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Abstract

We report on a new concept for profiling genetic mutations of (lung) cancer cells, based on the

detection of patterns of volatile organic compounds (VOCs) emitted from cell membranes, using

an array of nanomaterial-based sensors. In this in-vitro pilot study we have derived a volatile

fingerprint assay for representative genetic mutations in cancer cells that are known to be

associated with targeted cancer therapy. Five VOCs were associated with the studied oncogenes,

using complementary chemical analysis, and were discussed in terms of possible metabolic

pathways. The reported approach could lead to the development of novel methods for guiding

treatments, so that patients could benefit from safer, more timely and effective interventions that

improve survival and quality of life while avoiding unnecessary invasive procedures. Studying

clinical samples (tissue/blood/breath) will be required as next step in order to determine whether

this cell-line study can be translated into a clinically useful tool.
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Cancer emergence, aggressiveness and treatment response varies greatly from patient to

patient.1 Gene expression profiling2 is currently gaining importance for accurately

classifying tumors in individual patients, predicting the response to the available treatments

and personalizing cancer therapy.3–6 Results with conventional tests can be obtained in

several days. However, invasive tissue sampling from the tumor is required and frequent

monitoring is needed to detect changes in the cancer cells over time.1 Here, we report on a

new approach for profiling genetic mutations. We focus on representative genetic mutations

in cancer cells that are known to be associated with targeted cancer therapy, viz. mutations

of the epidermal growth factor receptor (EGFRmut)5, mutations of the v-Ki-ras2 Kirsten rat

sarcoma viral oncogene homolog (KRASmut), and fusion of the echinoderm microtubule-

associated protein-like 4 (EML4) gene to the anaplastic lmphoma kinase (ALK) gene

(EML4-ALK). The method is based on detecting and identifying patterns of volatile organic

compounds (VOCs; i.e., compounds with a relatively high vapor pressure, typically equal to

or greater than 0.1 mmHg)7,8 that are emitted from the cell membranes, using an array of

nanomaterial-based sensors (see Figure 1).

Cancer-specific VOCs can be detected (i) from the headspace of the cancer cells (the

gaseous constituents of a closed space above the cell-lines, in-vitro approach); (ii) from

exhaled breath: (iii) from blood samples; (iv) from skin excretions; or (v) via tissue

sampling. 7–9 For the current study, we have chosen the in-vitro approach as a way to

eliminate potential effects of confounding factors that are associated with clinical samples,

such as patients’ diet, age, gender, metabolic state etc. Additionally, direct detection of

VOCs from cancer cells will provide clear-cut evidence that the findings are associated with

the cell per se, rather than with the microenvironment of the tumor or with indirect

metabolic pathways in the body.

It was recently shown that arrays of cross-reactive nanomaterial-based sensors combined

with statistical pattern recognition methods can identify and separate the VOC patterns of

several types of lung cancer (LC) cells with different histology, as well as liver cancer cells

with different metastatic potential, based on the analysis of in-vitro headspace samples from

cell-lines.10–12 In this pilot study we have adapted the nanomaterial-sensor-technology for

in-vitro differentiation between subtle differences in the VOC profiles of genetic LC

mutations. LC, which causes most cancer related deaths worldwide and is a major burden to

the health care systems,13 was chosen as a representative example of cancerous diseases.

However, this approach is expected to be viable for a large variety of cancers.

Complementary chemical analysis of the headspace samples identified five headspace VOCs

that could distinguish between the studied oncogenes.
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Methods

Cell-cultures and sample preparation

Nineteen (19) human non-small-cell lung carcinoma (NSCLC) cell-lines with long term

gene expression analysis were obtained from the Colorado cell bank registry (see Table 1).

These included six cell-lines representing the oncogene EGFRmut (H3255, H820, H1650,

H1975, HCC4006, HCC2279), four representing KRAS mut (A549, H2009, H460, NE18),

one representing EML4-ALK fusion (H2228) and seven representing oncogenes that were

wild type (wt) to the three mutations of interest (H322, H1703, H125, H1435, Calu3,

HCC15, H520, HCC193). Multiple cell-lines were used per studied oncogene to reflect the

natural diversity of LC cells. The samples representing EML4-ALK were obtained from

only one cell-line, because of the extreme rarity of this fusion event. The cell-lines were

grown in 100 mm cell-culture dishes from seeding (~2 × 106 cells) up to 95% confluence (7

× 106 cells) under standard conditions in a conventional incubator at 37°C in a humidified

atmosphere with 95% air/5% CO2, using a two dimensional medium (RPMI 1640 medium +

10% FBS). The same medium was used for all cell-lines. The open 100 mm cell-culture dish

was placed in a covered 150 mm dish. Two Ultra II SKC™ badges with Tenax TA as a

sorbent (265 mg; SKC Inc.) were placed above the cell-culture, attached to the cover of the

150 mm dish, for absorbing the headspace VOCs during the total growth time (median time

68 hours; range 60–72 h). The cell-lines were grown in several replicas. An empty medium

with the same incubation time and conditions, but without cells, served as control. The

headspace VOCs were adsorbed to the badges at Sheba Medical Center, Israel or in the

University of Colorado Cancer Center, Colorado, US, and tagged with a barcode. All badges

were stored under controlled humidity levels and at 4°C at the collection centers until they

were send in one shipment (under refrigeration) to the Technion, Israel, where they were

analyzed blindly. The results were then conjugated with the relevant clinical data.

Chemical analysis

The headspace samples were analyzed by gas-chromatography combined with mass

spectrometry (GC-MS), using a GCMS-QP2010 system (Shimadzu Corporations) with a

SLB-5ms capillary column (with 5% phenyl methyl siloxane; 30 m length; 0.25 mm internal

diameter; 0.5 µm thickness, column pressure: 23.4 kPa, column flow rate: 0.7 mL/min.);

splitless mode. Prior to the GC-MS analysis, the Tenax sorbent material from one Ultra II

SKC™ badge was heated in a 350 ml stainless steel thermal desorption device that was pre-

heated to 270°C and kept at that temperature for 10 min, in order to release the VOCs into

the gas-phase. The VOCs in the 350 ml gaseous samples were then pre-concentrated onto a

solid phase microextraction (SPME) fiber assembly of divinylbenzene, carboxen, and

polydimethyl-siloxane (DVB/CAR/PDMS; Sigma-Aldrich, Israel). For this purpose a

manual SPME holder with the extraction fiber was inserted into the thermal desorption

device for 30 min. The fiber was then immediately inserted into the GC injector (direct

mode) for thermal desorption (oven temperature profile: 10 min. at 35°C; 4°C/min. until

150°C; 10°C/min. until 300°C; 15 min. at 300°C).

Contaminants of the Tenax sorbent material were identified through analysis of pristine

Tenax material from unused Ultra II SKC™ badges.
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Compounds were preliminarily identified through spectral library match using the

compounds library of the National Institute of Standards and Technology (Gaithersburg,

USA). The identity of the compounds was confirmed and quantification was achieved

through measurements of external standards: toluene, triethylamine, styrene, benzaldehyde,

benzaldehyde-2-hydroxy, 2-ethyl-1-hexanol, phenol (Sigma- Aldrich, Israel); decanal

(Holland Moran, Israel), as described in the Supporting Information (SI).

The GC-MS chromatograms were processed using the open source XCMS package version

1.22.1 for R environment (http://metlin.scripps.edu/download/). The VOCs showing

significant differences between LC specific mutations were determined from the GC-MS

results using the non-parametric Wilcoxon/ Kruskal-Wallis test for populations whose data

cannot be assumed to be normally distributed.14,15 Shapiro–Wilk tests confirmed that the

null hypothesis for normal distribution of the GC-MS data was not fulfilled.

Characterization with the nanomaterial-based sensors

The Tenax sorbent material from one Ultra II SKC™ badge was heated at 270°C for 10 min.

in a pre-heated 750 ml stainless steel TD chamber. Pulses of the gaseous sample from the

TD chamber were delivered by a gas sampling system into a stainless steel test chamber

containing the sensors. The sensors were based on chemiresistive layers of spherical gold

nanoparticles (GNPs; 3–4 nm core diameter) with three different organic ligands (see SI,

Table 1S).16 The organic ligands provided broadly cross-reactive adsorption sites for the

headspace VOCs.16–20 A schematic representation of the GNP sensors is provided in Figure

1S, SI. The GNPs were synthesized and the sensors were fabricated as described

previously. 17–20 The GNP sensors used in this study responded rapidly and reversibly when

exposed to simulated, typical headspace VOCs.21,22

The GNP sensors were mounted on a PTFE circuit board inside a stainless steel test chamber

with a volume of 100 cm3. The sampling system delivered pulses of the headspace sample

from the thermal desorption device to the sensors. The test chamber was evacuated between

exposures. An Agilent multifunction switch 34980 was used to measure the resistance of all

sensors simultaneously as a function of time.

Typically, the sensors’ baseline responses were recorded for 5 min. in vacuum, followed by

5 min. under headspace sample exposure, followed by another 5 min. baseline response in

vacuum. Figure 2S in the SI shows the typical sensing responses of an octadecanethiol-

functionalized GNP sensor used in this study to headspace samples from cell-lines with the

studied oncogenes. Two sensing features were read for each sensor, as described in the

caption of Figure 2S, SI.

Statistical analysis of the sensor array output

The sensing features were analyzed using discriminant factor analysis (DFA).23,24 DFA is a

linear, supervised pattern recognition method. The classes to be discriminated are defined

before the analysis is performed. DFA determines the linear combinations of the sensing

features such that the variance within each class is minimized and the variance between

classes is maximized. The DFA output variables (viz. canonical variables) are obtained in
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mutually orthogonal dimensions, the first canonical variable (CV1) being the most powerful

discriminating dimension.

Each sensor responded to all (or to a certain subset) of the VOCs found in the headspace

samples and DFA identified the gene-specific VOC patterns that were obtained from the

sensing features. Note that DFA was also used as a heuristic to select the most suitable

sensing features. The reason for selecting a certain set of sensing features for a particular

problem is directly derived from their ability to discriminate between the various

classification groups.

The classification success rate of the binary problems was estimated through leave-one-out

cross-validation. For this purpose, DFA was computed, using a training data set that

excluded one test sample. After the DFA computation, the test sample was projected onto

the CV1 axis that was calculated using the training set. Thereby the test sample was

“blinded” against the DFA model, so that its class affiliation was unknown. All possibilities

of leaving out one sample were tested and the left out sample was classified as true positive

(TP), true negative (TN), false positive (FP) or false negative (FN).

Results

Chemical analysis of the headspace samples

The cell-line headspace was analyzed in search of the specific VOCs that make up the

volatile fingerprints of the studied oncogenes, as compared to the control headspace

obtained from the empty growth medium without any cells. The headspace samples (9

EGFRmut samples; 5 KRASmut; 5 EML4-ALK; 12 that were wt to the oncogenes of

interest) were collected from several different cell-lines per oncogene (see Table 1), in order

to account for the genetic complexity of LC cells. The control samples were collected from

eight separate cell-culture dishes containing only the medium without the cells, which

received the same treatment as the cell-cultures (2 headspace samples from each cell-culture

dish).

The GC-MS analysis identified over 600 different VOCs per headspace sample. The

analysis of pristine Tenax material from unused Ultra II SKC™ badges yielded five VOCs

as possible contaminants of the Tenax sorbent material of the collection badges. These

VOCs were tentatively identified through spectral library match as naphthalene, L-cysteine

sulfonic acid, malonic acid, acetaldehyde and methylene chloride. These VOCs were

disregarded in the subsequent comparative analysis (according to main mass and retention

time). Two hundred five VOCs that were present in >80% of the samples of the separate

study groups were further analyzed. Non-parametric Wilcoxon/Kruskal-Wallis tests

identified (after measurement of external standards) a total of five VOCs that were on

average significantly elevated or reduced for at least one of the studied oncogenes, as

compared to the control medium (see Table 2). The triethylamine (TEA) levels in the

EGFRmut and the wt to all samples were completely depleted (i.e. no TEA peak was

observed in the GC-MS chromatogram), but showed no significant changes with respect to

the empty control medium in the KRASmut and EML4-ALK fusion samples. The aromatic

compounds toluene and styrene were found in increased concentration in the headspace of
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NSCLC cells with certain mutations. An increase in styrene was significant for EGFRmut,

whereas toluene levels were significantly increased for EML4-ALK. Both styrene and

toluene were increased for the cell-cultures with wt oncogenes. The benzaldehyde

concentration in the KRASmut cell-cultures was totally depleted, but remained unchanged

for all other oncogenes. Decanal was selectively depleted in EGFRmut cell-cultures and

EML4-ALK fusion cell-cultures.

Identification of VOC-patterns for the LC-specific oncogenes using an array of
nanomaterial-based sensors

The volatile fingerprints of EGFRmut, KRASmut and EML4-ALK were identified, using an

array of three GNP sensors (organic ligands: decanthiol, 2-nitro-4-trifluoro-

methylbenzenethiol, octadecanthiol, see Table 1S, SI).16–18,25 Figure 1 shows a schematic

representation of the identification of the genetic mutations: The nanomaterial-based sensor-

array was exposed to the cell-line headspace, and the VOC fingerprint was obtained through

DFA analysis of the sensors’ collective output. Figure 2 represents a set of three primary,

general tests comprising three different DFA models for identifying EGFRmut (A.1),

KRASmut (A.2) and EML4-ALK (A.3) among a representative, diverse group of mixed LC

oncogenes (EGFRmut, KRASmut, EML4-ALK and other mutations that were wt to these

three). Panel A.1 of Figure 2 shows that the EGFRmut could be clearly distinguished from

the EGFRwt volatile fingerprint (consisting of KRASmut, EML4-ALK genes and wt to all)

along the CV1 axis. The CV1 values of the two study groups that were calculated from two

sensing features (see Table 1S, SI) formed two well separated clusters (p < 0.0001, see

Figure 2). Note that the signatures of the different cell-lines (see Table 1) having the same

oncogene overlapped completely and did not form separate sub-clusters within the

oncogene-clusters. Leave-one-out cross-validation yielded a classification success of 70%

sensitivity, 100% specificity and 92% accuracy (see Table 3). Clear volatile fingerprints

were obtained also for KRASmut, using a second DFA model, also based on two sensing

features (93% and 78%, respectively, see Table 3 and Figure 2, panel A.2). The method was

slightly less sensitive, but highly specific to EML4-ALK (63% and 100%, respectively, see

Table 3 and Figure 2, panel A.3). The set of three primary DFA tests (A.1– A.3) shown in

Figure 2 should in principle allow classifying any unknown sample. However, due to the

realistic limitation in sensitivity and/or specificity, they could sometimes yield ambiguous or

wrong classifications.

We therefore developed an additional set of six secondary, specific DFA models (B.1-B.6)

that could supplement the primary test A.1-A.3 in cases of ambiguous test results (see

Figure 3). Each supplementary test distinguished two specific oncogenes (or one specific

oncogene from the mixed group of different oncogenes, as shown in Figure 3, with high

accuracy between 84% and 96% (see Table 3). Each studied headspace sample was included

in three of the six supplementary tests B1–B6.

We have examined the classification success of the newly established volatile fingerprints

through a global leave-one-out cross-validation procedure. For this purpose, we excluded

one sample at a time and calculated the CV1 distribution for the three primary tests A.1–A.

3, and for the six supplementary tests B.1– B.6, using the relevant subsets of the remaining,
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well-defined samples as training sets. The left-out, blinded sample was then projected onto

all nine DFA maps A.1–A.3 and B.1–B.6. The set of three primary tests A.1–A.3 that would

in principle allow classifying all the samples, classified 27 of the 37 samples correctly, due

to the realistic limitation in sensitivity and/or specificity. Seven sample classifications were

ambiguous (more than one positive classification), and three samples were unambiguously

misclassified, due to two or more misclassifications in the primary tests. The seven samples

with ambiguous primary classification could all be correctly classified through the relevant

supplementary tests. For example, a sample that was positive both for EGFRmut and

KRASmut could be correctly classified through the secondary test B.1 that separated the

EGFRmut from the KRASmut. Furthermore, the supplementary tests did not yield consistent

results for the three samples that were falsely identified in the primary test set.

Discussion

In-vitro cancer cell-line studies versus clinical studies

This in-vitro pilot study has provided first evidence for the existence of measurable VOC

profiles of the most important genetic mutations associated with targeted LC therapy (EGFR

mut/KRASmut/EML4-ALK). The three studied oncogenes are usually mutually exclusive,

and, hence, are considered distinct genetic subtypes of LC.26 However, owing to the

extreme complexity of LC, the studied cell-lines could have additional genetic mutations

that could overlap between the categories and could, in principle, affect the VOC output. In

order to account for the genetic complexity of LC cells, we have collected headspace

samples from 6 different EGFRmut and 4 KRASmut cell-lines (cf. Table 1). EML4-ALK

was represented only by a single cell-line due to the extreme rarity of this fusion event. A

group of eight different LC cell-lines with genetic mutations that were wt to the three

mutations of interest was included as an additional control group. The cell-lines in this study

originated from different types of tissue (lung, lymph node, pleural effusion). The

differences in origin could, in principle affect the VOC signatures of the cell-lines.

However, the goal in personalized medicine is to treat patients by the tumor’s genetic

profile, rather than the origin of the tissue/tumor. The observed common signals for the

same molecular profile for cell-lines that stem from different tissue types therefore supports

our approach.

Studying the metabolic activity of isolated LC cells by analyzing their headspace VOCs

avoids the human body’s confounding factors (e.g. variations in the patients' age, gender,

lifestyle, medication and other chronic diseases). Cell-lines provide an abundant number of

cells with similar characteristics, while avoiding variation between individuals and

bypassing ethical issues associated with human experiments. On the other hand, in-vitro

studies may fail to replicate the precise cellular conditions in the lung tissue, because they

disregard the synergetic effect of the tumor on the whole organism. Hence, the results of this

cell-line study can only be considered as indicative; their in-vivo translation will be far from

trivial. Consequently, the translation to human samples that would provide useful data for

clinical application might seriously differ from the data obtained from this cell-line study.

Cancer specific VOCs can be excreted, for instance, through the exhaled breath via the

respiratory system that controls gas exchange in the human body.16–25,27–29 These easily
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(in-vivo) accessible breath VOCs could be products of the metabolic activity of the tumor

itself, or by-products of bacteria and necrotic reactions caused by local inflammation in the

microenvironment of the tumor, or else they could be partially re-emitted environmental

toxins that were previously adsorbed to the body.28 In addition, systemic breath VOCs could

be produced or consumed because of cancer-related changes elsewhere in the body,

affecting the blood chemistry, and eventually being expired via the respiratory system.28

In particular, the genetic mutations of cancer cells are strongly related to the tumor

environment and may affect the interaction between the tumor and the host. Hence, the

detected VOC signatures of the genetic mutations of LC cells must ultimately be verified

through in-vivo clinical studies in humans, for example through exhaled breath analysis,

blood or tissue sampling.

Identification of oncogene-specific VOCs

Five distinguishing VOCs were identified during the comparative studies (see Table 2). The

VOC profiles were distinct for the four studied groups. Some of the distinguishing VOCs

may have logical explanations, while the origin of others is not yet well understood.9

Triethylamine, benzaldehyde and decanal were selectively reduced or completely depleted

in the headspace of the NSCLC cells with specific oncogenes, as compared with the empty

control medium. This could indicate the selective consumption of these VOCs through the

mutated NSCLC cells. For example, triethylamine was depleted for EGFRmut and wt to all,

but showed no significant change for KRASmut and EML4-ALK fusion. Oxidative stress in

cancer cells may lead to protein peroxidation, which could consume amines such as

triethylamine, leading to the observed reduced concentration levels in the headspace.30,31

On the other hand, it is reasonable to assume that the amino acids from the medium would

be consumed through the metabolic activity of the cancer cells during cell growth, so that

triethylamine and other amines could indeed be released as by- products into the headspace.

Possibly, the different observed trends could indicate that the interplay of metabolic activity

and/ or oxidative stress differs for different oncogenes. The benzaldehyde concentration in

the KRASmut cell-cultures was totally depleted, but remained unchanged for all other

oncogenes, while decanal was selectively depleted in the EGFRmut and the EML4-ALK

cell-cultures. The observed decrease in the concentration of the aldehydes benzaldehyde and

decanal in the headspace of NSCLC cell-lines with specific mutations, as compared to the

control medium may be due to enhanced activity of aldehyde dehydrogenase (ALDH) in

NSCLC cell-lines,9,32 especially of the enzymes ALDH1A1 and ALDH3A1.33 Again, the

different trends for the studied oncogenes could possibly reflect their different metabolic

activity. In this study, we observed that the selective reduction/depletion of triethylamine,

benzaldehyde and decanal was unique for the three investigated oncogenes: EGFRmut cell-

lines showed depleted levels of triethylamine and decanal, KRASmut cells showed

significantly reduced levels of triethylamine and depletion of benzaldehyde, and EML4-

ALK cells showed depletion of decanal alone. The headspace of the cells that were wt to

these three oncogenes was only depleted of triethylamine, but showed no significant changes

of benzaldehyde and decanal. Triethylamine, benzaldehyde and decanal together could
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therefore hold potential as specific biomarker-set for identifying and distinguishing

EGFRmut, KRASmut, and EML4-ALK.

The aromatic compounds toluene and styrene were found in increased concentration in the

headspace of NSCLC cells with certain oncogenes. An increase in styrene was significant

for EGFRmut, whereas toluene levels were significantly increased in the headspace samples

of the EML4-ALK fusion cell-line. Both styrene and toluene were on average significantly

increased in the headspace of the cell-cultures with the wt oncogenes. Aromatic compounds

such as styrene and toluene are considered to be of exogenous origin, e.g. stemming from

tobacco smoke9,34–37 and could therefore be increased in LC cell-lines. Possibly, styrene

and toluene had been absorbed to the lung tissue of the donors from exogenous sources,

before the tissue was removed, from which the studied cell-lines were derived. LC specific

genetic mutations are expected to alter the cell metabolism and, hence, they may affect the

excretion of VOCs of exogenous origin that were previously absorbed from the

environment.7

Note, however, that the sample size in this pilot study is limited and general conclusions

about VOC oncogene-markers cannot be drawn from these results. Wider-scale studies on

more cell-line samples, including genetically defined, isogenic human cell-line pairs with

highly specific targeted knockouts of EGFR and KRAS genes, are underway to extend and

further validate these results.

Patterns of oncogenes from nanomaterial-based sensors

The presented results could lead to a nanomaterial-based in-vitro test for the three most

important genetic mutations that are associated with targeted therapy in LC. A schematic

representation of a possible future test is shown in Figure 1: A nanomaterial-based sensor

array would be exposed to the cell-line headspace, and the VOC fingerprint would be

obtained through DFA analysis, using three primary, general DFA models (cf. Figure 2) and,

if necessary, six secondary, specific DFA models (cf. Figure 3). The genetic mutation would

be identified through comparison with the expected DFA classifications for the EGFRmut

and KRASmut, EML4-ALK fusion and wt to all.

We have demonstrated that the diagnostic yield could be improved by routinely conducting

the six supplementary tests, in addition to the three primary tests for identifying the

oncogenes of interest. The three primary tests A.1-A.3 classified only 27 of the 37 samples

correctly. The entire seven ambiguous primary classifications could be correctly classified

through the relevant supplementary tests. Furthermore, the supplementary test set could

falsify the three unambiguous misclassifications of the primary test set, by yielding

inconsistent results.

The simultaneous identification or exclusion of EGFRmut, KRASmut and EML4-ALK

genes in the same diagnostic test could be highly relevant for selecting the most effective

type of therapy. For example, advanced stage NSCLC patients with EGFR mutations could

benefit from first-line EGFR TKI treatment, which compares favorably to chemotherapy in

terms of efficacy, toxicity and quality of life.38,39 On the other hand, patients with EML4-

ALK rearrangement might benefit from crizotinib,40 but not from EGFR TKI. The volatile
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fingerprint approach holds particularly high potential for monitoring mutation shifts, as

many tumors may develop a resistance to the applied therapy, requiring careful monitoring

and swift changes in the therapeutic approach, if indicated.41 The EML4-ALK

rearrangement, which has been observed in 5–13% of all LC patients,26,40,42 shows potent

oncogenic activity both in-vitro and in-vivo.43 This activity can be effectively blocked by

small molecule inhibitors that target the ALK.43 Patients with EML4-ALK fusion do not

respond to EGFR TKIs, but do respond to crizotinib.44

Wider-scale in-vitro studies, including an investigation for predicting therapy response of

EGFR TKI sensitive cell-lines to Gefitinib via volatile fingerprints, as well as studies on

genetically defined, isogenic human cell-line pairs with highly specific targeted knockouts

of EGFR and KRAS genes are underway to extend and further validate these results.

Conclusion and future prospect

In this pilot in-vitro study we have identified the volatile fingerprints that are associated with

EGFRmut, KRASmut and EML4-ALK rearrangement genes, using LC cell-lines. We have

presented a comprehensive and highly accurate volatile fingerprint assay based on a set of

three primary tests and an additional set of six supplementary tests that could correctly

identify the oncogenes of the studied cell-lines in a blind test. Five VOCs could be

associated with each of the genetic mutations of interest through complementary chemical

analysis. Triethylamine, benzaldehyde and decanal were selectively reduced or completely

depleted in the headspace of LC cells with specific oncogenes, and could therefore hold

potential as specific biomarker-set for identifying and distinguishing EGFRmut, KRASmut

and EML4-ALK. The aromatic compounds toluene and styrene were selectively increased

for the studied oncogenes, and were most probably of exogenous origin.

While the reported concept was obtained through in-vitro studies, as a way to eliminate

confounding factors that are associated with clinical samples, it is reasonable to assume that

similar VOC patterns could be detected directly from blood or exhaled breath samples.7,8

This is because the volatile fingerprints have a propensity to escape to the blood and from

there to the exhaled breath through exchange via the lungs.7,8,16–18 Sampling blood and

breath would therefore allow immediate testing to predict a clinical benefit from targeted

therapy. These clinical samples are minimally invasive or non-invasive, always available, do

not require any preparation and could provide immediate important genetic information

before and during the treatment plan, since they could also detect any genetic alteration in

the course of the treatment. Detecting and monitoring the metabolic signature associated

with cancer specific genetic mutations could be faster and easier than conventional gene-

profiling methods. This feature would help to improve drug selection and detect resistance,

thereby increasing the clinical benefit for the patients through safer, more timely and

effective interventions that improve survival and quality of life. At the same time,

hospitalizations caused by unnecessary invasive procedures could be reduced.8 However,

cell-line studies cannot be translated directly into a clinically useful tool. Direct studies of

the clinical samples of interest (fresh tissue/ blood/ breath) are required in order to confirm

that the reported approach would indeed be useful for clinical practice.
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Figure 1.
Schematic representation of the oncogene identification in an unknown sample. The

nanomaterial-based sensor array is exposed to the cell-line headspace, and the VOC

fingerprint is obtained through DFA analysis, using three primary, general DFA models (cf.

Figure 2) and, if necessary, six secondary, specific DFA models (cf. Figure 3). The

oncogene is identified through comparison with the expected DFA classifications for the

EGFRmut, KRASmut and EML4-ALK.
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Figure 2.
Primary test set. DFA plots of CV1 that was calculated from the responses of the GNP

sensors to the headspace samples of NSCLC cell-lines having EGFRmut, KRASmut or

EML4-ALK oncogenes, or genetic mutations that are wt to the former three. The SD of the

CV1 values is represented by the error bars. The boxes represent the 95% CI of the CV1

values, corresponding to 1.96*SE. The subpanels A.1-A.3 represent the three primary,

general DFA models that are applied simultaneously to the data and contain all 37

headspace samples. Each point represents one sample. The samples were obtained from

multiple cell-lines having the oncogenes of interest (cf. Table 1). Note that the CV1

distribution for the same group of samples may look different for two different DFA models

due to different input parameters.
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Figure 3.
Secondary, specific (auxiliary) test set. DFA plots of CV1 that was calculated from the

responses of the GNP sensors to the headspace samples of NSCLC cell-lines having

EGFRmut and KRASmut, EML4-ALK genes and genetic mutations that are wt to the former

three. The SD of the CV1 values is represented by the error bars. The boxes represent the

95% CI of the CV1 values, corresponding to 1.96*SE. The subpanels B.1-B.6 represent six

secondary, auxiliary DFA models that contain specific subsets of the headspace samples,

and may be selectively applied if the test results from the primary, general test set (DFA

models A. 1-A.3, cf. Figure 2) were inconclusive. Note that the CV1 distribution for the

same group of samples may look different for two different DFA models due to different

input parameters.
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