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Abstract

Global gene expression measured by DNA microarray platforms have been extensively used to

classify breast carcinomas correlating with clinical characteristics, including outcome. We

generated a breast cancer Serial Analysis of Gene Expression (SAGE) high-resolution database of

~2.7 million tags to perform unsupervised statistical analyses to obtain the molecular classification

of breast-invasive ductal carcinomas in correlation with clinicopathologic features. Unsupervised

statistical analysis by means of a random forest approach identified two main clusters of breast

carcinomas, which differed in their lymph node status (P = 0.01); this suggested that lymph node

status leads to globally distinct expression profiles. A total of 245 (55 up-modulated and 190

down-modulated) transcripts were differentially expressed between lymph node (+) and lymph

node (−) primary breast tumors (fold change, ≥2; P < 0.05). Various lymph node (+) up-modulated

transcripts were validated in independent sets of human breast tumors by means of real-time

reverse transcription-PCR (RT-PCR). We validated significant overexpression of transcripts for

HOXC10 (P = 0.001), TPD52L1 (P = 0.007), ZFP36L1 (P = 0.011), PLINP1 (P = 0.013), DCTN3

(P = 0.025), DEK (P = 0.031), and CSNK1D (P = 0.04) in lymph node (+) breast carcinomas.

Moreover, the DCTN3 (P = 0.022) and RHBDD2 (P = 0.002) transcripts were confirmed to be

overexpressed in tumors that recurred within 6 years of follow-up by real-time RT-PCR. In

addition, meta-analysis was used to compare SAGE data associated with lymph node (+) status

with publicly available breast cancer DNA microarray data sets. We have generated evidence

indicating that the pattern of gene expression in primary breast cancers at the time of surgical
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removal could discriminate those tumors with lymph node metastatic involvement using SAGE to

identify specific transcripts that behave as predictors of recurrence as well.

Introduction

Although breast cancer is the most common malignancy in women, the biology of breast

cancer remains poorly understood mainly due to the characteristic cellular and molecular

heterogeneity of breast tumors. Global gene expression profiling is providing novel

information of biological and clinical relevance for the classification of breast cancers.

By means of DNA microarray analyses, various laboratories identified gene expression

patterns that correlated with breast cancer patient prognosis (1–9). In spite of the described

progress in molecular oncology, invasion into axillary lymph nodes and steroid hormone

receptors status still remain as the most reliable prognostic factor for breast cancer patients

(10).

Development of metastases (local and distant) requires that a cancer cell must complete a

series of steps involving complex interactions with the host microenvironment. This process

involves the dysregulation of multiple genes and transcriptional programs. The primary goal

of this study was to identify gene expression signatures of relevance for breast cancer

subclassification and prognosis. We analyzed a high-resolution Serial Analysis of Gene

Expression (SAGE) database obtained from 27 breast-invasive ductal carcinomas (IDCA). A

random forest (RF) clustering approach was used for SAGE data analysis (11, 12). This

unsupervised analysis of gene expression profiles grouped breast carcinomas predominantly

according to their lymph node status. This suggests that lymph node status leads to globally

distinct breast cancer gene expression profiles.

The identification of gene expression profiles, individual biomarkers, and biological

pathways that contribute to the development of lymph node metastases will be of significant

benefit to improve tumor classification and may, in the future, influence clinical decision

making and the development of targeted therapies.

Results and Discussion

Generation and Analysis of SAGE Libraries

Breast cancer phenotypic and genetic heterogeneity corresponds to heterogeneity of gene

expression profiles. SAGE data were obtained from a set of invasive breast carcinomas at a

resolution of 100,000 tags per library. Thus, a breast cancer SAGE high-resolution database

of almost 2.7 million tags was generated and analyzed, monitoring the expression behavior

of more than 30,000 transcripts.

An unsupervised clustering method (RF clustering) allowed us to group the invasive breast

carcinomas on the basis of their gene expression pattern. Two dominant clusters were

identified (Fig. 1A). To further elucidate the reasons driving the separation of breast

carcinomas in two major groups, we analyzed the identified clusters in the light of available

histopathologic data (see Table 1). Interestingly, the variable that correlated with the RF
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clustering results was the lymph node status of tumors (P = 0.01). A total of 7 of 9 breast

cancers (78%) in the cluster A are lymph node (+), and 14 of 18 breast tumors (87%) in

cluster B are lymph node (−) IDCA (Fig. 1A). Nonstatistically significant differences were

detected for ER status, histologic grade, and tumor size (P > 0.05). In contrast with results

from previous gene expression studies, in which ER was the major discriminator between

breast cancer groups, in our case, we interpret that the lack of spontaneous association

between clusters and ER status in this subset of samples is likely due to that ~75% of the

SAGE libraries generated derived from ERα(+) stages I and II primary breast carcinomas.

To identify the most representative differentially expressed transcripts between tumor

groups, we employed a statistically supervised method previously described by us as a

modified t test (13). This analysis revealed 245 genes differentially expressed (P < 0.05)

between lymph node (+) and lymph node (−) IDCA (Fig. 1B; Supplementary Data File 1).

Among the 245 transcripts, 55 were up-modulated, and 190 were down-modulated

transcripts in lymph node (+) tumors.

We used the Expression Analysis Systematic Explorer software (EASE) to annotate the 245

deregulated genes according to the information provided by the GO Consortium (14, 15).

We observed that 32% of the transcripts are involved in biological processes related to

metabolism, 22% are related to cellular physiologic process, and 14% are related to cell

communication. Approximately 25% of these dysregulated genes are related to molecular

functions associated with nucleic acid/protein binding, 15% are related to hydrolase/

transferase activity, and 4% are related to metal ion-binding functions.

Cross-Platform Gene Expression Profile Comparison

Comparing data sets generated on different gene expression platforms increases the

confidence of specific gene expression classifier data sets (16). By performing a meta-

analysis from publicly available breast cancer microarray studies, we provide a robust cross-

platform validation of 55 up-regulated and 55 down-regulated (fold change, >3) lymph node

(+)-associated transcripts (Fig. 1C and D). Meta-analysis showed that 42% of the transcripts

identified by SAGE (46 out of 110) were confirmed as having statistically significant up- or

down-modulation in relation to lymph node (+) status (9 genes), distal metastasis (26 genes),

and relapse (29 genes; Table 2, Supplementary Data Files 2 and 3). The lack of 100%

overlap of findings between the various studies including ours is not surprising when it is

considered that these studies have been done with different technologies (cDNA or various

oligonucleotide microarrays), different number of genes in the various fixed platforms,

different and heterogenous patient populations (with regard to age, tumor staging, hormone

receptor status, and treatment). Nevertheless, we show that a significant proportion of lymph

node (+)-associated transcripts detected by our SAGE study behave as poor prognostic

markers. More importantly, SAGE, an open gene expression platform, also identified novel

sets of genes as highly expressed in lymph node (+) primary breast carcinomas not

previously reported by others.
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Real-time Reverse Transcription-PCR Validation of Lymph Node (+)–Associated
Transcripts

The most commonly dysregulated transcripts between lymph node (+) and lymph node (−)

breast IDCA as determined by SAGE are represented in Table 3 (fold change, >3; P < 0.01).

To validate our findings, an independent set of 40 breast IDCA was analyzed by means of

real-time reverse transcription-PCR (RT-PCR). In agreement with the SAGE data, we

detected statistical differences in the overexpression of seven out of eight evaluated

transcripts in lymph node (+) breast tumors, including homeobox protein hox-c10 (HOXC10;

P = 0.001), tumor protein D52 like-1 (TPD52L1; P = 0.007), zinc finger protein 36 like-1

(ZFP36L1; P = 0.011), p53-responsive gene 6 (PLINP1; P = 0.013), dynactin 3 (DCTN3; P

= 0.025), dek oncogene (DEK; P = 0.031), casein kinase 1δ (CSNK1D; P = 0.04; Fig. 2A). A

trend of borderline significance was detected for the rhomboid domain containing 2

(RHBDD2; P = 0.069; Fig. 2A). Hierarchical clustering analysis of the validated transcripts

successfully classified tumors according to patient’s lymph node status (P < 0.05),

distinguishing the lymph node (+) from the lymph node (−) breast carcinomas with an

accuracy of 89.5% (2 out of 19 lymph node-positive samples misclassified; Fig. 3A).

Nonstatistically significant associations were detected between the expressions of these

transcripts and ERα status (P > 0.05).

Tumor Protein– and Transcription Factor–Related Genes

The TPD52L1 gene encodes a member of the tumor protein D52 family. This protein

contains a coiled-coil motif required for homo- and heteromeric interactions with other D52-

like proteins (17). The TPD52 gene was first identified as overexpressed in human breast

carcinomas (17, 18). Subsequent studies also indicated that these genes are overexpressed in

multiple human cancers such as lung, prostate, ovarian, endometrial, and hepatocellular

carcinomas (18). TPD52L1 was reported to be involved in cell proliferation and calcium

signaling. It also interacts with the mitogen-activated protein kinase 5 (19).

DEK was originally described as a proto-oncogene and has been implicated in multiple

cellular processes, including transcriptional regulation and chromatin remodeling (20).

Transcriptional up-regulation of wild-type DEK was discovered in various tumor types,

including myeloid leukemia, brain tumors, and hepatocellular carcinoma (21, 22). In

addition, DEK overexpression was associated with a number of clinical autoimmune

conditions (23, 24). Recently, it has been suggested that DEK up-regulation may be a

common event in human carcinogenesis and may reflect its senescence inhibitory function

(25). Despite these associations with several human disorders, little is known about how

DEK could functionally be involved in these diseases (24).

HOXC10 is one of the highly conserved HOXC family members of transcription factors that

play an important role in morphogenesis, cell differentiation, and proliferation (26–28). The

HOXC protein levels are controlled during cell differentiation and proliferation.

Dysregulation of a variety of HOX genes has been implicated in several human cancers,

including leukemias, colorectal, breast, and renal carcinomas, melanomas, and squamous

cell carcinomas of the skin (26, 27). Recently, it was shown that the overexpression of

HOXC4, HOXC5, HOXC6, and HOXC8 genes in malignant cell lines and prostate
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carcinomas with lymph node metastases (29). In agreement with these data, we validated the

overexpression of HOXC10 gene in primary lymph node (+) breast carcinomas by real-time

RT-PCR (P = 0.001; Fig. 2A).

ZFP36L1 also known as C3H type-like 1) is a member of the 12-O-tetradecanoylphorbol-13-

acetate (TPA)–inducible sequence 11 (TIS11) family of early-response genes. The encoded

protein contains a zinc finger domain with a repeating cys-his motif (30). TIS11 gene

expression is induced rapidly and transiently in response to extracellular hormone and

growth factor signals. The potential role of this gene in breast carcinogenesis remains

unknown.

DCTN3 and RHBDD2 as Predictors or Recurrence

As mentioned, the quantitative RT-PCR analysis validated significant differences between

lymph node (+) versus lymph node (−) primary breast carcinoma groups for DCTN3 (P =

0.025), and a trend was detected for RHBDD2 (P = 0.069; Fig. 2A). However, meta-analysis

comparisons further confirmed our findings showing statistically significant over-expression

of DCTN3 (P = 0.003) and RHBDD2 (P = 0.042) in lymph node (+) compared with lymph

node (−) breast IDCA (Fig. 1C, Supplementary Data File 3). More importantly, the DCTN3

(P = 0.022) and RHBDD2 (P = 0.002) transcripts were also observed to be markedly up-

modulated in tumors that recurred within 6 years of follow-up (Fig. 2B). Unsupervised

hierarchical clustering analysis of these transcripts successfully classified tumors according

to recurrence status (P < 0.05; Fig. 3B). These data suggest that overexpression of DCTN3

and RHBDD2 genes could play a role in breast cancer progression.

The DCTN3 gene (also known as DCTN22) encodes the smallest (p22/24) subunit of

dynactin, a cytoplasmic motor protein complex involved in organelle trafficking,

cytokinesis, spindle formation, chromosome movement, and nuclear positioning (31).

Overexpression in mammalian cells of one dynactin subunit (dynamitin) disrupts the

complex, resulting in the perturbation of mitosis (32). In addition, DCTN2 over-expression

disrupt the dynein-dynactin motor, shifting cellular movement and mitosis with

predisposition to mitotic block and polyploidy (33). DCTN3 localizes to the centrosomes

during interphase and to kinetochores and spindle poles throughout mitosis. It was also

proposed that the dynein-dynactin complex is involved in cytoplasmatic/nuclear transport of

p53 (34). The correct balance of dynactin subunits is important for adequate centrosome

integrity before centrosome duplication, ultimately governing the G1-S transition.

The RHBDD2 gene (rhomboid domain containing 2) encodes a protein that spans seven-

transmembrane domains and is a member of the rhomboid veinlet-like family of genes.

Several rhomboid protein members in Drosophila have been implicated in the processing of

transforming growth factor-α (TGF-α)–like ligands, and consequent epidermal growth

factor (EGF) receptor activation (35). Genetic and molecular studies have revealed that the

production of an activated EGF ligand by the signal-sending cell is a key regulatory step in

receptor activation (36). Thus, the RHBDD2 protein very likely functions in regulating the

response to growth factors. However, the potential role of this protein in breast

carcinogenesis remains to be elucidated.
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Tissue Microarray Immunohistochemical Analysis of DCTN3 Protein Expression

Because DCTN3 was identified by real-time RT-PCR as distinctively overexpressed in

lymph node (+) primary breast carcinomas and in IDCA that recurred within 6 years, we

decided to investigate further this gene at protein expression level using a breast cancer

progression tissue microarray (Fig. 4).

DCTN3 tissue microarray immunohistochemical (TMA-IHC) analysis showed undetectable

expression in 72% (13 out of 18) of the normal breast epithelial samples analyzed, whereas

strong immunoreactivity for DCTN3 protein was detected in 60% (6 out of 10) of invasive

ductal (IDC) and metastatic breast carcinoma tissues analyzed (P trend = 0.001; Table 4). In

all positive cases, the DCTN3 inmunostaining had a homogeneous and diffuse pattern that

was localized to the cytoplasm. When DCTN3 expression was correlated with lymph node

status, we determined that 75% (6 out of 8) of lymph node (+) carcinoma showed strong

DCTN3 staining, whereas 67% (12 out of 18) of lymph node (−) breast carcinomas showed

negative inmunostaining (P = 0.027; Table 4). These data plus the aforementioned evidence

strongly suggest a putative role for DCTN3 mRNA/protein expression and axillary lymph

node metastasis and breast cancer progression.

Conclusions

The genes that we identified and validated seem to be involved in signaling pathways related

to invasion into axillary lymph nodes. Interestingly, deregulated transcripts that correlate

with the presence of lymph node metastases at the time of surgery conform a gene

expression signature distinguishable to that observed for the lymph node–negative

counterparts, suggesting different molecular programs related to the meta-static process.

Gene expression profiling will not necessarily replace classic approaches to predict the

outcome; however, it will likely add substantial information that may help in better defining

breast cancer outcome classes. The identification of individual proteins is also of high

relevance not only for the potential value as prognostic biomarkers but also may provide

insight into mechanisms and pathways of relevance in breast cancer progression.

Nevertheless, given the molecular heterogeneity of breast cancer, further global and

individual gene expression studies are needed to reliably discriminate breast cancer

subgroups of value for determining outcome. Results of this study will provide novel

insights into the molecular biology underlying breast cancer lymph node metastasis and

recurrence.

Materials and Methods

SAGE Libraries

We did a comparative analysis of the gene expression profiles of 27 IDCA using SAGE.

Libraries were generated at our laboratory (~100,000 SAGE tags per library). Table 1 shows

histopathologic characteristics of the specimens analyzed. For the generation of SAGE

libraries, snap-frozen samples were obtained from the M.D. Anderson Breast Cancer Tumor

Bank, and SAGE analysis was done as previously described (37, 38).
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Data Processing and Statistical Analysis of SAGE Libraries

SAGE tag extraction from sequencing files was done using the SAGE2000 software version

4.0 (kindly provided by Dr. K. Kinzler, John Hopkins University). SAGE data management,

tag to gene matching, as well as additional gene annotations and links to publicly available

resources such as GO, UniGene, RefSeq, were done using a suite of Web-based SAGE

library tools developed by us.5

Our analysis of data involved the following steps: (a) use of unsupervised RF clustering to

group the patients based on their SAGE expression profiles; (b) investigate potential

associations with multiple histopathologic variables; (c) identification of differentially

expressed transcripts between clusters; (d) gene ontology analysis of the resulting

transcripts.

We propose to use the RF clustering for SAGE data analysis because it has several relevant

theoretical advantages. First, the RF dissimilarity approach handles mixed covariate types

well, i.e., it can handle ordinal and continuous covariates in an unbiased way: the more

related the covariate is to other covariates, the more it will affect the definition of the RF

dissimilarity. Second, the clustering results do not change when one or more covariates are

monotonically transformed because the dissimilarity only depends on the feature ranks.

Third, the RF dissimilarity does not require the user to specify threshold values for

dichotomizing tumor expressions. For the detailed description of RF clustering algorithm,

consult Breiman (11) and Shi and Horvath (12). Briefly, the RF clustering procedure is

carried out as follows. The RF dissimilarity is used to represent each patient as a point in a

two-dimensional space with the aid of multidimensional scaling (39, 40). The distances

between the points are used in partitioning around medoids clustering. The number of

clusters is chosen by visually inspecting multidimensional scaling plots.

We tested whether variables differed across groups using the Fisher’s exact test. All P

values were two sided, and P < 0.05 was considered significant. RF clustering and the

analyses described above were carried out with the freely available software R (41).

To identify differentially expressed transcripts between clusters, we used a modified t test.

This test is based on a beta binomial sampling model that takes into account both the intra-

library and the inter-library variability, thus identifying common patterns of SAGE

transcript tag changes systematically occurring across samples (13).6

For automated functional annotation and classification of genes of interest based on GO

terms, we used the EASE Web-based software resource (14).7

Meta-analysis of Breast Cancer Microarray Data Sets

To identify and validate the most reliable set of genes able to discriminate primary breast

carcinomas based on their lymph node status, we did a cross-platform comparison between

5http://spi.mdacc.tmc.edu/bitools/about/sage_lib_tool.html
6All raw SAGE data reported as Supplementary Tables in this manuscript is publicly available at http://sciencepark.mdanderson.org/
labs/ggeg/SAGE_Proj_11.htm.
7Available at the Database for Annotation, Visualization and Integrated Discovery (DAVID) at http://david.niaid.nih.gov/david (15).
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the described SAGE data set with previously reported breast cancer studies based on DNA

microarray methods (1–3, 5–8, 42–45). The Oncomine cancer microarray database was

employed for data collection and to investigate histopathologic associations (46). The

Oncomine database is an integrated bioinformatic resource providing data collection,

processing, and storage of all publicly available cancer microarray studies. All data are log

transformed, median centered per array, and SD normalized to one per array. Gene module

application lists all differential expression analyses in which the target genes were included

and allows the user to select studies of interest, providing comparative statistical analyses.

Selected comparisons of interest for meta-analysis included lymph node (−) versus lymph

node (+) status, non-metastasis versus metastasis (5 years of follow-up), non-disease versus

relapse (5 years of follow-up). The 55 up-modulated and 55 most down-regulated genes in

lymph node (+) primary breast carcinomas were included for meta-analysis comparison.

Data processing was carried out using comprehensive meta-analysis software v2 (Biostat,

2006). Standardized mean difference measures as scale-free indices and fixed effects

analyses were employed for statistical integration. To enable visualization of meta-analysis

results, we used The Institute for Genomic Research MultiExperiment Viewer (MeV 3.0)

software. This tool was employed for average clustering of the P values obtained from each

gene analyzed. When statistically significant coincidence among studies (i.e., SAGE and

microarray studies) was observed on the behavior of specific transcripts, this was

represented by colored boxes (red or green). Other progression parameters such as

metastasis and disease-free survival (DFS) were also compared with the SAGE lymph node

status findings. Statistically significant P values (P < 0.05) associated with gene

overexpression in lymph node (+), metastasis, and relapse (DFS) are represented in red;

statistically significant down-modulated expression is represented in green color.

Real-time RT-PCR Analysis

Template cDNAs were synthesized on mRNAs isolated from snap-frozen samples from an

independent set of 40 stages I to II human breast carcinomas [21 lymph node (−) and 19

lymph node (+) IDCA samples]. Primers and probes were obtained from TaqMan Assays-

on-Demand Gene Expression Products (Applied Biosystems). All the PCR reactions were

done using the TaqMan PCR Core Reagents kit and the ABI Prism 7700 Sequence

Detection System (Applied Biosystems). Experiments were done in triplicate, and each data

point and 18S rRNA were used as control. Results were expressed as mean ± 2 SE based on

log2 transformation of normalized real-time RT-PCR values of the assayed genes. We used

the t test to compare the gene expression levels of validated genes between lymph node (+)

and lymph node (−) breast tumors (P < 0.05).

DCTN3 Antibodies Production

Polyclonal antibody against DCTN3 (a kind gift of Dr. Kevin Pfister, Department of Cell

Biology, University of Virginia, Charlotesville, VA) was generated according to standard

procedures. Briefly, we obtained rabbit serum from animals previously immunized with

DCTN3 peptides as antigen. After generation of GST-DCTN3 fusion protein, we did an

antibody affinity purification of such serum. The antibodies obtained, which were known to

work in Western blots, were optimized for immunohistochemical analysis on paraffin

sections (47).
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Tissue Microarray and Immunohistochemical Analyses

A breast cancer progression TMA was obtained from the M. D. Anderson Cancer Center

(Houston, TX), and we were able to analyze a total of 87 cases representative of normal

breast epithelium, ductal carcinoma in situ, invasive breast carcinoma, and metastatic

tissues. Before immunostaining, endogenous peroxidase activity was blocked with 3% H2O2

in water for 10 min. Heat-induced epitope retrieval was done with 1.0 mmol/L EDTA buffer

(pH 8.0) for 10 min in a microwave oven followed by a 20-min cool down. To block

nonspecific antibody binding, the slides were incubated with 10% goat serum in PBS for 30

min. DCTN3 protein was detected using primary anti-DCTN3 polyclonal antibody (1:100

dilution), and horseradish peroxidase–conjugated anti-rabbit secondary antibody. Staining

development was done with 3,3′-diaminobenzidine (DAB), and the slides were then

counterstained with hematoxylin. DCTN3 protein expression were measured using a

Chromavision Automated Cellular Imaging System (ACIS) by means of the generic DAB

software application. The software determines brown intensity regardless of the area

covered by the positive cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1.
SAGE profiles of 27 primary invasive breast carcinomas. A. The SAGE profiles of 27 breast

carcinomas are visualized in a two-dimensional multidimensional scaling plot where each

dot represents one sample and the relative distances between samples are correlated with

their RF dissimilarities. Breast carcinomas are colored by their RF clustering memberships:

cluster A (fuchsia) composed by 78% of lymph node (+) carcinomas and cluster B (blue)

composed of 87% of lymph node (−) breast carcinomas. B. Hierarchical clustering of 245

differentially expressed genes (55 up-modulated transcripts and 190 down-modulated

transcripts) according to patient’s lymph node status based on pathologic diagnosis. Color

scale at the bottom of the picture is used to represent expression level: low expression is

represented by green, and high expression is represented by red. Results of meta-analysis

(from publicly available gene expression microarray data sets) of 55 up-modulated (C) and

55 down-modulated transcripts (D) identified by SAGE. Red or green boxes, represent

statistically significant agreement between our study and previously published studies not

only on lymph node status, but also in association with other progression parameters such as

metastasis or relapse. Red, statistically significant P values (P < 0.05) associated with gene

overexpression in lymph node (+), metastasis, and relapse (DFS); green, statistically

significant down-modulated expression. Gray boxes, Unavailable data.
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FIGURE 2.
Validation assays of SAGE expression profiles in an independent set of primary invasive

breast carcinomas (n = 40). A. Real-time RT-PCR of seven up-modulated transcripts

(HOXC10, TPD52L1, ZFP36L1, PLINP1, DCTN3, DEK, CSNK1D, RHBDD2) in LN(+)

carcinomas. B. Real-time RT-PCR of two up-modulated transcripts (DCTN3, RHBDD2) in

recurrent breast carcinomas. Mean ± 2 SE based on log2 transformation of real-time RT-

PCR values of the assayed gene relative to 18S rRNA used as normalizing control.
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FIGURE 3.
Hierarchical clustering of primary breast carcinomas based on real-time RT-PCR validation

data. A. Cluster showing nodes in the basis of lymph node distribution (P = 0.0001). B.
Cluster showing nodes in the basis of recurrence status distribution (P = 0.001).
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FIGURE 4.
DCTN3 immunohistochemical staining in normal (adjacent tumor), ductal carcinoma in situ

(DCIS), invasive ductal carcinoma (IDCA), and metastatic breast samples.
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Table 1

Histopathologic Characteristics of Primary Breast Carcinomas Analyzed by SAGE

Number (%)

Histology type

Invasive ductal carcinoma 27 (100)

Tumor size

  1-2 cm 11 (41)

  2-5 cm 13 (48)

  >5 cm 3 (11)

Nodal status

  N0 16 (59)

  N1 11 (41)

Nuclear grade

  Grade I 4 (15)

  Grade II 14 (52)

  Grade III 9 (33)

ERα status

  Negative 7 (26)

  Positive 20 (74)
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Table 2

Meta-analysis, Cross-Validated SAGE Transcripts as Poor-Prognosis Breast Cancer Biomarkers

Gene Name Description Lymph Node (+) Metastasis (Yes) Relapse (Yes)

Up-modulated genes positively associated with the variable analyzed

  CUEDC1 CUE domain containing 1 0.040 0.033 0.018

  RCE1 RCE1 homologue. prenyl protein protease 0.038 0.0001 0.0001

  AP2S1 Adaptor-related protein complex 2 0.015 0.038 0.508

  FGFR4 Fibroblast growth factor receptor 4 0.035 0.279 0.913

  DCTN3 Dynactin 3 (p22) 0.003 0.868 0.682

  RHBDD2 Rhomboid domain containing 2 0.042 0.300 0.259

  HOXC10 Homeobox C10 0.013 0.520 0.471

  DUSP11 Dual specificity phosphatase 11 0.049 0.158 0.940

  SURF4 Surfeit 4 0.393 0.024 0.009

  CSNK1D Casein kinase 1 δ 0.417 0.0001 0.001

  FLJ10415 Hypothetical protein 0.029 0.0001 0.0001

  ALDOA Aldolase A 0.212 0.0001 0.109

  TCEB3 Transcription elongation factor B 0.335 0.322 0.020

  ZNF10 Zinc finger protein 10 (KOK1) 0.818 0.722 0.0001

  DEK DEK oncogene 0.419 0.673 0.005

  AKT1S1 AKT1 substrate 1 (proline-rich) 0.533 0.360 0.037

  MUF1 MUF1 protein 0.688 0.322 0.028

  HNRPA3 Heterogeneous nuclear ribonucleoprotein A3 0.977 0.140 0.004

  SMURF2 SMAD specific E3 ubiquitin protein ligase 2 0.704 0.058 0.0001

  RBM4 RNA binding motif protein 4 0.882 0.783 0.032

  PLINP1 Growth arrest and DNA-damage-inducible 0.424 0.208 0.039

  NTAN1 NH2-terminal asparagines amidase 0.925 — 0.005

Down-modulated genes negatively associated with the variables analyzed

  PDCD4 Programmed cell death 4 0.007 0.001 0.0001

  HSPC063 HSPC063 protein 0.185 0.0001 0.0001

  HNRPR Heterogeneous nuclear ribonucleoprotein R 0.803 0.0001 0.0001

  KIAA0040 KIAA0040 protein 0.624 0.003 0.005

  MLPH Melanophilin 0.780 0.007 0.016

  SEMA3C Sema domain, immunoglobulin domain (Ig) 0.285 0.001 0.0001

  BTBD7 BTB (POZ) domain containing 7 0.629 0.003 0.003

  GLUD1 Glutamate dehydrogenase 1 0.220 0.002 0.0001

  QDPR Quinoid dihydropteridine reductase 0.217 0.0001 0.0001

  PHF3 PHD finger protein 3 0.342 0.0001 0.001

  RHBDF1 Rhomboid family 1 (Drosophila) 0.491 0.039 0.426

  DHRS7 Dehydrogenase/reductase (SDR family) member 7 0.584 0.047 0.167

  C14orf87 Chromosome 14 open reading frame 87 0.346 0.011 0.968

  COPZ1 Coatomer protein complex subunit ζ1 0.272 0.031 0.704

  TM4SF10 Transmembrane 4 superfamily member 10 0.570 0.026 0.293
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Gene Name Description Lymph Node (+) Metastasis (Yes) Relapse (Yes)

  MGC18216 Hypothetical protein MGC18216 0.731 0.002 0.508

  TRAF5 Tumor necrosis factor receptor-associated factor 5 0.188 0.016 0.673

  YPEL5 Yippee-like 5 (Drosophila) 0.188 0.001 0.212

  MGC15737 Hypothetical protein MGC15737 0.841 0.019 0.365

  KIAA0711 KIAA0711 gene product 0.936 0.003 0.841

  CELSR2 Cadherin, EGF LAG seven-pass G-type receptor 2 0.494 0.384 0.009

  KIAA2002 KIAA2002 protein 0.600 0.172 0.017

  LAPTM4A Lysosomal-associated protein transmembrane 4 0.297 0.164 0.004

  SPTAN1 Spectrin α, non-erythrocytic 1 0.994 0.463 0.0001

NOTE: Studies included in the meta-analysis: Sorlie et al. (5); van de Vijver et al. (3); van’t Veer et al. (2); Huang et al. (7); Ma et al. (45); Sotiriou
et al. (6); Zhao et al. (42); Wang et al. (8).
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Table 3

Most Highly Deregulated Transcripts in Lymph Node (+) Breast Carcinomas Identified by SAGE (Fold

Change, >3; P <0.01)

Gene Name Description Tag Entrez Gene ID Expression

Regulation of cell proliferation

  DEK DEK oncogene ACAAAAGTGA 7913 ▲

  TPD52L1 Tumor protein D52-like 1 ACTGTCTCCA 7164 ▲

  GEM GTP binding protein GAGCCATCAT 2669 ▲

  AKAP13 A kinase (PRKA) anchor protein 13 GGATGCGCAG 11214 ▲

  CCRK Cell cycle related kinase GGATGATGTC 23552 ▼

Regulation of transcription related

  MGC9850 Hypothetical protein TGCTTGACAA 219404 ▲

  ZFP36L1 Zinc finger protein 36, C3H type-like 1 CTTTCTTCCC 677 ▲

  TP53BP1 Tumor protein p53 binding protein 1 ACAGTGCTTG 7158 ▼

  ATF2 Activating transcription factor 2 GTGGATTCAT 1386 ▼

  CBX4 Chromobox homologue 4 AAAGTCTAGA 8535 ▼

Signal transduction related

  CSNK1D Casein kinase 1, δ GCTGATCTAC 1453 ▲

  PPP1CB Protein phosphatase 1 AAGATTTTAG 5500 ▲

  IGFBP4 Insulin-like growth factor binding prot. 4 TTTGGAATGT 3487 ▼

  ARHGAP1 Rho GTPase activating protein 1 TGTCTGTGGT 392 ▼

  FYCO1 FYVE and coiled-coil domain containing TTAAATGCAA 79443 ▼

  P2RY2 Purinergic receptor P2Y, G-protein AGTAAACCAT 5029 ▼

Cytoskeleton

  DCTN3 Dynactin 3 (p22) CTGCCCGCCT 11258 ▲

  MYH3 Myosin, heavy polypeptide 3 GTCTCATTTC 4621 ▼

Protein transport/targeting and biosynthesis

  AP2S1 Adaptor-related protein complex 2 CCGTGGTCAC 1175 ▲

  SUPT16H Suppressor of Ty 16 homologue CCTTGGGCCT 11198 ▲

  HSPS4 Hermansky-Pudlak syndrome 4 TTTGTGACTG 89781 ▼

  TOMM20 Translocase of outer mitochondrial memb. TGTGAGCCCT 9804 ▼

Metabolism and miscellaneous

  ATP6V0A1 ATPase, H+ transporting TGGCTGTGAG 535 ▲

  NTAN1 NH2-terminal asparagine amidase AATTACCAAA 123803 ▲

  NAGLU N-acetylglucosaminidase, α GCTGAGCTGG 4669 ▲

  SMURF2 SMAD specific E3 ubiquitin protein ATCTTGAACA 64750 ▲

  PRG1 Proteoglycan 1, secretory granule GCCATAAAAT 5552 ▲

  CNKSR1 Connector enhancer of kinase suppres. TACAGTTCCC 10256 ▼

  DAP13 13 kDa differentiation-associated protein TGTTATTAAA 55967 ▼

  MANBAL Mannosidase, β A, lysosomal-like CAACTAATTC 63905 ▼

  ADSS Adenylosuccinate synthase GACTACCTTT 159 ▼

Function unknown
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Gene Name Description Tag Entrez Gene ID Expression

  FAM20C Family with sequence similarity 20, C CGCCCGTCGT 56975 ▲

  C20orf126 Chromosome 20 ORF 1 GGTGGTTGCT 81572 ▲

  AKT1S1 AKT1 substrate 1 (proline-rich) CGCGCGCTGG 84335 ▲

  RIC-8 Likely ortholog of mouse synembryn ATTTGCCTCT 60626 ▲

  MUF1 MUF1 protein GGCTGCCCAG 10489 ▲

  WARP Von Willebrand factor A domain CCCAGGACAC 64856 ▲

  PKD1-like Polycystic kidney disease 1-like TTGACACTTT 79932 ▼

  MESDC1 Mesoderm development candidate 1 ACAAGAATTG 59274 ▼

  TTC15 Tetratricopeptide repeat domain 15 TTTTACTCAC 51112 ▼

  BCMP11 Breast cancer membrane protein 11 CGGCAGAGCT 155465 ▼

  MGC10067 Hypothetical protein GATGTCTTGT 134510 ▼

  AMIGO2 Amphoterin induced gene 2 CCCCATACTA 347902 ▼

NOTE: ▲, up-regulated gene in lymph node (+) primary breast carcinomas. ▼, down-regulated gene in lymph node (+) primary breast carcinomas.
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Table 4

DCTN3 Protein Expression According to Histopathologic Characteristics

Protein Expression n (%) Statistic

Absent Moderate Strong

Normal epithelium 13 (72) 18 (30.5) 1 (10) χ2 = 15.3, P = 0.004, P trend = 0.001

DCIS 1 (5.5) 20 (34) 3 (30)

IDCA/Metastasis 4 (22) 21 (35.5) 6 (60)

LN(−) 12 (67) 3 (23) 2 (25) χ2 = 7.25, P = 0.027, P trend = 0.007

LN(+) 6 (33) 10 (77) 6 (75)
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