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Abstract

Objective—To test whether statistical learning on clinical and laboratory test patterns would lead

to an algorithm for Kawasaki disease (KD) diagnosis that could aid clinicians.

Study design—Demographic, clinical, and laboratory data were prospectively collected for

subjects with KD and febrile controls (FCs) using a standardized data collection form.

Results—Our multivariate models were trained with a cohort of 276 patients with KD and 243

FCs (who shared some features of KD) and validated with a cohort of 136 patients with KD and

121 FCs using either clinical data, laboratory test results, or their combination. Our KD scoring

method stratified the subjects into subgroups with low (FC diagnosis, negative predictive value

>95%), intermediate, and high (KD diagnosis, positive predictive value >95%) scores. Combining

both clinical and laboratory test results, the algorithm diagnosed 81.2% of all training and 74.3%

of all testing of patients with KD in the high score group and 67.5% of all training and 62.8% of

all testing FCs in the low score group.

Conclusions—Our KD scoring metric and the associated data system with online (http://

translationalmedicine.stanford.edu/cgi-bin/KD/kd.pl) and smartphone applications are easily

accessible, inexpensive tools to improve the differentiation of most children with KD from FCs

with other pediatric illnesses.

In the absence of a specific diagnostic test, the diagnosis of Kawasaki disease (KD) is

currently based on clinical criteria.1 Nonspecific laboratory testing can help to support the

diagnosis.2 If not treated promptly, patients with KD may develop coronary artery dilatation

or aneurysms. The cardiovascular damage can be largely prevented by timely administration

Copyright © 2013 Mosby Inc. All rights reserved.

Reprint requests: Harvey J. Cohen, MD, Department of Pediatrics, CCSR 4245B, Stanford University, Stanford, CA 94305-5178.
punko@Stanford.edu.

The authors declare no conflicts of interest.

NIH Public Access
Author Manuscript
J Pediatr. Author manuscript; available in PMC 2014 October 06.

Published in final edited form as:
J Pediatr. 2013 January ; 162(1): 183–188.e3. doi:10.1016/j.jpeds.2012.06.012.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://translationalmedicine.stanford.edu/cgi-bin/KD/kd.pl
http://translationalmedicine.stanford.edu/cgi-bin/KD/kd.pl


of intravenous immunoglobulin.3 Thus, there is a need for a sensitive and specific diagnostic

test that can facilitate diagnosis and permit timely treatment.

We postulated that quantitative analyses of KD-associated patterns of clinical and laboratory

data could synergistically improve diagnostic accuracy. We used statistical learning methods

to develop and validate KD diagnostic algorithms, which can be applied to existing and

evolving information technologies to create novel and inexpensive point-of-care tools for the

diagnosis of acute KD.

Methods

Inclusion criteria for subjects with KD were based on the American Heart Association

guidelines.1 We included all subjects with KD diagnosed within the first 10 days after fever

onset who had fever for at least 3 days and 4 of 5 classic criteria or 3 or fewer criteria with

coronary artery abnormalities documented by echocardiogram. Febrile controls (FCs) were

children evaluated in the emergency department who had fever for at least 3 days

accompanied by at least 1 of the KD criteria (rash, conjunctival injection, oral mucosal

changes, extremity changes, enlarged cervical lymph node). Febrile children with prominent

respiratory or gastrointestinal symptoms were specifically excluded so the majority of the

controls had KD in the differential diagnosis of their condition. Informed consent was

obtained from the parents of all subjects and assent from all subjects ≥7 years of age. This

study was approved by the Human Subjects Protection Programs at the University of

California San Diego and Stanford University.

De-identified clinical and laboratory data were extracted from the University of California

San Diego KD electronic database for multivariate analysis. FCs had a clinically determined

or culture-proved etiology for their febrile illness (Table I; available at www.jpeds.com).

Possible viral infection was defined as a febrile illness that resolved without specific

treatment within 3 days of obtaining the clinical samples. All subjects underwent evaluation

for their febrile illnesses at Rady Children's Hospital San Diego and had complete historical,

physical examination, and laboratory data required for multivariate analysis. Subjects were

randomized (R random sampling method) into 2 cohorts: 276 patients with KD and 243 FCs

for model training analysis; 136 patients with KD and 121 FCs for model testing analysis.

Demographic data were analyzed using R epicalc package (The R Project for Statistical

Computing; http://r-project.org).

Clinical data included 7 variables: (1) fever (temperature ≥38.0°C) in the emergency

department or by history in the past 24 hours; (2) conjunctival injection; (3) extremity

changes including red, swollen, or peeling hands or feet; (4) oropharyngeal changes

including red pharynx, red, fissured lips, or strawberry tongue; (5) cervical lymph node of at

least 1.5 cm; (6) rash; and (7) number of days of illness (first day of fever = illness day 1).

Laboratory data obtained prior to administration of intravenous immunoglobulin included 12

variables: total white blood cell count; percentages of monocytes, lymphocytes, eosinophils,

neutrophils, and immature neutrophils (bands); platelet count; hemoglobin (Hgb)

concentration normalized for age; C-reactive protein; gamma-glutamyl transferase; alanine
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aminotransferase; and erythrocyte sedimentation rate. Logistic regression computation using

the training data yielded both the adjusted ORs and the likelihood ratio test P value.

We used linear discriminant analysis (LDA) to classify individual subjects based on clinical

variables alone, laboratory test variables alone, or the combined data sets. R library MASS

function “lda” was used. Coefficients of linear discriminants, which are the associated

weights with the first linear discriminant function, were calculated as a measure of the

association of each variable with the final diagnosis (Table II). We performed receiver

operating characteristic (ROC) analyses of the diagnostic performance of the clinical,

laboratory, and combined LDA models for binary classification of subjects with KD from

FCs in the training/ testing cohort and compared their area under the curve (AUC).

The projection value onto the first canonical (LDA) was designated as the KD score,

allowing the clinical variables to be collectively interpreted on a scale, rather than a strict

binary discrimination. Three different types of KD scores were computed based on clinical

findings, laboratory test results, and their combination for all subjects and were used to

stratify subjects into subgroups with low, intermediate, and high scores. The low and high

groups had a negative predictive value (NPV, FC diagnosis) >95% and a positive predictive

value (PPV, KD diagnosis) >95%, respectively.

With a model view controller design, we applied a previously developed server-based

biocomputational framework4 to allow physicians remote access to our KD diagnostic

algorithm. The algorithm and associated Web application were implemented using R and

PERL, respectively. The iPhone application was developed in the integrated development

environment Xcode 3.2.4 and iOS SDK 4.1 using Objective C. Later it was tested using

iPhone Simulator 4.1 and was supported by iOS 4.1 or higher versions. The Google phone

application, enabled by the Android Application Framework, was developed on the Google

Android platform (Ver. 2.3, which is used by 57% of all current Android developers), using

the Oracle Java 5.0 programming language, on Linux operating system by Fedora Project.

Results

In both the training and testing cohorts, the patients with KD were younger than the FCs but

were otherwise similar (Table III; available at www.jpeds.com).

We performed multivariate analysis of the clinical and laboratory test variables for KD and

FC discrimination in our training data set (Table II). Clinical variables of conjunctival

injection, extremity changes, and oropharyngeal changes; fever; and laboratory test variables

of erythrocyte sedimentation rate, platelet count, and age-adjusted Hgb were statistically

different between the groups.

In the LDA models with clinical, laboratory test results, and their combination (Table II), the

clinical variables of the extremity changes, conjunctival injection, and oropharyngeal

changes and the laboratory variable of the age-adjusted Hgb concentration contributed the

most to the binary classification. Comparing the 3 LDA models (Figures 1-4; Figures 1 and

2; available at www.jpeds.com), the KD/FC LDA binary classification performances

Ling et al. Page 3

J Pediatr. Author manuscript; available in PMC 2014 October 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.jpeds.com
http://www.jpeds.com


(sensitivity, specificity, PPV, NPV, and ROC AUC) in both the training and testing were

synergistically improved if clinical and laboratory test variables were combined.

Density plots of KD scores calculated by clinical, laboratory test, and combined LDA

modeling methods demonstrated the class separation (Figures 1-3). To achieve sensitive and

specific differentiation of KD from FC, we partitioned the KD scores into 3 groups: low KD

score group allowing accurate FC diagnosis (<5% of KD misclassified), intermediate score

group with inadequate KD/FC differentiation, and high KD score group allowing accurate

KD diagnosis (<5% of FCs misclassified). We targeted the 95% PPV high KD score group

and 95% NPV low KD score group for accurate KD and FC discrimination.

The number of correctly diagnosed KD patients (high score group) and FCs (low score

group) increased to 67.49% of all FCs and 81.16% of all KD patients in training and 62.81%

of all FCs and 74.26% of all KD patients in testing when the clinical and laboratory findings

were combined (Figures 1-4).

To facilitate point-of-care implementation of the KD score, we created the following Web

site (http://translationalmedicine.stanford.edu/cgi-bin/KD/kd.pl) to permit remote use of the

KD scoring system (Figure 4). In addition, we developed smartphone applications (iPhone

and Android versions) to allow clinicians point-of-care access to our server-based algorithm

for real-time KD diagnosis.

We examined the performance of the KD score in prediction of coronary status using the

model combining both clinical and laboratory test variables. The score density plots of

subjects with KD with normal, aneurysmal, or dilated coronary arteries were overlaid. The

almost complete overlapping pattern suggests poor performance of the KD scoring system

for coronary status prediction (Figure 5; available at www.jpeds.com).

We explored the impact on KD diagnostic modeling incurred by a reduction in the number

of model variables available for the predictive analysis. We reasoned that many potential

patients would have incomplete data early in the course of KD. Beginning with the least-

weighted variable (Figure 6, from bottom to the top), we iteratively reduced the number of

variables to construct LDA models of increasingly smaller panel sizes. The models were

developed using training data and tested blindly on the testing dataset. ROC AUCs were

computed and plotted. The ROC analyses of LDA models with reduced numbers of

variables revealed AUCs of 0.95 and 0.90 for models with 10 or 5 variables, respectively.

The 10-variable model includes all the 7 clinical variables and 3 laboratory tests: Hgb,

eosinophils, and white blood cell count.

Discussion

We performed statistical learning and developed 3 different scoring systems for the

diagnosis of KD. The score combining clinical findings and laboratory data resulted in a

sensitive (>95% PPV) and specific (>95% NPV) diagnosis of ~60% of FCs and ~75% of

patients with KD. Within the patient groups of low and high KD scores, ~5% of patients

were falsely classified as being either FCs (when they clinically were judged to have KD) or

KD (when they clinically were judged to be FCs).
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The clinical and laboratory variables we used in the multivariate analysis are routinely

obtained during the evaluation of children with suspected KD and rapidly reported by most

clinical laboratories. Thus, our KD score can now be subjected to prospective, multicenter

testing in a variety of clinical settings to establish its utility. Currently, clinicians rely on

clinical experience without the benefit of a formal scoring system. Many reports have

claimed good discrimination between KD and FC based on a single biomarker, but none

have been successfully validated.5,6 One problem has been with the selection of FCs who do

not represent the population of patients who could legitimately be confused with having

KD.7

A strength of this study is the application of machine learning (LDA) to a large KD and FC

dataset created through prospective, standardized data collection over a 12-year period. An

additional strength was the use of FCs for whom KD was actually considered in the

differential diagnosis and who had fever and at least 1 of the clinical signs of KD.

We also recognize several limitations to our study. Data were collected by clinical personnel

with experience in the evaluation and management of patients with KD and FCs. The final

diagnosis of KD depended, for the majority of patients without coronary artery

abnormalities, on the clinical judgment and experience of the same clinical team. Pretest

probability is an important element in the performance of any diagnostic test and the skill of

the clinicians in selecting subjects for inclusion in this study may have influenced the

results. Therefore, the performance of the combined score in the hands of those less skilled

in the diagnosis of KD will need to be prospectively evaluated. We were unable to

incorporate the nuances that an experienced clinician might use to support or refute a

diagnosis of KD. Experienced clinicians may incorporate ancillary findings such as perineal

accentuation of rash, urethral meatal erythema, limbal sparing from conjunctival injection,

and irritability to modify their risk assessment for KD. Similarly, respiratory symptoms in

the patient or family, asynchronous onset of eye changes, splenomegaly, discrete oral

lesions, or a vesiculobullous rash may dissuade experienced clinicians from a diagnosis of

KD. Future versions of the KD score may use such findings to refine the risk assessment.

Without a gold standard for the diagnosis of KD and without serial echocardiograms on our

FCs, we cannot eliminate the possibility that some subjects were incorrectly classified.

Although we have performed a validation of our KD score using an independent cohort of

subjects with KD and FCs, the score requires prospective validation under point-of-care

clinical conditions at multiple centers. Ideally, this would be performed with

echocardiograms on the FCs to provide additional reassurance that patients with incomplete

or atypical KD were not hidden among them. The performance of the algorithm for patients

with incomplete KD is unknown and will need to be studied. Future prospective studies will

validate whether our algorithm can contribute to the diagnosis of children with incomplete

KD. Despite a good predictive value for the very low and high KD scoring groups identified

by this algorithm, 35% of FCs and 25% of subjects with KD with indeterminate scores still

require additional observation and testing to establish a diagnosis. We postulate that

proteomics and limited locus genotypes might be used in the future to further resolve the

intermediate group to achieve improved KD diagnosis.8
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Our KD scoring metrics are amenable to automation to develop data-driven predictive

systems to diagnose KD and may be useful for other diseases as well. We have applied

existing and evolving information technologies, including database, Web 2.0, and mobile

computing, to translate our KD predictive algorithm into clinical practice. The current

smartphone application was developed to support the testing to validate our KD diagnostic

algorithm under varied clinical conditions. Therefore, it is early and premature to rush the

KD application to clinics before prospective studies. Once optimized and validated, our

smartphone application can then be used as a point-of-care diagnostic tool to manage KD.

Ultimately, the interface among the electronic medical record (EMR), hand-held devices

(cell phone), and server-based clinical-computation may benefit patients and clinicians.

Consistent with the current mandate to expand EMR use,9 future integration of our KD

predictive algorithm with the bedside EMR can provide a platform to drive translational

medicine for improved KD diagnosis.
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Glossary

AUC Area under the curve

EMR Electronic medical record

FC Febrile control

Hgb Hemoglobin

KD Kawasaki disease

LDA Linear discriminant analysis

NPV Negative predictive value

PPV Positive predictive value

ROC Receiver operating characteristics
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Figure 1.
LDA with clinical variables to discriminate subjects with KD from FCs. Dotted vertical

lines in the bottom density plots define the boundaries of the low (95% NPV for FC

prediction) and high score (95% PPV for KD prediction) subgroups.
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Figure 2.
LDA with laboratory test results to discriminate subjects with KD from FCs. Dotted vertical

lines in the bottom density plots define the boundaries of the low (95% NPV for FC

prediction) and high score (95% PPV for KD prediction) subgroups.
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Figure 3.
Performance of KD score derived from LDA combining clinical and laboratory variables to

discriminate subjects with KD from FCs. Top left, The 2 × 2 tables and resulting diagnostic

indices for KD score. Top right, ROC curves for the KD score applied to training and testing

cohorts. Bottom, Density plots of KD scores for training (left) and testing (right) cohorts.

Dotted vertical lines define the upper and lower boundaries of the low (95% NPV for FC

prediction) and high score (95% PPV for KD prediction) subgroups, respectively.
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Figure 4.
Comparative analysis between 3 different KD scoring algorithms and predictive analysis

adapted to Web site or smartphone applications. Analysis example at the Web site depicts

KD score of an individual patient superimposed on KD scores of patients KD and FC in our

KD database.
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Figure 5.
Analysis of KD scores in the prediction of coronary abnormalities by overlaying density

plots of the scores of subjects with KD on different coronary artery outcomes.

Ling et al. Page 12

J Pediatr. Author manuscript; available in PMC 2014 October 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6.
KD LDA models with reduced number of variables (listed in descending order by the

absolute value of their weights). The model performance was gauged by ROC analysis.

Model A, 10-variable score with AUC of 0.95. Model B, 5-variable score with AUC of 0.90.

HGB, hemoglobin; EOS, eosinophil; WBC, white blood cell; CRP, C-reactive protein;

POLYS, polymorpho-nuclear leukocytes; ESR, erythrocyte sedimentation rate; GGT,

gamma-glutamyl transferase; PLTS, platelets; MONOS, monocytes; ALT, alanine

aminotransferase.
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Table I

Diagnosis of FCs

Training (FC, n = 243) Testing (FC, n = 121)

Viral infection 174 82

Bacterial infection 53 23

Other inflammatory processes 14 15

Both bacterial and viral infection 2 1

J Pediatr. Author manuscript; available in PMC 2014 October 06.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Ling et al. Page 15

Table II

KD predictive features and multivariate modeling to discriminate KD from FC using training cohort

LDA

Twelve parameters Feature OR (95% CI) P Clinical (LD1) Laboratory (LD1) Combined (LD1)

Clinical parameters Conjunctival injection 7.95 (3.41-18.53) <.001 1.114157471 0.928053276

Extremity changes 6.97 (3.4-14.3) <.001 1.429549527 1.0550829

Oropharyngeal changes 5.21 (2.22-12.2) <.001 0.930626782 0.770919996

Rash 2.43 (0.86-6.84) .088 0.368589847 0.383400509

Cervical lymph node >1.5 cm 1.51 (0.68-3.37) .304 0.344090925 0.185409544

Days of illness 1.12 (0.97-1.29) .12 0.072792981 0.05634683

Fever, temperature ≥38.0°C 0.05 (0.01-0.25) <.001 –1.034326504 –0.952150912

Laboratory tests Eosinophils, % 1.06 (0.95-1.19) .293 0.068841219 0.028443882

C-reactive protein, mg/dL 1.04 (0.98-1.11) .172 0.021868585 0.015627459

ESR, mm/h 1.03 (1.01-1.05) <.001 0.014970912 0.008380854

WBC, 103/mm3 1.03 (0.97-1.1) .364 0.011353403 0.016912331

Monocytes, % 1.02 (0.93-1.13) .634 –0.046919896 –0.00169595

Gamma-glutamyl transferase, IU/L 1.0074 (0.9995-1.0153) .054 0.004634134 0.002988495

Platelets, % 1.0055 (1.0021-1.009) .001 0.004126564 0.002753319

Alanine aminotransferase, IU/L 1.0052 (0.9985-1.0119) .089 0.001249501 0.001066656

Neutrophils, % 0.97 (0.93-1.02) .259 –0.004545484 –0.010462242

Immature neutrophils, % 0.98 (0.93-1.03) .452 –0.000422233 –0.006581996

Lymphocytes, % 0.96 (0.91-1.01) .155 –0.013016002 –0.013392125

Hgb normalized for age, mg/dL 0.57 (0.41-0.79) <.001 –0.28002571 –0.219374457

ESR, erythrocyte sedimentation rate; LD1, variable coefficient of the first linear discriminant; WBC, white blood cell count.
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