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Action selection, planning and execution are continuous processes that evolve

over time, responding to perceptual feedback as well as evolving top-down

constraints. Existing models of routine sequential action (e.g. coffee- or pan-

cake-making) generally fall into one of two classes: hierarchical models that

include hand-built task representations, or heterarchical models that must

learn to represent hierarchy via temporal context, but thus far lack goal-

orientedness. We present a biologically motivated model of the latter class

that, because it is situated in the Leabra neural architecture, affords an oppor-

tunity to include both unsupervised and goal-directed learning mechanisms.

Moreover, we embed this neurocomputational model in the theoretical frame-

work of the theory of event coding (TEC), which posits that actions and

perceptions share a common representation with bidirectional associations

between the two. Thus, in this view, not only does perception select actions

(along with task context), but actions are also used to generate perceptions

(i.e. intended effects). We propose a neural model that implements TEC to

carry out sequential action control in hierarchically structured tasks such as

coffee-making. Unlike traditional feedforward discrete-time neural network

models, which use static percepts to generate static outputs, our biological

model accepts continuous-time inputs and likewise generates non-stationary

outputs, making short-timescale dynamic predictions.
1. Introduction
Action control is essential to the daily routines of life, being an integral part of

everyday activities from getting dressed to making pancakes. Yet, in our effort

to distill cognitive processes in the laboratory, our controlled experiments often

remove many of the interesting aspects of voluntary action. Although arbitrary

stimulus–response experiments have in fact granted many insights into basic cog-

nitive mechanisms of perception, learning and decision-making, as engineers

endeavour to build humanoid robots to accomplish everyday cooking and clean-

ing tasks [1], the field of cognitive psychology seemingly has embarrassingly little

advice to offer (for a review, see [2]). Despite early interest in how an action pre-

cipitates from thinking of its to-be-achieved effects, or goal [3], the more

mainstream sensorimotor paradigm investigates the reverse: stimuli-driven per-

ception resulting in action. From the sensorimotor perspective [4,5], the

stimulus is seen as the driving force behind the subsequent selection, preparation,

planning and execution of an action. However, the sensorimotor approach is dif-

ficult to extend to the broader arena of goal-directed action, where desired effects

can lead executive function to initiate appropriate actions.

The theory of event coding (TEC; [6]) uses an ideomotor perspective and

additional principles to explain a wide variety of action control phenomena [7].

TEC emphasizes that task context is important for selecting which features are

emphasized, and which are ignored. Indeed, perceived features such as size and

location can sometimes influence actions beyond cognitive control, as seen in

stimulus–response compatibility phenomena such as the Simon effect [8]. This

implies that a fairly direct route from perception to action is possible—one that
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may bypass many of the sensorimotor view’s steps of planning,

selection and preparation. TEC’s premise that perception

and action plans share a common representation allows

percepts—along with task context—to generate and select

actions. Because action effects also share this common coding,

desired effects (i.e. goals) can activate relevant actions to achieve

the effect [9]. It turns out that TEC is underspecified, however,

for it was originally conceived as a meta-theoretical framework

mainly concerned with simple one-step, ballistic actions. This

lack of specificity becomes more obvious when considering

the complexities of everyday action, which are thought to

require sequential, hierarchically structured goals.

In this paper, we present a computational model of sequen-

tial action learning, stemming from the biologically motivated

Leabra cognitive architecture [10,11]. We show how this model

implements the central principles of TEC and situates it in a

biological and ecological context. We address two key ques-

tions: (i) How might goals be represented? and (ii) Do multi-

step, nested actions require hierarchical representations? Both

questions are important because TEC assumes that goals

have strong impact but it is not specific as to how the goal is

represented. It also seems to suggest that goal representation

is implicit (i.e. the goal is represented by the way it affects

the system: e.g. weighting features according to their impor-

tance for achieving the goal [12]). Leabra fills out this missing

information and gives a concrete explanation of how goals

can be implicit and yet yield feedback for learning.

We begin by reviewing TEC and previous attempts at mod-

elling everyday action, focusing on ways to integrate theoretical,

empirical and biological constraints. We then propose how

Leabra can resolve some of the remaining constraints by repre-

senting proximal goals as implicit task context in separate neural

subpopulations. Because goals and actions share a common

coding, error-driven learning can be used to learn associations

between subsequent actions. We describe a proof-of-concept

neural model that demonstrates how these mechanisms can

account for everyday action in a coffee-making task.
2. Theory of event coding
TEC is a theoretical framework that describes how an agent’s

actions and perceptions are remembered, and how these

memories are used to generate future actions (and thus per-

ceptions). TEC assumes that perception and actions are

represented using the same feature codes, which encode rel-

evant aspects of the environment (e.g. colour, size, location,

shape) and not merely proximal features. Thus, activation

of feature codes that represent distal events is an integral

part of both perception and action planning. The assumption

that feature codes are used to represent both the properties of

a response as well as those of a stimulus in the environment is

derived from ideomotor theory, which states that actions are

represented in terms of their perceivable effects [3,13]. When

an action is executed, the motor pattern becomes associa-

ted with the perception of the action’s effects. Elsner &

Hommel [9] explored this in a series of experiments, finding

that key presses (i.e. actions) producing particular auditory

tones were later primed by hearing the corresponding tone,

demonstrating that the learned action–effect association

also works when temporally reversed.

The universal representation proposed by TEC, called

an event code (or event file), represents features of the
environment rather than proximal features of the sensation

(e.g. auditory intensity). For example, consider a version of

the 1967 Simon & Rudell task [8], in which subjects are asked

to respond with a left or right keypress to target colour patches

(e.g. green or red), which appear either on the left or right of

the screen. Although the spatial location is irrelevant to the

response, subjects respond faster and more accurately when

the target requires a compatible response (left stimulus and

left response, or right stimulus and response), in comparison

to incompatible responses (left stimulus and right response

or vice versa). TEC accounts for this effect because when a

perception (green, left side) activates a feature (e.g. left) that

is shared with an action, that action (e.g. left keypress) is

primed. That is, the event code is the integrated assembly of

distal sensorimotor features (e.g. spatial location, colour) that

are relevant for perception and action, integrated with task con-

text. The development of an event file enables low-level action

planning, for once an action becomes associated with a distal

effect, the desire to achieve an effect activates the action.

Further evidence for shared representational resources comes

from studies showing that verifying perceptual properties

from the same modality (e.g. sight: colour and luminance)

results in processing advantages, compared to properties

from different modalities—if it is for the same object or differ-

ent objects [14,15]. This supports the idea that sensorimotor

simulations are involved in many, if not all cognitive represen-

tations. This is a central tenet of TEC and is consistent with the

idea of embodied cognition in general [16].

The core principles of TEC have been instantiated in HiTEC

[17], a connectionist model composed of sensory-motor, fea-

ture and task levels. While this initial model proved that the

basic tenets of TEC are sufficient to account for a wide variety

of experimental compatibility effects—as has been predicted

by TEC—HiTEC does not provide a fully general account of

how feature and task codes can be learned from experience.

Moreover, although TEC explains simple goal-directed action

in addition to the standard sensorimotor stimulus–response

account, it has not yet been extended to sequences of actions,

which are typical in everyday tasks, let alone hierarchies of

tasks and goals.
3. Modelling everyday action
Learning everyday actions is generally agreed to be complex, for

actions are experienced serially, and yet are typically thought of

as hierarchical since some subactions (e.g. mixing in eggs) are

part of multiple actions (e.g. making pancakes or cookies). More-

over, these shared subactions may precede or follow distinct

actions. Lashley [18] pointed out that the bulk of human sequen-

tial actions cannot be explained by merelyassociating perceptual

inputs and actions, as the prior action and the current percepts

do not sufficiently constrain action selection (for a review, see

[19]). Rather, a more elaborate representation of task context is

needed that persists through multiple actions and helps select

the appropriate next action. For example, when a baker sees a

bowl of cake batter, he may need to know whether he is

making cupcakes or a cake—the high-level goal—in order to

perform the next action: pouring the batter into an appropriate

receptacle. Task structure is typically defined by researchers as

hierarchical, since everyday tasks such as tea- and coffee-

making often contain subtasks such as adding cream or

adding sugar that are discrete and interchangeable.
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Thus, action selection for everyday tasks requires repre-

senting the task context in a way that preserves both the

high-level task, as well as appropriate subtasks. In schema-

based models, this multi-level task context is built-in via

hand-coded hierarchical representation of the task structure

[20,21]. The strength of schema-based models could be

argued to be their explicit representation of goals and subgoals

as nodes in a task hierarchy that is comprehensible to research-

ers, if perhaps not laymen. Many robotic systems use schema-

based architectures: despite the need to hand-code much of

the representation, roboticists may find it worth the certainty

of knowing how exactly the system will react to any given

set of conditions, rather than reacting stochastically and per-

haps unpredictably. Given researchers’ strong belief in the

hierarchical structure of everyday tasks, and that the cognitive

representation probably mirrors this compositional structure,

we must ask how the structure of complex everyday actions

can be learned by the human system: is it necessary to explicitly

build hierarchy into the representation?

Ultimately, a realistic model needs to be able to learn the

general task structure from a series of exemplars, much like

the learning problem that humans face. A model that extracts

the semi-hierarchy of a task should allow more natural gener-

alization to new tasks, since subsequences at the appropriate

level will be seen to be quite similar, and thus shared. How

can a model represent task context during temporally

extended task execution, in a way that also supports learning

of these structures via experience? Botvinick & Plaut [22]

introduced a connectionist model that encodes context at

multiple timescales. Essentially, the model is a simple recur-

rent network (SRN; [23]) consisting of three groups of

neurons arranged in a loop: perception, internal and action.

The perception group receives input from the simulated

environment (e.g. ‘sugar packet’), and the action group outputs

simple actions (e.g. ‘pick-up cup’) that modify the environment

(and thus, the next percept). The hidden internal neuron group

is recurrent, allowing it to come to represent temporal context,

possibly representing previous states of the environment. The

SRN model performs well at an instant coffee-making task,

which consists of four subtasks: adding coffee, adding cream,

adding sugar (from a bowl or paper packet) and drinking.

Each of these subtasks comprises several simple actions, such

as picking up, putting down and pouring. This model was

shown to be able to generalize to tea-making—which shares

subactions such as adding sugar—without catastrophic forget-

ting. The SRN model is trained via backpropagation through

time [24] and shows many of the same substitution and

omission errors that humans commit.

Botvinick & Plaut [22] demonstrates that it is possible to

learn hierarchically structured actions from training on sequen-

tial actions, and without hierarchy built into the model.

Furthermore, Botvinick [25] argues that strictly hierarchical

models cannot account for context-sensitivity. For example,

you might add different types and amounts of sugar to differ-

ent beverages (coffee or tea). Do you then need different

schema nodes for every type of sugar-adding? If you have mul-

tiple nodes, then how do you also encode the similarities

between sugar-adding for these different beverages? Recurrent

connectionist models, with spreading activation over distribu-

ted representations, allow similar sequences to develop similar

representations, producing generalization as a natural by-

product. However, although the SRN model provides a first

proof-of-concept for representing hierarchical everyday
action without hierarchy, it lacks both biological foundations

and any account of goal-directed behaviour.

TEC got away without a complex representational struc-

ture because in single-step actions, a goal is equivalent

to the outcome of the action, which is often not the case

when several steps are necessary to reach the goal. However,

Leabra shows that it is fortunately unnecessary to give rep-

resentations complex structure in TEC: hierarchically

structured actions can be produced without hierarchy in the

representations, much like the SRN.
4. Learning sequential actions with Leabra
Leabra (Local, Error-driven and Associative, Biologically

Realistic Algorithm) is a general model of the neocortex that

incorporates many widely accepted biological principles of

neural processing and has been used to successfully implement

a growing number (50þ) of models and tasks [10,26]. Leabra

models the brain at scales ranging from individual neurons up

to the structural organization of macroscopic areas and makes

predictions regarding the neural mechanisms, time course

and substrates of cognitive processing. Models consist of a

homogeneous set of mechanisms including a biological

integrate-and-fire neuron model [27], k-winners-take-all inhibi-

tory competition, and deep architectures with bidirectional

excitatory synapses. Most parameter settings are consistent

across models and thus, the model described here can be

viewed as a specific instantiation of a systematic modelling fra-

mework opposed to a model with completely new mechanisms.

Learning in Leabra models is traditionally accomplished by a

biphasic algorithm that incorporates self-organizing Hebbian

and error-driven components derived from synaptic long-term

potentiation/long-term depression mechanisms. For the error-

driven component, the network state is said to be in the minus
phase when representing a prediction, and the plus phase when

an actual outcome occurs. In learning to represent temporally

ordered properties such as action sequences, a model must be

able to generate the state at time t using the representation from

time t 2 1. Leabra’s error-driven learning makes this difficult,

since synaptic weights are updated to minimize the difference

in neural activations across the minus and plus phases, which

are assumed to occur in sequence. To address this difficulty, we

have extended the Leabra learning algorithm to make predic-

tions about time t by explicitly representing information from

time t 2 1 and integrating errors over these two periods.

We refer to this extension as LeabraTI (Temporal

Integration). A full description of the algorithm is presented

in O’Reilly et al. [11], although we briefly summarize the com-

putation and biological motivation here (see the electronic

supplementary material for implementation details). LeabraTI

is closely related to the traditional SRN architecture, which

explicitly represents the previous time step’s information in a

population of ‘context’ neurons. Accomplishing this property

in biological neural circuits that are continuously updated

requires a mechanism to gate information into a relatively iso-

lated subpopulation of neurons. In LeabraTI, a microcircuit

extending vertically through the cortex to the thalamus accom-

plishes this operation (figure 1a). Specifically, sensory input

enters cortex through the thalamus in Layer 4 and is trans-

mitted to superficial layers (Layers 2 and 3). From there,

information is both propagated downstream to Layer 4 of the

secondary cortical area, as well as to deep layers of the primary
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Figure 1. Neocortical anatomy supporting LeabraTI. (a) Cortical areas are composed of columns of neurons with canonical circuitry within and between areas. Within
a column, information follows the path Layer 4! Layer 2/3! Layer 5! Layer 6. Layer 2/3 sends feedforward projections to the next area and is the primary
site of feedback, and thus can be seen as doing bidirectional information processing. (b) Layer 5 neurons integrate contextual information from Layer 2/3! Layer 5
synapses, and gate this context signal into Layer 6 neurons. These Layer 6 neurons sustain the context via recurrent projections through the thalamus, which also
recirculate the context through the local column to support generation of the next prediction during the minus phase. Veridical information from the sensory
periphery drives the column in the plus phase. Layer 6 context is not used during the plus phase but is updated through the Layer 2/3! Layer 5! Layer
6 intra-columnar circuit at the end of processing (every 100 ms). thal, thalamus. (Online version in colour.)
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area (Layers 5 and 6), which we believe serve as a temporal

context representation as they are relatively isolated from

interareal inputs.

In LeabraTI, predictions in the minus phase, driven by

temporal context from Layer 6 to Layer 4 transthalamic

synapses, are interleaved across time with actual information

from the sensory periphery transmitted through the thalamus

to Layer 4 during the plus phase. Temporal context in deep

layers is updated at the end of the plus phase with the current

sensory information. The total time across the minus and plus

phases in the model is 100 ms, which is sufficient for gener-

ation of a reasonable prediction and processing peripheral

sensory inputs. The difference between the minus and plus

phases is used to update both the interareal synaptic weights

as well as the intracolumnar Layer 5 to Layer 6 synaptic

weights, allowing the network to jointly learn the current

input as well as the mapping between subsequent inputs.

The overall LeabraTI computation is depicted in figure 1b.

For computational efficiency, we do not explicitly model

Layer 4! Layer 2/3 or Layer 2/3! Layer 5 intracolumnar

synapses and instead assume that they are perfect one-to-

one relays. This reduces the complexity of the model to bidir-

ectionally connected superficial (Layer 2/3) layers with

corresponding deep (Layer 6) layers that sustain the previous

moment’s context.
5. Model of coffee-making task
We built a model incorporating the general LeabraTI architec-

ture to perform a coffee-making task that has been targeted

by other recent models of sequential action [20,22]. Making

instant coffee or tea is a suitable everyday task to study

sequential action, for it is composed of a number of sub-

tasks (e.g. adding sugar) that may be performed in varying
order and number of repetitions. For training, we used a for-

malization similar to that used by Botvinick & Plaut [22],

using features to describe the currently fixated object, held

object and performed actions (e.g. a single step: fixate 1-

handled cup with clear liquid, holding nothing, and now

fixate the coffee packet). However, instead of using a few

fixed training orders like Botvinick & Plaut [22], we wrote a

finite state grammar to generate reasonable sequences of

actions (see below).

The model architecture is depicted in figure 2. The

model contains three sensorimotor layers (visual, manual,

action; 25 neurons each) bidirectionally connected to a

hidden layer, which is in turn connected bidirectionally to

a second hidden layer (24 neurons each). A model with a

single 48-unit hidden layer was also investigated. Context

layers are composed of the same number of neurons as their

superficial counterparts, effectively doubling the number of

units in the network. All connections in the model, including

those between superficial and deep layers, are all-to-all, con-

necting each unit in the receiving layer to every unit in the

sending layer. Context is stored by filtering the state of super-

ficial layers at the end of the plus phase through the

superficial-to-deep weights and applying it as an additional

graded input to the receiving area during the minus phase.

The electronic supplementary material contains additional

details of the LeabraTI algorithm.

Our implementation of the task closely follows that of

Botvinick & Plaut [22], using localist representations of the

relevant features. The visual layer represents 19 features: the

cup, 1-handle, 2-handle, lid, clear liquid, brown liquid, light,

carton, open, closed, foil, paper, torn, untorn, spoon, teabag,

sugar and empty. The manual layer represents all 19 of the

features in the visual layer, with the addition of ‘nothing’

(i.e. an empty hand). The action layer represents 19 actions:

pick up, put down, pour, peel open, tear open, pull open,
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pull off, scoop, sip, stir, dip, say ‘Done’, fixate cup, fixate coffee

packet, fixate spoon, fixate carton, fixate sugar packet and

fixate sugar bowl. Following Botvinick & Plaut [22], these

basic sensorimotor features were used to compose the steps

for four different coffee-making sequences and two

tea-making sequences, which were randomly selected for

training in each epoch. Details of the training are given in

the electronic supplementary material. Broadly, coffee-

making sequences consist of adding coffee grounds, and then

adding cream and sugar in either order. Since sugar can

come from either a packet or a bowl, there are thus four poss-

ible coffee-making sequences. Finally, the beverage is sipped.

For the tea-making task—used to test generalization at test—

the teabag is steeped, an amount of sugar may be added

from a packet or bowl, and the tea is sipped.

The model was trained using the LeabraTI extension of

the Leabra algorithm for 200 epochs of 50 training steps.

These steps were generated from the finite state grammar of

coffee- and tea-making subactions defined above, and the

model iterated over these steps and adjusted connection

weights according to LeabraTI. We trained 100 networks
with randomly initialized weights for 200 epochs (i.e. 10 000

trials per network). The mean squared error and accuracy per

epoch during training for 100 simulated networks is shown

in figure 3, along with 100 networks trained with only a

single 48-unit hidden layer for comparison. Although the

single larger hidden layer improves faster in early training,

by the final 50 epochs of training the model architectures

perform very similarly (see the electronic supplementary

material for details). It seems that the recurrence in the Leab-

raTI context projections is sufficient to support learning the

task; additional recurrence in a deep hidden layer is not necess-

ary. For test manipulations, we investigate the dual hidden

layer model to maintain similarity to the SRN model.

The 100 trained networks were subjected to several test

manipulations in order to investigate the relative contributions

of LeabraTI, its context projections and the second hidden layer

on performance. For the test task, each network was used to

generate 37 coffee- or tea-making steps 100 times, and the

error in generating the appropriate action was measured. The

manipulations were as follows: completely lesioning the

second hidden layer (hid2 lesion), running the model without



Table 1. Normalized error on test trials for various network manipulations.

condition normalized error s.d.

normal 0.035 0.003

hid2 lesion 0.087 0.028

weak context 0.413 0.042

non-TI 0.623 0.021
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using LeabraTI (i.e. without the deep context projections; non-

TI), or reducing the weight of the context projections by a factor

of three (weak context). In table 1, the overall resulting error

rates demonstrate that while lesioning the second hidden

layer harms performance somewhat, weakening the LeabraTI

context projections—or removing them entirely in the non-TI

version—is much more detrimental. Detailed results concern-

ing the relative error rates for different trials are in the

electronic supplementary material.

The model differs from previous SRN models in several

ways. First, each layer input modality contains its own implicit

context representation opposed to a single shared context rep-

resentation attached to the hidden layer. This allows the model

to learn more quickly and more robustly by learning visual- or

manual-specific errors before integrating them into the hidden

layer and its corresponding context. The model also has a

second hidden layer (though see [25]), which provides minimal

structural hierarchy, granting our model greater power in

representing nuanced context differences by learning what

information to preserve or update over time. The bidirec-

tionality of projections between the hidden layer and the

sensorimotor layers sets our model apart from the sensorimo-

tor-loop style of the SRN, bringing it in accord with TEC’s

ideomotor principle.

The LeabraTI model also makes use of a biologically tract-

able learning rule compared to the SRN model of Botvinick &

Plaut [22], which was trained using backpropagation through

time (BPTT; [24]). BPTT requires the entire network to be

unfolded through all of the steps in the action sequence

before averaging the weights together which is computation-

ally inefficient and relatively implausible as far as the brain is

concerned. LeabraTI is capable of learning in a step-wise

fashion in real time, synchronized with sensory inputs and

action outputs. LeabraTI also appears to learn much faster.

Whereas the SRN model required 20 000 epochs—each com-

prised more than 200 steps of the full task and background

tasks (e.g. adding sugar)—to plateau1 the LeabraTI model

asymptotes after less than 150 epochs of only 50 training

steps: a more than 500-fold decrease in training steps.

Finally, we also performed some of the analyses from

Botvinick & Plaut [22], including a PCA (principal component

analysis) plot of the second hidden layer’s activations across

the tea and coffee versions of the task for the sugar packet

sequence (when it was the second item in each task). As

figure 4 shows, we see that the hidden layer activations traverse

a similar trajectory through this sequence, for both the tea and

coffee tasks, but a small additional difference reflects the over-

all task context. The cluster plot from figure 4 shows that the

corresponding steps from the tea and coffee tasks are each

most similar to each other, but there is also interesting semantic

structure on top of that, reflecting both the actions and objects
of those actions. Thus, although the second hidden layer is

not necessary to learn the task, when a second hidden layer

is present it comes to have similar representations for the

shared subtasks from different hierarchies.
6. Discussion
This paper has argued that the TEC, an ideomotor approach

to explaining voluntary goal-directed action, is a more useful

construct for explaining action control than the sensorimotor

approach, which does not account for internally motivated

action. Feedforward discrete-time neural networks roughly

implement a sensorimotor loop, moving from sensation to

recognition, response selection and response execution.

Recurrent networks such as the SRN [23] provide feed-

back from the previous internal state of the network to the

hidden layer, allowing this representation to influence

the next step’s perceptual input, and subsequent action selec-

tion. Since actions influence the environment, their effects

propagate to perception, and then to the internal state. Thus,

the SRN does not directly learn bidirectional action–effect

associations, nor the action-selected perception and action-

context feedback that TEC states are required to account for

compatibility effects and endogenously motivated action.

By contrast, the LeabraTI algorithm offers a biologically

motivated biphasic learning model that alternately forms

expectations and then uses prediction error as a feedback

signal, meanwhile preserving task context. LeabraTI’s inter-

leaved prediction (minus) and sensation (plus) phases occur

with an overall period of around 100 ms, corresponding to

the 10 Hz alpha rhythm widely observed across the cortex

[28,29]. Discretizing time at this rate gives the network

enough time to compute reasonable expectations and matches

the psychologically estimated rate for discretization of percep-

tion [30]. Furthermore, this chunking and error-driven learning

also meets the requirements for event files [31], which must

bidirectionally bind stimulus features, action features and

their co-occurrence. LeabraTI is one of several recent models

to implement predictive/generative deep learning to great

benefit [32]. In LeabraTI, top-down and bottom-up signals

mutually inform each other: both are excitatory and combine

via mutual constraint satisfaction to reach an interpretation

that integrates information from both signals. Thus, both task

context—at multiple timescales—and perception inform the

agent’s next action. Other core principles of TEC are also

implemented in the Leabra model. For example, TEC’s

assumption that action representation is goal-oriented maps

to the prediction phase of LeabraTI. This explains the impor-

tant theoretical issue of how to implicitly handle the

intuitively goal-oriented nature of routine actions using bio-

logical mechanisms. As we demonstrated, explicit goal

representations are not necessary to produce goal-directed be-

haviour, which is consistent with TECs assumption that action

goals are represented implicitly. It is certainly true that people

represent action goals explicitly as well, as they can report and

reflect upon them. However, there are reasons to assume that it

is exactly those post-actional purposes that such explicit rep-

resentations serve, while their involvement in online action

control is rather unlikely [33,34].

We demonstrated how the LeabraTI algorithm can be

used for learning and performing routine sequential actions

such as coffee-making, which are hierarchical and partially
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ordered, despite the model’s relatively heterarchical struc-

ture. This model yields all of the advantages of Botvinick &

Plaut’s [22] SRN model, but with stronger biological foun-

dations. By maintaining internal state in two (or only one)

hidden layers, the model reflects the input and network his-

tory, while the predictions and actual output become more

fine-tuned as further perceptual input is received and the

internal context (i.e. the implicit representation of goals)

evolves. Thus, this model can, in principle, show a variety

of context effects for goal-directed sequential actions that

humans also show. For timescales larger than those encoun-

tered in routine actions, Leabra’s basal ganglia model could

be used to selectively gate the activity of the frontal cortex
‘stripes’ where basic behaviours—similar to those in our

model—are learned. In our continuing work, we plan to

establish more connections between theory, modelling and

empirical results to better explain everyday human action.

Funding statement. The preparation of this work was supported in part
by the European Commission (EU Cognitive Systems project ROBO-
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Endnote
1Botvinick & Plaut [22] note that learning takes roughly half as many
epochs for correct responses if a winner-take-all criterion is used.
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