Skip to main content
. Author manuscript; available in PMC: 2014 Oct 6.
Published in final edited form as: Nanomedicine. 2013 Feb 18;9(6):758–766. doi: 10.1016/j.nano.2013.01.008

Table 3.

Classification success, estimated through leave-one-out cross validation, of the two tests sets: The primary, general test set comprising three different DFA models, A.1-A.3, to identify EGFRmut, KRASmut and EML4-ALK (cf. Figure 2), and the secondary, specific test set, comprising six further DFA models, B.1-B.6, that distinguish between specific genetic mutations (cf. Figure 3).

Test Test group Control group TP TN FP FN Sensitivity [%]a Specificity [%]b Accuracy [%]c
Primary (general) tests A.1 EGFRmut KRASmut; EML4-ALK; wt to all 7 27 0 3 70 100 92
A.2 KRASmut EGFRmut; EML4-ALK; wt to all 13 18 5 1 93 78 84
A.3 EML4-ALK EGFRmut; KRASmut; wt to all 5 29 0 3 63 100 92
Secondary (specific) tests B.1 EGFRmut KRASmut 10 13 1 0 100 93 96
B.2 EGFRmut EML4-ALK 10 6 2 0 100 75 89
B.3 KRASmut EML4-ALK 14 7 1 0 100 88 96
B.4 EGFRmut wt to all 9 4 1 1 90 80 87
B.5 KRASmut wt to all 12 4 1 2 86 80 84
B.6 EML4-ALK wt to all 7 5 0 1 88 100 92

The secondary test set is designed to deliver useful additional information in the case of an ambiguous sample classification through the primary tests.

a

Sensitivity = TP/(TP + FN).

b

Specificity = TN/(TN + FP).

c

Accuracy = (TP + TN)/(TP + TN + FP + FN).