of outcome

presentation.

(5) An ITI follows, with a duration randomized between trials

with a uniform distribution between 2 and 9 s. The fixation

cross is present.

We ran two versions of the experiment. In the one version,

participants were presented with a fixed outcome of 0.25 euros,

on each trial in which a reward was delivered. The other version

of the experiment involved variable reward outcomes, centred on

0.25, but drawn from a uniform distribution (range: 0.1–0.4).

Twenty participants took part in the first version of the experiment,

whereas 21 participants took part in the second version. The two

experimental versions were otherwise identical. In order to maxi-

mize statistical power, and because the differences in the outcome

distributions are not pertinent for the hypotheses tested in the pre-

sent manuscript, we combined the data across both groups when

performing the analyses and presenting the results shown here.

(c) EEG and fMRI recordings
The 512 Hz EEG data were acquired at Trinity College Institute of

Neuroscience using a Biosemi 128 þ 2 channel cap system with

eight flat-type active electrodes (six facials, two mastoids). At

the start of each recording session, each connection was stable

with offsets within a +25 mV range. Data were recorded unre-

ferenced and unfiltered with ACTIVIEW software.

The fMRI data were acquired using a Philips Achieva 3T

scanner, also located at Trinity College Institute of Neuroscience.

Scan parameters were optimized to obtain robust signals in

vmPFC, but also to allow whole brain coverage: 45 slices

recorded at a 308 angle, repetition time (TR) ¼ 2.5 s, echo time

(TE) ¼ 28 ms, voxel size 3 � 3 � 3.35 mm, 440 volumes for each

of the three experimental sessions. In addition, a 1 mm isotropic

T1-weighted structural scan was acquired for each participant to

enable localization of the activations.

(d) Data analysis
(i) EEG pre-processing
All EEG datasets have been pre-processed with the FASTER-pack-

age (http://sourceforge.net/projects/faster/) which is a fully

automated, unsupervised method for processing of high density

EEG data by Nolan et al. [16] that has been shown to pre-process

EEG data as well as human experimenters. The algorithm filters

the data, removes overly noisy channels, performs independent

component analysis and removes artefacts, epochs the data and

removes epochs that are still noisy after artefact removal. After run-

ning each dataset through the FASTER algorithm, they were re-

referenced to the average signal, 45 Hz low-pass filtered, and the

data were then visually inspected to ensure that all artefacts were

removed. This is done for each of the data time-locked to stimulus

presentation, time of choice and time of outcome presentation. In

this paper, we focus on the data time locked to the time of stimulus

presentation. We time-locked to the time of stimulus onset as this

analysis was maximally sensitive to detecting the earliest emer-

gence of value signals pertaining to the chosen option following

stimulus onset, as opposed to time-locking to the time of response

which would have been most sensitive for detecting response-

related activity, but not for detecting value signals emerging

early in time within the trial.

(ii) Computational model
The subjects’ behavioural data were fitted to a simple SARSA-

type reinforcement-learning (RL) model with discounted value

http://sourceforge.net/projects/faster/
http://sourceforge.net/projects/faster/
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Figure 3. In order to validate our analytical approach, we tested for electrodes that correlate with the generation of a motor response, and source-localized the
activity to motor cortex. (a) Electrodes correlating with responses in the time window 2100 to 0 ms before button press. Electrodes shown show significance at a
p , 0.05 corrected threshold determined through permutation test. (b) EEG activity for motor responses source-localized as comparisons of left versus right choices
without an fMRI-based prior probability map. (Online version in colour.)
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for unchosen alternatives and a softmax choice rule

Vi(tþ 1) ¼ Vi(t)þ a(r� Vi(t)) if i¼ chosen alternative

Vi(tþ 1) ¼ gVi(t) if i= chosen alternative

Pi(t) ¼
exp (Vi(t)=t)

Pn
j¼1 exp (Vj(t)=t)

,

where Vi(t) is the value of stimulus i at time t,a is the learning rate, r
is the reward received at time t and g is the discount rate. Pi(t) is the

probability of choosing stimulus i at time t given the temperature

parameter t. This learning model combined with the softmax

choice rule yields predictions of value for each stimulus at each

time, and prediction error for each reward delivery (or lack thereof).

The fitted parameters were learning rate, temperature for the

softmax rule and the discounting rate.
(iii) Computational model-based EEG analysis
To implement the computational model-based EEG analysis, for

each electrode separately, we first extracted EEG signals corre-

sponding to each trial. We extracted data from 500 ms prior to

the stimulus presentation, and to 1500 ms after. We then binned

this high-frequency time series into 50 ms bins by averaging the

EEG signal within each 50 ms timeframe. This binning process

was conducted separately for each trial per electrode. Next, for

each electrode separately, we concatenated the time bins covering

similar time points in peristimulus time in each trial into a sequence

corresponding to the average EEG signal within that time bin on

each trial of the experiment. We repeated this for each time bin.

Given that there are 128 electrodes, and 41 time bins, this gave us

5248 separate sequences. For each electrode therefore, we had

sequences corresponding to each 50 ms interval within the trial

which could subsequently be regressed on trial by trial value
from our computational model. Next, we used the regress function

in Matlab (Matlab. 2010b The MathWorks, Inc., Natick, MA) to

regress each EEG time series against the relevant signals from

our computational model, which are (i) the difference in value

between the chosen and the unchosen decision options as pre-

dicted by the reinforcement-learning model and (ii) the value of

the option that is ultimately chosen in the trial, also generated

from the fitted reinforcement-learning. To avoid the potentially

strong correlation between difference value and chosen value, the

design matrix for the regression consists of chosen and unchosen

values, separated into left and right choices, giving four regressors.

The correlation with the difference and chosen value is then found

through averaging together the appropriate regressors.

This generated parameter estimates corresponding to the

degree to which the computational signals were correlated with

the EEG data at that specific time point in the trial across the

experiment in that particular electrode. This was repeated

across all time bins, all electrodes and all participants. To

obtain between subjects effects, we computed the T-score for

each time bin within each electrode across subjects. We could

then produce maps in electrode space plotting the degree of cor-

relation of different electrodes with the relevant computational

signals at each different time interval within the trial.

In order to derive a statistical threshold for the T-scores, we

needed to correct for multiple comparisons. As Bonferroni cor-

rection assuming independence of electrode position and time

window was deemed too stringent given considerable intrinsic

spatial and temporal smoothing, we used a permutation test to

derive an appropriate statistical threshold. To carry out the per-

mutation test, we randomly permuted the order of the model

values and reran the regression with each EEG sequence for

each electrode. This way we found the threshold at which

random data with the same variance show no correlation with
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Figure 4. Results of the analysis of the chosen value. Each row in the result-
map represents an electrode, and each column a 50 ms time bin. Electrodes
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The white-dashed line represents the time of stimulus. Red (dark in print
version) indicates significant correlation with chosen value at p , 0.05
corrected for multiple comparisons, as well as no significant correlation
with unchosen value set at the p , 0.20 level (so as to exclude any elec-
trode showing even a modest trend to represent the unchosen value). (Online
version in colour.)
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95% certainty. This allowed us to impose a corrected threshold

of p , 0.05, while simultaneously adjusting for multiple com-

parisons across both the multiple electrodes and the multiple

time-windows used in the EEG analysis.

To ensure that the EEG results generalize to the random effects

level, we performed an additional permutation test where we ran-

domly permuted the sign of the regression slopes for each

participant before doing a between-subject comparison. The

result of this analysis when thresholded at p , 0.05 corrected,

gave qualitatively similar results to those reported for the results

of the permutation test described earlier, in that all of the effects

identified at the relevant time points remained significant.
(iv) fMRI analysis
The fMRI data were analysed in Statistical Parametric Mapping

8 (SPM8). Standard pre-processing involving realignment,

co-registration of the functional data to each individual partici-

pant’s structural scan and normalization to a standard echo

planar imaging template was conducted.

For the statistical analysis of the fMRI data, we used a model-

based approach [17]. For this, we separated the trials into differ-

ent trial onset-regressors as a function of whether a left-hand

choice or a right-hand choice was made, modelling the neutral

control conditions as two additional onset regressors (separately

for left- and right-hand control trials). The onsets were aligned to

the time of stimulus presentation. Outcome events were also

separately modelled.

In addition to the onset regressors, two parametric regres-

sors were included for each of the left- and right-handed choice

trials. These regressors correspond to the model-estimated values

for the option chosen on that trial and the values for the option

that is not chosen on those trials (similar to the analysis strategy

used in [10]). By splitting the regressors this way, we can make con-

trasts looking at various combinations of chosen and unchosen

value signals at the time of stimulus presentation. In this manu-

script, we focus on the value of the chosen alternative, and the

difference in value between the chosen and unchosen alternative.

We also included two regressors at the time of outcome, one

to capture the magnitude of outcome received and another to
capture prediction errors at outcome time. The results from the

outcome time are not included in the present manuscript and

will be presented elsewhere.

Finally, motion parameters were included as effects of

no-interest to account for variance in the fMRI data induced by

participant motion.

(v) fMRI-based localization of EEG data
To perform this source localization, we first divided each partici-

pants’ trials into six conditions according to their appropriate

model values. Then, each condition was averaged, and a contrast

[25 23 21 1 3 5] was set up to identify electrodes where the EEG

amplitude in peristimulus time were linearly increasing with

increasing model values. To maximize the likelihood of finding

areas that are common between subjects, we used the group inver-

sion method described in Litvak and Friston [18] as implemented

in SPM8 (Wellcome Department of Imaging Neuroscience, UCL,

UK) to localize the common brain areas that increased in activity

with increasing model values. The group inversion method uses

a canonical mesh in combination with a hierarchical Bayesian

algorithm to find the most likely distribution of sources given

the observed data. Because we also obtained fMRI data in the

same group of participants (barring six participants who were

scanned with EEG only), we could use the fMRI data to inform

the source localization of the EEG data. For this, the statistical

maps, coming from the fMRI results (see the electronic supplemen-

tary material, figure S1) for a particular contrast (thresholded at

p , 0.005 (uncorrected)), were entered into the source localization

as a prior probability. After the result of each participant was

inverted, the final result was obtained by summarizing the region-

ally specific correlates of value that were conserved over subjects.

Other inversion parameters used were: GS model, no PST

Hanning, 0 Hz high-pass, 48 Hz low-pass, no solution restriction,

no time-frequency contrast.
4. Results
(a) Behavioural findings and model-fitting
In order to establish whether participants had learned the task,

we examined the extent to which participants chose the best

available option on a given trial, both relative to the objective

reward probabilities and to the modelled subjective reward

probabilities. We found that for the EEG study, participants

selected the objectively best option on 63% of trials, and the

subjectively best option on 68% of trials, both of which is signifi-

cantly better than chance at p� 10�5, as estimated from a

Monte Carlo simulation. Furthermore, for the fMRI study,

participants selected the objectively best option on 68%, and

subjectively best option on 76% of trials, both of which are

significantly better than chance at p� 10�5.

We also found that the participants in both the EEG and

the fMRI study increasingly chose the better option as the

value difference between options increased, both for

the objectively (figure 2b) and subjectively (figure 2c) best

option. We compared the model fit with both a null model

and with a model without the discount parameter, and the

model we used outperformed the others according to

the Akaike information criterion.

(b) EEG results
(i) Motor-action-related EEG responses
To validate our analysis approach, we first tested for

EEG-related activity elicited by the motor response. When
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using an F-test to compare motor responses elicited to right-

handed choices versus those elicited to left-handed choices in

native electrode space, we observed significant differences in

event-related potentials at 100 ms prior to motor response

with right- versus left-sided scalp distributions peaking

centrally (figure 3a).

Next, we applied source localization for the EEG activity

without using a prior probability map generated from the

fMRI data (see Methods for details). When examining

the localized results for the same time window (100 to

0 ms) prior to the motor action using a non-directional

F-test, the EEG activity was found to be localized to primary

motor cortex in the vicinity of the hand area (figure 3b;

Montreal Neurological Institute coordinates, left: [254, 220,

28], z ¼ 4.34; right: [56, 222, 26], z ¼ 4.44).
(ii) Chosen values
In order to find out where in the brain the decision first

emerges, we tested for chosen value signals, a type of signal

that by definition must emerge after but not before a decision

has been rendered. Thus, detecting where and when this

signal arises in the EEG data, should enable us to ascertain

where and when in the brain the decision first emerges.

To characterize when and where this signal arises, we

regressed our chosen value regressor (derived from the

RL-model) with each of the electrodes in each of the 50 ms

time bins as mentioned above. To ensure that the correlation

was exclusively with chosen value and not with the value

difference (chosen minus unchosen) or otherwise, we

excluded any time bins/electrodes in which there was even

a modest correlation (at p , 0.2) with the value of the uncho-

sen alternative. In a plot of electrodes showing significant

chosen-value-related responses (at p , 0.05 corrected) analysed
separately for each 50 ms window after stimulus presentation

(figure 4), we found evidence for an initial emergence of the

chosen-value signal predominantly over a posterior scalp

location in the range of 200–450 ms following the trial onset,

as well as much more weakly (albeit still significantly) in

an anterior scalp location. The initially posterior-located

chosen-value signal then appears to propagate forward

through the brain, emerging centrally 500–650 ms after stimu-

lus presentation, and finally emerging anteriorly in the brain

850–1150 ms after stimulus presentation.

To further aid in localization of this signal, in figure 5a–c,

we plot the correlating electrodes (thresholded at p , 0.05

corrected) on scalp maps for each time-period showing

significant correlations. In addition to showing the posterior-

to-anterior trend, the plots also indicate that the activity at

200–450 ms is strongest medially, the activity at 500–650 ms

is more lateral and that the activity at 850–1150 ms after

stimulus presentation has both a strong medial and a strong

lateral component.

This posterior-to-anterior progression of chosen values

is also seen by dividing the trials into high and low

chosen value trials, and then plotting the scalp maps of

the difference wave (see the electronic supplementary

material, figure S2).

Next, we implemented source localization for the chosen-

value signals using SPM8. For this, we used the fMRI data

acquired from the same task as a prior probability map for the

source localization. The fMRI results revealed significant

chosen-value-related activity in areas reported in a number of

previous fMRI studies, including lateral parietal cortex, lateral

orbitofrontal and vmPFC (see electronic supplementary

material, figure S1).

Source-localized results revealed activity in four principle

locations for chosen-value: a region of intraparietal sulcus
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Figure 6. fMRI-informed source localization of chosen value with threshold
set at p , 0.0005 (unc). (Online version in colour.)
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([224, 246, 64], z ¼ 3.58, figure 6 top), middle temporal gyrus

([64, 220, 2], z ¼ 3.90), lateral prefrontal cortex ([48, 36, 6],

z ¼ 4.23) and vmPFC ([26, 62,4], z ¼ 5.18, figure 6 bottom).

(iii) Value difference
Next, we tested for EEG signals correlating with the difference

in values between the options that are chosen and not-chosen

on each trial. In previous studies by our group, we have found

neural correlates of the difference between the unchosen and

chosen value in a region of dmPFC, which we suggested rep-

resented the output of the decision process as predicted by

models of decision-making such as the drift–diffusion

model [10,11]. Consequently, we aimed to test for the presence

of such a signal in the EEG data across electrodes and time

post-trial onset. We found that this signal appears to emerge

predominantly 1050–1200 ms after trial onset in a central

scalp location (figures 7 and 8). The source localization of the

unchosen minus chosen value (figure 9) revealed significant

effects of the value difference in dmPFC, most strongly in a

more posterior part of the dmPFC ([8, 16, 62], z ¼ 5.93),

but also extending more anteriorly ([224, 54, 22], z ¼ 4.12).

There are two very important features of these value difference

results. First, the timing: this value difference signal appears to

emerge substantially later in time than does the value chosen

signal (approx. 850 ms later). Given that the value chosen

signal can only emerge as a consequence and not as a precursor

of the decision process, the decision clearly must be made sub-

stantially earlier within the trial before the emergence of the

value difference signal. As a consequence, it appears that this

signal may not be critically related to the formation or immedi-

ate aftermath of the decision process itself, but instead must

relate to some post-decision process. Second, the localization

of the value difference most prominently to the dmPFC in

the fMRI-constrained EEG data, is strongly consistent with

the results of a number of previous fMRI studies that have

localized this signal to the same region of dmPFC [10,11].
5. Discussion
In the present study, we used computational model-based EEG

analysis in combination with model-based fMRI data acquired
from an overlapping group of participants in order to ascertain

the timing and localization of decision-related variables as

estimated through a reinforcement-learning model.

In the present study, we used a very simple type of

reinforcement-learning algorithm (SARSA) to estimate

trial-by-trial value signals [19]. We note that this class of

‘model-free’ algorithm does have limitations, in particular

when it comes to situations where a decision problem has

higher-order structure, or where the value of an outcome

to an agent changes across time [20,21]. A number of other

types of algorithm have been proposed for this situation,

including model-based reinforcement learning and Bayesian

models [20–23]. However, in the present situation, the task

was designed so that value signals could be adequately

captured with even a simple reinforcement-learning model,

because the reward distributions associated with each

action were kept independent, and can thus be learned

relatively efficiently by means of a ‘model-free’ reward pre-

diction error. Furthermore, model-based and model-free

RL algorithms will likely make very similar trial-by-trial pre-

dictions in the present case. Future extensions of this work

could involve using more complex tasks in order to dis-

tinguish the temporal signatures of ‘model-based’ and

‘model-free’ value signals.

The results of this study provide several important new

insights into how simple binary value-related decisions are

made in the human brain. Specifically, we show that

chosen value signals, which are by definition a consequence

of the decision process [5,10], appear to initially emerge pre-

dominantly in a posterior location in the brain, with a

weaker signal present also at an anterior locus. Using

fMRI-informed source localization, we found that the

posterior signal was localized to the vicinity of the lateral–

intraparietal cortex and posterior lateral temporal lobe

cortex. Such signals emerge as soon as 200 ms after

the trial onset, suggesting that the decision itself may be

computed very early on in the trial. The predominantly pos-

teriorly localized chosen value signal then appears to

propagate more anteriorly over the course of several
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hundred milliseconds, emerging in a central location around

500 ms, and then finally in a more anterior location around

850 ms post-trial onset. In our fMRI-guided EEG source

localization, these more anterior areas may correspond to

the lateral prefrontal cortex and vmPFC, respectively.

These findings show that the consequence of the

decision itself (for at least this type of simple reward-related

choice) is represented very early on (only 200 ms after

stimulus onset) most prominently in posterior parts of the

brain such as LIP. A possible implication of these findings

could be that posterior brain regions such as LIP are respon-

sible for the formation of the initial decision, before this

information is propagated anteriorly for the purposes of

action selection. However, the fact that the chosen-value

activity was also found in an anterior scalp location early

on in the trial, albeit much more faintly than the posterior

locus, suggests that such a conclusion may be premature

on the basis of the current findings.

A more balanced interpretation would be that the

decision process may emerge as a result of integrative inter-

actions between anterior and posterior regions. It has been

proposed that the decision process can be viewed in a hier-

archical setting, with more anterior regions such as vmPFC

playing a role in the selection or ranking of goals, and

more posterior dorsal regions such as LIP playing a role in

the selection of actions to obtain goals (see [5]). The degree

to which these different regions contribute to the decision

process for a given decision-making problem may depend

on the extent to which the decision that needs to be made

is weighted towards goal selection or action selection. For
example, in a situation where the goal is the same over all

the actions (i.e. to win money), we might expect less contri-

bution from vmPFC to the decision process and more

contribution of LIP and other dorsal cortical areas. Conver-

sely, if the decision task involves selection over different

types of goal outcomes (e.g. deciding whether to opt for a

glass of soda or glass of milk), where each goal involves simi-

lar actions (i.e. a grasping movement), this type of decision

might depend more on the vmPFC. Decisions that tax both

goal selection and action selection might depend heavily on

both brain areas. In the present case because the goal was

the same for both actions (to win money), yet the actions

differed and the probability of reward available on those

actions differed, perhaps a greater initial dependence on pos-

terior regions for computing the decision might pertain, as

observed in our results.

The rapid emergence of chosen value signals in the

vicinity of the lateral intraparietal cortex is particularly

notable given prior literature implicating this region in

decision-making in non-human primates [7,13,24–26]. In par-

ticular, neural signals have been found in these regions

that are suggested to correspond to evidence integration pro-

cesses in both perceptual and value-based decision-making

[6,27–29]. It is also striking that the timing of emergence of

decision signals in monkey LIP neurons is very compatible

with the timing of the emergence of chosen value signals in

the present study. In both the monkey studies and our

study, around 200 ms post-stimulus, LIP appears to have a

very robust representation of the option that ultimately

is chosen.

Besides the lateral intraparietal cortex and vmPFC,

another region that has previously been implicated in the

decision process is the dmPFC [4,10,11,30]. This region has

previously been found to encode the difference between

unchosen and chosen values, which has been hypothesized

to emerge as a consequence of the type of evidence inte-

gration process that may underpin decision-making at the

neural level. When we tested for unchosen minus chosen

value signals we found them to be localized predominantly

to regions of dmPFC, as found in those previous studies.

However, these signals appear to emerge 1050 ms into the

trial, approximately 850 ms after the chosen values signals
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are first observed elsewhere. A strong interpretation of these

results is that value difference signals in the dmPFC are not

involved in the implementation of the decision process

itself, but instead emerge later on in the trial at the point

when action selection is being implemented. One possibility,

on which we speculated in the original fMRI study by

Wunderlich et al. [10] that first reported this signal, is that

the dmPFC may contribute to the implementation of the

action selection by inhibiting selection of the action that is

not taken on a particular trial.

In addition to the late emergence of value-difference

signals, it is also notable that chosen value signals also

occur mid to late in the trial (in the range of 850–1050 ms

post-trial onset), localized predominantly to anterior brain

regions such as vmPFC and lateral prefrontal cortex.

What purpose could such late emerging signals serve?

One possibility is that such chosen value signals are used

in order to generate prediction errors, which correspond

to the difference between actual and expected (chosen)

outcomes [5]. Alternatively, chosen values might be used

to motivate action selection, i.e. to increase response-

vigour towards higher-valued actions relative to chosen

actions that are less highly valued. Finally, chosen value

signals could be used to modulate action-monitoring, so

that actions leading to more highly valued outcomes

are monitored more closely than actions resulting in less

valuable outcomes.

One important caveat of our findings is that the fMRI con-

strained localization results we report here does depend on

the assumption that fMRI data and EEG data are generated

by the same underlying neural sources, an assumption that

may not always hold true [31]. Nevertheless, the brain

regions identified in our source localization have been pre-

viously identified as having neural activity that is strongly
implicated in value-related learning using direct neural

recordings from those areas [7,8,32]. Thus, it is unlikely that

the results we observe are an artefact of the assumption

underlying fMRI-informed EEG localization.

In conclusion, the present findings provide us with valu-

able insights into the temporal and spatial processes

underpinning human value-based decision-making for

binary options. We show that value signals related to the

consequence of the decision emerge within 200 ms after

onset of the decision trial, most predominantly in posterior

locations in the vicinity of the LIP as well as in posterior

temporal lobe cortex, but also less prominently in an

anterior cortical locus. These findings suggest an important

role for posterior brain regions including the LIP in the gen-

eration of the decision itself, perhaps through cortical

interactions with more anterior regions such as vmPFC.

Furthermore, while dmPFC was found to report the differ-

ence in value between unchosen and chosen options as in

a number of previous studies, this signal did not emerge

until much later in the trial, approximately 1050 ms after

the initial stimulus presentation, and 850 ms after the first

emergence of the value signals reflecting the consequence

of the decision (chosen value signals). These findings suggest

that dmPFC may not play a consequential role in the initial

formation of the decision itself, but rather may contribute

at a later stage during the process of implementation of

action selection.
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