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Abstract

Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD) and level (ILD) disparities
at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however,
binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping
sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the
environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene
have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We
performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue
distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an
overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD
distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted
from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural
environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA). Properties of learned
basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent
sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue
extraction.
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Introduction

The idea that sensory systems reflect the statistical structure of

stimuli encountered by organisms in their ecological niches [1–3]

has driven numerous theoretical and experimental studies.

Obtained results suggest that tuning properties of sensory neurons

match regularities present in natural stimuli [4]. In light of this

theory, neural representations, coding mechanisms and anatom-

ical structures could be understood by studying characteristics of

the sensory environment.

Natural stimuli have a very different and richer structure than

standard sensory input used in experiments. They are typically

noisier and generated by multiple interferring sources (a good

auditory example is the famous ‘‘cocktail party problem’’ [5]). The

statistical characterization of ecological input allows to better

understand the complexity of perceptual tasks, when performed in

non-laboratory conditions. This in turn provides a constraint on a

class of algorithms, which may be implemented by the nervous

system when dealing with the real world stimuli.

To date, natural scene statistics research have been focusing

mostly on vision [6]. Nevertheless, a number of interesting results

relating properties of natural sound to the auditory system have

also been delivered. For instance, Rieke et al demonstrated that

auditory neurons in the frog increase information transmission,

when the spectrum of the white-noise stimulus is shaped to match

the spectrum of a frog call [7]. In a more recent experiment, Hsu

and colleagues [8] shown similar facilitation effects in the zebra

finch auditory system using stimuli with power and phase

modulation spectrum of a conspecific song. Modulation spectra

of natural sounds were shown to display a characteristic statistical

signature. This observation allowed to form quantitative predic-

tions about neural representations and coding of sounds [9]. Other

statistical models of natural auditory scenes have also led to

interesting observations. Low-order, marginal statistics of ampli-

tude envelopes, for instance, seem to be preserved across

frequency channels as shown by Attias and Schreiner [10]. This

means that all locations along the cochlea may be exposed to (on

average) similar stimulation patterns in the natural environment. A

strong evidence of adaptation of the early auditory system to

natural sounds was provided by two complementary studies by

Lewicki [11] and Smith and Lewicki [12]. The authors modeled

high order statistics of natural stimuli by learning sparse

representations of short sound chunks. In such way, they

reproduced filter shapes of the cat’s cochlear nerve. These results

were recently extended by Carlson et al [13] who obtained

features resembling spectro-temporal receptive fields in the cat’s

Inferior Colliculus by learning sparse codes of speech spectro-

grams. This constitutes a strong suggestion that neural represen-

tations of acoustic stimuli reflect structures present in the natural

environment.

The above mentioned studies investigated statistical properties

of single channel, monaural sounds relating them to the

functioning of the nervous system. However, in natural hearing

conditions the sensory input is determined by many additional

factors - not only properties of the sound source. Air pressure

waveforms reaching the cochlea are affected by positions and

motion patterns of sound sources as well as head movements of the
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listening subject. These spatial aspects of the environment generate

differences between stimuli present in each ear (i.e. interaural

differences). The wavefront of a sound reaches firstly the ear

ipsilateral to its source, and after a short time interval the

contralateral one. The resulting delay is known as the interaural

time difference (ITD), and in narrowly tuned frequency channels it

corresponds to the interaural phase difference (IPD). Additionally,

sound received by the contralateral ear is attenuated by the head,

which generates an interaural level difference (ILD). According to

the widely acknowledged duplex theory [14,15], in mammals,

IPDs are used to localize low frequency sounds. The theory

predicts that in higher frequency regimes IPDs become ambiguous

and therefore sounds of frequency above a certain threshold

(around 1:5 kHz in humans) are localized based on ILDs which

become more pronounced due to the low-pass filtering properties

of the head. Binaural hearing mechanisms have also been studied

in terms of adaptation to stimulus statistics. Harper and McAlpine

[16] have shown that tuning properties of IPD sensitive neurons in

a number of species can be predicted from distributions of this cue

naturally encountered by the organism. This was done by forming

a model neuronal representation of maximal sensitivity to the

stimulus change, as quantified by the Fisher information.

Existing evidence suggests that in order to increase the coding

efficiency, the auditory system adapts to variation in binaural cue

statistics. Therefore to understand its functioning in natural

hearing conditions it is important to know, what are the typically

encountered distributions of binaural cues. Understanding the

distribution variability across different types of natural scenes is

crucial as well, since it determines how flexible neuronal

adaptation mechanisms should be. Binaural sound statistics

determine also the complexity of the sound localization task.

Natural sounds are typically generated by multiple independent

sources, scattered in different configurations at both sides of the

head. In such cases, binaural cues do not correspond to a position

of a single object - its identification has to rely on algorithms more

complicated than those useful in a simple, laboratory setting. One

could assess to which extent this is the case in real auditory scenes,

by quantifying the degree of dependence of sounds in each ear.

This paper attempts to answer the above-mentioned questions.

Firstly it characterizes marginal statistics of binaural cues

encountered in natural hearing conditions, which to our best

knowdledge, has not been done previously. Secondly, it analyzes

the redundance of monaural waveforms and in this way estimates

the difficulty of a sound localization task in real environments. To

achieve those goals we performed binaural recordings of three

real-world auditory scenes of different acoustic and spatial

characteristics. In the next step we extracted binaural cues - IPDs

and ILDs and studied their marginal distributions. Using

Independent Component Analysis (ICA), we show that in real-

world auditory scenes, monaural waveforms are mutually much

less interdependent than in a simple, point-source case. Present

results provide a step towards understanding the mechanisms of

spatial hearing in ecological conditions.

Results

Recorded scenes
In this work we analyzed 12 minute recordings of three different

auditory scenes - nocturnal nature, forest walk and city center (the

analysis pipeline is depicted on figure 1). The scenes were selected

as representative examples of a broad range of possible acoustic

environments. In each scene multiple sound sources positioned at

a diverse set of locations were present. Sound types and spatial

configuration of sources however, varied from scene to scene. In

the nocturnal nature recording, the recording subject was static,

and the scene was dominated by calls of grasshoppers (which do

not move while generating sound). This recording was an example

of a scene, where many non-moving sources are present, and their

joint activity results in an ambient sound. The forest walk scene

was much less stationary - the subject was freely moving in a

wooded area while talking to another person. The scene included

speech, ambient environmental sound sources (wind, leaves,

stream) as well as transient ones (wood cracks, steps). This case

was used as an example of a scene, where binaural information is

affected by the motion and speech of the listening subject. In the

third scene - city center - the subject was again listening passively,

and the sensory input was rapidly changing due to the presence

and the constant motion of multiple human speakers. This

recording exemplified very dynamic auditory scenes with numer-

ous moving sources.

Auditory environments chosen for recording were different

from each other. We attempted to obtain representative samples of

three classes of auditory scenes categorized by spatial configura-

tions - static sources (nocturnal nature), moving sources (city

center), and moving subject (forest walk). A statistical variation

among examples analyzed here should therefore capture variabil-

ity across numerous other cases.

Scene selection in this study did not include all possible cases.

For instance no recording was performed in an enclosed, highly

reverberant environment. Additionally all recordings were done in

similar weather conditions, which may have narrowed the range of

stimulus properties. The nocturnal nature and city center scenes

consisted of constantly active sources - no periods of silence were

present, which happens in natural hearing conditions. Despite

those limitations, we argue that current data are heterogenous

enough to draw general conclusions.

While auditory scenes were selected as a representation of

diverse environments, recordings of each scene were performed in

an unbiased way. Position of the subject was chosen at random in

the two static recordings, and his motion was not constrained or

pre-designed while walking. In this way, samples of a typical

sensory input were collected. By refraining from recording in

carefully controlled settings, where some feature (for instance

loudness) in each ear would be the same, we avoided the selection

bias. Natural auditory scenes are rarely spatially symmetric and

stimuli analyzed here provide examples of what one typically

hears. Understanding the structure of unbiased rather than fine-

tuned stimuli should give better insights into the functioning of the

nervous system in natural conditions [17].

Sound spectra
Frequency spectra of recorded sounds are displayed on figure 2.

Strong differences in spectrum across all recorded auditory scenes

was present. In two of them - the forest walk scene and the city

center scene, frequency spectrum had an exponential (power-law)

shape, which is a characteristic signature of natural sounds [18].

Since the nocturnal nature scene was dominated by the grasshoper

sounds, its spectrum had two dominant peaks around 7 and 10
kHz. Sounds in both ears contained similar amount of energy in

lower frequencies (below 4 kHz) - which is reflected by a good

overlap of monaural spectra on the plots. In higher frequencies

though, the spectral power was not equally distributed in both

ears. This difference is most strongly visible in the spectrum of the

nocturnal nature scene. There, due to a persistent presence of a

sound source (a grasshoper) closer to the right ear, corresponding

frequencies were amplified with respect to the contralateral ear.

Since the spatial configuration of the scene was static, this effect

was not balanced by being averaged out in time. Monaural spectra
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of the forest walk scene overlapped to a much higher degree. A

small notch in the left ear spectrum is visible around 6 kHz. The

city center scene, has almost identical monaural spectra. This is a

reflection of its rapidly changing spatial configuration - sound

sources of similar quality (mostly human speakers) were present in

all positions during the time of the recording.

Figure 1. Preprocessing and cue extraction pipeline. A) Preprocessing scheme. Raw sounds in each ear were tranformed using a cochleotopic
filterbank. In the next step the Hilbert transform was computed to separate amplitude from phase. Finally IPDs and ILDs were extracted. B) Filter
response spectra of 16 out of 64 filters used to extract interaural level differences. C) Filter response spectra of 16 out of 64 filters used to extract
interaural phase differences.
doi:10.1371/journal.pone.0108968.g001

Figure 2. Frequency spectra of binaural recordings. In the forest walk and the city center scenes spectra of sounds in the left and in the right
ear (black and gray lines respectively) were approximately the same. In the nocturnal nature scene, a sound source was constantly present on the
right side of the head, therefore more power was present in high frequencies in the right ear.
doi:10.1371/journal.pone.0108968.g002
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Interaural level difference statistics
An example joint amplitude distribution in the left and the right

ear is depicted on figure 3 A. It is not easily described by any

parametric probability density function (pdf), however monaural

amplitudes reveal a strong linear correlation. Correlation coeffi-

cient can be therefore used as a simple measure of interaural

redundancy by indicating how similar the amplitude signal in both

ears is, at a particular frequency channel. Interaural amplitude

correlations for all recorded scenes are plotted as a function of

frequency on figure 3 C. A general trend across the scenes is that

correlations among low frequency channels (below 1 kHz) are

strong (larger than 0:5) and decay with increasing frequency. Such

trend is expected due to the filtering properties of the head, which

attenuates low frequencies much less than higher ones. The spatial

structure of the scene also finds reflection in binaural correlation -

for instance, a peak is visible in the nocturnal nature scene at 7
kHz. This is due to a presence of a spatially fixed source generating

a sound at this frequency (see figure 2). The most dynamic scene -

city center - reveals, as expected, lowest correlations across most of

the spectrum.

Interaural level differences ILD were computed separately in

each frequency channel. Figure 3 B displays an example ILD

distribution (black line) together with a best fitting Gaussian (blue

dotted line) and logistic distribution (red dashed line). Logistic

distributions provided the best fit to ILD distributions across all

frequencies and recorded scenes, as confirmed by the KS-test (see

figure S1). ILD distribution at frequency v was therefore defined

as

p(ILDvDmv,sv)~

exp ({
ILDv{mv

sv
)

sv(1z exp ({
ILDv{mv

sv
))2

ð1Þ

where mv and sv are frequency specific mean and scale

parameters of the logistic pdf respectively. Variance of the logistic

distribution is fully determined by the scale parameter.

Figure 3. Binaural amplitude statistics. A) An exemplary joint distribution of monaural amplitudes at 1245 Hz. Exemplary data were taken from
the nocturnal nature recording. B) An ILD distribution of the same data, plottedtoghether with a Gaussian and a logistic fit (blue and red dotted lines
respectively) C) Interaural amplitude correlations across frequency channels
doi:10.1371/journal.pone.0108968.g003
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Empirical ILD distributions are plotted on figure 4 A. As can be

immediately observed, they preserve similar shape in all frequency

channels and auditory scenes, regardless of their type. Scale (sv)

and mean (or location - mv) parameters of fitted distributions are

plotted as a function of frequency on figures 4 B and C

respectively. The mean of all distributions is very close to 0 dB

in most cases. In two non-static scenes i.e. forest walk and city

center deviations from 0 are very small. Marginal ILD distribu-

tions of the spatially non-changing scene - nocturnal nature - were

slightly shifted away from zero for frequencies generated by a

sound source of a fixed position. The difference, however was

weak. The scale parameter behaved differently than the mean. In

all auditory scenes it grew monotonically with the increasing

frequency. The increase was quite rapid for frequencies below 1
kHz - from 1:5 to 2. For higher frequencies the change was much

smaller and in the 1{11 kHz interval s did not exceed the value

of 2.5. What may be a surprising observation is the relatively small

change in ILD distribution, when comparing high and low

frequencies. It is known that level differences become much more

pronounced in high frequency channels [19], and one could

expect a strong difference with a frequency increase. At least

partial explanation can be made, when one observes a close

relationship between Fourier spectra of binaural sounds and

means of ILD distributions. In a typical, natural setting sound

sources on the left side of the head are qualitatively (spectrally)

similar to those on the other side, therefore spectral power in the

same frequency bands remains similar in both ears. Average ILDs

deviate from 0 if a sound source was present at a fixed position

during the averaged time period. Increase in the ILD variance

(defined by the scale parameter s) with increasing frequency, can

be explained by the filtering properties of the head. While for

lower frequencies a range of possible ILDs is low, since large

spatial displacements generate weak ILD changes, in higher

frequency regimes ILDs become more sensitive to the sound

source position hence their variability grows. On the other hand,

objects on both sides of the head reveal similar motion patterns

and, in this way, reduce the ILD variability, which may account

for the small rate of change.

Observed ILD distributions revealed very small variation across

different frequencies. The variability was much weaker than what

can be predicted from known head filtering properties. Addition-

ally, ILD distributions were quite homogenous across different

auditory scenes. This means that neuronal codes for ILDs can

optimally represent this cue in very different acoustic environ-

ments without necessity of a strong adaptation.

Interaural phase difference statistics
Marginal distribution of a univariate, monaural phase variable

over a long time period is uniform, since it periodically assumes all

values on a unit circle. An interesting structure appears in a joint

distribution of monaural phases (an example is plotted on figure 5

A. Monaural phases reveal dependence in their difference i.e. their

joint probability is determined by the probability of the IPD [20]:

p(wL,wR)!p(wL{wR) ð2Þ

where wL and wR are instantenous phase values in the left and the

right ear respectively.

To obtain a parametric description, IPD histograms were fitted

with the von Mises distribution as visible in figure 5 B (additional

structure was present in IPDs from the forest walk scene - see the

following subsection). A distribution of an interaural phase

difference in the frequency channel v (IPDv~wL,v{wR,v), was

then given by:

p(IPDvDkv,mv)~
1

2pI0(k)
ek cos (IPDv{mv) ð3Þ

where mv and kv are frequency specific mean and concentration

parameters and I0 is the modified Bessel function of order 0. In

such case, the concentration parameter k controls mutual

dependence of monaural phases [21]. For large kv values wL,v

and wR,v are strongly dependent and the dependence vanishes for

k~0:
Figure 6 A depicts IPD histograms in all scenes depending on

the frequency channel. Thick black lines mark IPDv,max - the

‘‘maximal IPD’’ value i.e. the phase shift corresponding to a time

interval required for a sound to travel the entire interaural distance

equal to the head diameter (for details see the Materials and

Methods section). At low frequencies (below 1 kHz), histograms

had a triangular shape. This is a common tendency in IPD

distributions, visible across all auditory scenes. Additionally, due to

phase wrapping, for frequencies where pƒDIPDmaxDƒ2p the

probability mass is shifted away from the center of the unit circle

towards the {p and p values, which is visible as blue, circular

regions. This trend is not present in the forest walk scene, where a

clear peak at 0 radians is visible for almost all frequencies. Two

panels below i.e. figures 6 B and C display plots of k and m
parameters of von Mises distributions as a function of frequency.

The concentration parameter k decreased in all three scenes from

a value close to 1:5 (strong concentration) to below 0:5 in the

interval between 200 Hz and 500 Hz. This seemed to be a robust

Figure 4. Interaural level difference distributions. A) Histograms
plotted as a function of frequency - a strong homogeneity of
distributions is visible across recorded scenes and frequency channels.
B) The scale parameter sv of fitted logistic distributions plotted as a
function of frequency C) The location parameter mv plotted as a
function of frequency.
doi:10.1371/journal.pone.0108968.g004
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property in all environments. Afterwards, small k rebounds were

visible. For auditory scenes recorded by a static subject i.e.

nocturnal nature and city center rebounds occure at frequencies,

where IPDmax corresponds to p multiplicities (this was again an

effect of phase wrapping). The k value was higher for a more static

scene - nocturnal nature - reflecting a lower IPD variance. For

frequencies above 2 kHz, concentration converged to 0 in all three

scenes. This means that IPD distributions become uniform and

monaural phases mutually independent. The frequency depen-

dence of the position parameter m is visible on figure 6 C. Again,

division may be made between statically and dynamically recorded

scenes. For the latter one, IPD distributions were centered at the 0
value with an exception at 700 Hz. For two former ones,

distribution peaks were roughly aligned along the IPDmax as long

as it did not exceed {p or p value. One has to note, that for

distributions close to uniform (k?0), position of the peak becomes

an ill defined and arbitrary parameter. We plotted it here, as

returned by the estimation algorithm.

Thick black lines on figure 6 A mark the ‘‘maximal’’ IPD value

(IPDmax), constrained by the size of the organism’s head. A single,

point sound source in an anechoic environment would never

generate an IPD exceeding IPDmax. In natural hearing conditions

however, such IPDs occur due to presence of two (or more) sound

sources at both sides of the head or due to acoustic reflections [15].

The presence of IPDs exceeding the IPDmax limit is visible on

figure 6 as a probability mass lying outside of the black lines.

Figure 7 displays a proportion of IPDs larger than the one defined

by the head size plotted against frequency. Lines corresponding to

three recorded auditory environments lay in parallel to each other,

displaying almost the same trend up to a vertical shift. The highest

proportion of IPDs exceeding the ‘‘maximal’’ value was present in

the nocturnal nature scene. This was most probably caused by a

largest number of very similar sound sources (grasshoppers) at

each side of the head. They generated non-synchronized and

strongly overlapping waveforms. Phase information in each ear

resulted therefore from acoustic summation of multiple sources,

hence instantenous IPD was not directly related to a single source

position and often exceeded the IPDmax value. Surprisingly, IPDs

in the most dynamic scene - city center - did not exceed the

IPDmax limit as often. This may be due to a smaller number of

sound sources present and may indicate that the proportion of

‘‘forbidden’’ IPDs is a signature of a numerosity of sound sources

present in the scene. For nocturnal nature and city center scenes

the proportion peaked at 400 Hz achieving values of 0:45 and 0:35
respectively. For a forest walk scene, the peak at 400 Hz did not

exceed the value of 0:31 at 200 Hz. All proportion curves

converged to 0 at 734 Hz frequency, where IPDmax~p.

The percentage of IPDs larger than the value constrained by the

head size is another property of auditory scenes, which can not be

predicted from head filtering properties or from physics of sound.

Our data suggest that since this proportion can be large (up to

45%), many naturally encountered IPDs do not correspond to

single sound sources. This in turn implies that they can not be

utilized to identify the sound position in the simplest way suggested

by the duplex theory.

IPDs of self-generated sounds. As already mentioned

before, IPD distributions at most of frequency channels in the

forest walk scene revealed an additional property, namely a clear,

sharp peak at 0 radians. This feature was not present in two other

scenes. As an example, IPD distribution at 561 Hz is depicted on

figure 8 A. The histogram has a sharp peak close to 0, which

implies presence of many equal monaural phase values. Zero IPDs

can be generated either by sources located at the midline (directly

in front or directly in the back) or self-produced sounds such as

speech, breathing or loud footsteps.

As visible in figure 8 two components contributed to the

structure of the marginal IPD distribution - the sharp ‘‘speech

component’’ and the broad ‘‘background’’. IPD distributions of

the forest walk scene were well suited to be modelled by a mixture

model. This means that their pdf could be represented as a linear

combination of two von Mises distributions in the following way

p(IPDvDkv,mv)~
X2

i~1

p(Ci)p(IPDvDkv,i,mv,i) ð4Þ

where kv [ R2 and mv [ R2 are parameter vectors, Ci [ f1,2g
are class labels, p(Ci) are prior probabilities of a class membership

and p(IPDvDkv,i,mv,i) are von Mises distributions defined by

equation 3. A fitted mixture of von Mises distributions is also

visible in figure 8 A, where dashed lines are mixture components

and the continuous black line is the marginal distribution. It is

Figure 5. Binaural phase statistics. A) An exemplary joint probability distribution of monaural phases at 289 Hz. Data were taken from the
nocturnal nature scene. B) An empirical IPD distribution of the same data (black line) plotted with a fitted von-Mises distribution (blue dashed line).
doi:10.1371/journal.pone.0108968.g005
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clearly visible that a two-component mixture fits the data much

better than a plain von Mises distribution. There is also an

additional advantage of fitting such a mixture model, namely it

allows to perform classification and assign each IPD sample (and

therefore each associated sound sample) to one of two classes

defined by mixture components. Since prior over class labels is

assumed to be uniform, this procedure is equivalent to finding a

maximum-likelihood estimate Ĉ of C

Ĉ~ arg max
C

p(IPDvDC) ð5Þ

In this way, a separation of self generated sounds from the

background can be performed using information from a single

frequency channel (if no other sound source is present at the

midline). Exemplary results of self-generated speech separation are

displayed in figure 8 B. A two-second binaural sound chunk

included two self-spoken words with a background consisting of a

flowing stream. Each sample was classified basing on an associated

IPD value at 561 Hz. Samples belonging to the second, sharp

component are coloured blue and background ones are red. It can

Figure 6. IPD distributions. A) Log-histograms plotted as a function of frequency. Black lines mark the ‘‘maximal’’ IPD limit. B) The concentration
parameter kv of fitted von-Mises distributions plotted as a function of frequency C) The position parameter mv plotted as a function of frequency.
doi:10.1371/journal.pone.0108968.g006

Figure 7. Proportion of IPDs exceeding the ‘‘maximal IPD’’
threshold plotted as a function of frequency. In each auditory
environment a substantial amount (up to 45% in the 400 Hz channel of
the nocturnal scene) of low-frequency IPDs exceeded the limit imposed
by the size of the head. While such IPDs can carry relevant information,
they can not be used to identify sound source position without
additional transformations.
doi:10.1371/journal.pone.0108968.g007
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be observed, that the algorithm has succesfuly separated spoken

words from the environmental noise.

IPDs are usually considered as cues generated by external sound

sources. Our data demonstrate that self-generated sounds such as

speech or footsteps, often constitute a dominant component of a

natural acoustic scene. They also possess a characteristic statistical

signature, which reflects itself in IPD distributions.

Independent components of binaural waveforms
In previous sections we analyzed statistics of precomputed

stimulus features - IPDs and ILDs. In this way we characterized

low-order properties of the natural input to binaural circuits in the

auditory system. However these results do not allow to draw strong

conclusions about mutual dependence of binaural waveforms.

This is an important property of the stimulus, since it is

informative about the difficulty of the sound localization task in

natural environments. If sounds in each ear are highly dependent -

it is very likely they are generated by the same source, which can

be simply localized using binaural cues. If, however, sound in the

left ear is independent from the one in the right ear - this means

that each of them is dominated by a different source. In such a

case, instantenous cue values can not be directly mapped to a

spatial position, and sound localization becomes a complex

inference process.

In this section we attempt to estimate the difficulty of sound

localization in natural auditory scenes by analyzing mutual

dependence of monaural sounds in each scene. To this end we

learned high-order patterns present in natural stereo sounds by

training Independent Component Analysis (ICA) - a statistical

model which optimizes a general-purpose objective - coding

efficiency [22].

In the ICA model, short (8:7 ms) epochs of binaural sounds were

represented by a linear superposition of basis functions (or

independent components - ICs) multiplied by linear coefficients s

(see figure 9 A. Linear coefficients were assumed to be indepen-

dent and sparse i.e. close to 0 for most of data samples in the

training dataset. Basis functions learned by ICA can be interpreted

as patterns of correlated inter- and intra-aural variability present

in a dataset.

Figure 9 B depicts exemplary basis functions learned from each

recording. Each feature consists of two parts, representing signal in

the left and in the right ear (black and red colours respectively).

Importantly, monaural parts of almost all trained basis functions

were well localized in frequency i.e. their Fourier spectra had a

prominent peak, in agreement with results presented in [11,12,23]

(few non-localized features were excluded from the analysis - see

Materials and Methods). Features trained on different recordings

have characteristic shapes determined by the spectrotemporal

composition of auditory scenes. On one hand, the city center scene

is modelled by time extended and frequency-localized basis

functions (capturing mostly the harmonics of human speech),

while on the other the representation of the forest walk scene

included temporally localized, instantenous features (induced by

transient sounds like wood cracks etc). Spectrotemporal charac-

teristics of learned basis functions (depicted on figure S2) constitute

a characteristic property of each auditory scene [11,23]. Here, we

do not analyze them in detail, since this is not the main focus of the

current study.

In order to measure how strongly information from each ear

contributed to a features encoded by each of the independent

components, we computed the peak power ratio (PPR):

PPR~10log10(
Amax,L

Amax,R

) ð6Þ

where Amax,L, Amax,R are maximal spectrum values of left and

right ear parts of each IC respectively. A large positive PPR value

implies a dominance of a left ear sound, while when the PPR is

negative the right ear dominates. Values close to 0 imply a

balanced power in each ear. This index is conceptually similar to

the binocularity index used to quantify the ocular dominance of

real and model visual receptive fields [24,25].

Figure 10 depicts binaural properties of learned independent

components. Each circle represents a single IC. Its vertical and

horizontal coordinates are monaural peak frequencies and its color

encodes the PPR value. Features which lie along the diagonal can

be considered as a representation of ‘‘classical’’ ILDs, since they

encoded a feature of the same frequency in each ear and differed

Figure 8. IPD distributions in an auditory scene including self-generated speech. A) An exemplary IPD distribution in the forest walk scene.
In addition to a broad ‘‘background’’ component a peak centered at 0 radians is visible. Dashed lines mark components of a fitted von-Mises mixture
distribution. B) Results of a sample classification using the fitted mixture model. Intervals were assigned by the algorithm to mixture components of
the same color plotted on panel A. Blue intervals include utterances generated by the recording subject.
doi:10.1371/journal.pone.0108968.g008

Statistics of Natural Binaural Sounds

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e108968



only in level. ICs lying away from the diagonal coupled

information from different frequency channels in both ears.

Pronounced differences among IC representations of the three

auditory scenes are visible on figure 10. Majority (161) of ICs

learned from the nocturnal nature scene cluster closely to the

diagonal and encode the same frequency in each ear. The basis

function set trained on the mostly dynamic scene (city center)

separated into three clear subpopulations. Two of them (including

140 features in total) were monaural. Monaural basis functions

were dominated mostly by a single ear, and the contralateral part

was of a very low frequency, close to a flat line (a DC component).

The binaural subpopulation contained 111 basis functions

perfectly aligned with the diagonal. Such separation suggests, that

waveforms in both ears were highly independent and modelled by

a large separate sets of monaural events. ICA trained on the forest

walk scene also yielded a set of basis functions, separable into two

populations. Here, the highest number of features - 165 lied off the

diagonal and coupled separate frequency channels in each ear. A

clear division into two monaural subsets was apparent - almost no

IC was characterized by a PPR close to 0.

As data displayed in figure 10 suggest, there is a relationship

between interaural redundance and PPR values. In dynamic

scenes, where monaural waveforms are generated mostly by

independent causes, stereo sounds are best represented by ICs of

large absolute PPR values (dominated by a single ear). In order to

get a better understanding of this effect, for each recorded scene,

we generated two artificial datasets of opposite properties. The first

dataset consisted of single, point sources presented in anechoic

conditions with zero background noise. It was created by

convolving chunks of a recording with human head related

transfer functions (HRTFs) from the LISTEN database [26]. This

dataset constituted a specific case, where sounds in each ear were

Figure 9. Independent components of natural binaural sounds. A) An explanation of the ICA model. Each epoch of binaural sound (left hand
side of the equation) is represented by a linear combination of basis functions (or independent components). Coefficients si are assumed to be sparse
and their joint distribution is equal to the product of marginals. B) Exemplary ICA basis functions from each recorded scene. Nocturnal nature and city
center scenes consisted mostly of harmonic sounds and are mostly represented by ICs resembling Fourier bases. The forest walk scene included
multiple transient sounds, which gave rise to wavelet-like features.
doi:10.1371/journal.pone.0108968.g009

Figure 10. Binaural composition of independent components. Each circle corresponds to a single IC. Horizontal and vertical coordinates are
spectral maxima of the left and the right ear parts respectively. Colors encode the peak power ratio. Each pannel depicts one of the recorded scenes.
doi:10.1371/journal.pone.0108968.g010
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maximally dependent given the head filter. In the second dataset

the binaural signal was created by drawing two independent sound

intervals and treating each of them as an input to a separate ear.

The interaural dependence was therefore minimized and emulated

a situation in which sounds in each ear originate from separate

sources. A cartoon illustration of those two simulations is depicted

in figure 11 A. Both - the point source as well as the independent

ears dataset were extreme, opposite settings, which do not occur

naturally. While in the first one, binaural cues could be directly

mapped to a source position, in the second they were spurious and

carried no spatial information. Recordings of natural scenes

should lay in the space spanned by those two.

ICA was performed on each artificial dataset. Exemplary basis

functions learned using sounds from the forest scene are depicted

on figure 11 B. Top and bottom rows present ICs trained on point

source and independent ears data respectively. Low frequency

basis functions representing maximally dependent data (first row)

had a very similar value of the spectral peak in each ear, and some

of them were shifted in time (encoding an ITD). The power

difference increased with frequency growth, due to the head

attenuation. ICs encoding independent sounds in each ear, were

almost completely monaural i.e. one of the single-ear parts was flat

and equal to zero.

In the next step of the analysis, we computed histograms of the

PPR value for each learned IC dictionary. They are depicted in

figure 12. A clear, repetitive structure is visible in PPR distribu-

tions of ICs trained on artificial datasets. Histograms of point

source data (first column) have three peaks - first one at 0 dB and

two shorter ones, symmetrically located on either side. The middle

peak, located at 0 dB corresponds to low-frequency features, which

were weakly attenuated by the HRTF, and carried similar power

in each ear. High frequency ICs, where sound in one ear was

strongly supressed by the head can account for the two symmetric

peaks located between +10{15 dB. A very different structure is

visible in peak ratio histograms of ICs trained on datasets where

monaural sounds were independent (middle column). There, two

modes were present at extreme PPR values, close to + 20 dB.

Basis functions learned from those data were dominated by a

single ear, while signal in the opposite ear was equivalent to noise

fluctuations, giving rise to large absolute PPR values.

Histograms of binaural dominance of natural scene ICs are

presented in the third column of figure 12. As expected, they fell in

between extremes established by artificial datasets. Both dynamic

scenes (recorded in the forest and in the city center) were

characterized by PPR distributions highly similar to those obtained

from independent ears data. Corresponding histograms consisted

of two sharply separated peaks, located away from the 0 dB point.

The distance between the peaks was, however, not as large as for

Figure 11. Independent components of simulated data. A) Cartoon illustrations of the generation process of the maximally dependent (top)
and the maximally independent (bottom) datasets. B) Exemplary ICs trained on simulated data (point source data - top row, independent ears data -
bottom row). If binaural sounds had the same underlying cause, vectors corresponding to each ear captured the signal structure. In the independent
ear setting, one of the monaural parts of every IC was always flat.
doi:10.1371/journal.pone.0108968.g011

Figure 12. Distributions of peak power ratios of independent
components trained on simulated and natural sounds. Columns
correspond to datasets (point source, independent ears, natural scene)
and rows to recorded environments (nocturnal nature, forest walk, city
center). Simulated data gave rise to stereotypical and repetitive PPR
distributions. Natural scenes, while being a compromise between
simulated environments, were more similar to the independent ear
data.
doi:10.1371/journal.pone.0108968.g012
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the maximally independent dataset, which implied existence of

some binaural dependencies. Importantly, the peak at 0 dB visible

in maximally dependent datasets was absent in natural scenes.

Some binaural features emerged from natural data, however in

proportion to monaural ICs their amount was low. This means

that monaural sounds were much less redundant than in the

simplistic, simulated case. The nocturnal scene, where multiple

static sources were recorded by a non-moving subject gave rise to a

different PPR distribution. While the 0 dB maximum was absent

as well, the positive and negative peaks were not very sharply

separated. Additionally, a clear bias towards the right ear (negative

PPRs) was visible. This can be accounted by the fact that this

recording was performed in a static environment with a non-

moving sound source present close to the right ear. Despite the

almost complete lack of motion, even this scene was very different

from the simulated point-source one.

The above analysis points to the fact that in a typical auditory

environment, sounds in each ear are much stronger dominated by

independent acoustic events that can be predicted from consid-

erations of solitary point sources. In such conditions sound

localization requires a sophisticated computational strategy and

becomes itself a scene-analysis task.

Discussion

Binaural cues are usually studied in a relationship to the angular

position of the generating stimulus [27–29]. In probabilistic terms

this corresponds to modelling a conditional probability distribution

of a cue, given a sound position. Analysis of this relationship in

natural environments is a very hard task, since a full knowledge

about the spatial configuration of the scene (i.e. position and

trajectory of every object) is required in addition to the recorded

sound. In the present study we approached binaural hearing from

a different perspective - we focused on marginal distributions of

naturally encountered binaural sounds.

As a representation of the real sensory world we recorded and

analyzed three auditory scenes. Analyzed recordings were very

different from each other in terms of spatial configuration as well

as sound quality. We have selected them as stereotypes of

numerous possible environments consisting of static and moving

sources. This diversity increased the likelihood that any other

auditory scene typically encountered by a human listener would

resemble one of those recorded in the present study. Selected

scenes were not free from limitations. Inspection of sound spectra

as well as cue statistics revealed slight biases towards the right ear

in nocturnal and forest scenes, which may not be the case in all

realistic conditions. Moreover, one could invision analyzing a

larger amount of recordings performed also in interior, reverber-

ant environments, which are often encountered by humans. Such

analysis should allow to draw stronger conclusions about general

properties of natural binaural sounds. Despite their differences and

limitations, analyzed scenes revealed common features such as the

shape of ILD distributions for instance. If all analyzed cases share

some statistical property, one may conclude that it should not

change strongly in different hearing conditions.

Binaural cue distributions in natural auditory scenes
Our current understanding of how the nervous system may

localize sound sources was primiarily derived from considerations

of solitary, point sources of pure frequency sound in noiseless and

non-reverberant listening conditions. In such case, knowledge of

head filtering properties and analysis based on physics of sound

suffices to predict the range of possible binaural cues and their

relationship to the position of a generating source.

When considering natural environments, the analytical ap-

proach very quickly becomes intractable. In a typical auditory

scene, a number of objects unknown to the organism generates

interferring sound waves affected by motion and reverberation.

Additionally, the number of sources at each side of the head is

different. Under such conditions, binaural cues become highly

stochastic, and as such should be characterized in statistical terms.

In this work we characterized low-order statistics of naturally

encountered binaural cues. In many aspects, empirical distribu-

tions of natural stimuli deviated from reductionist, analytical

predictions. We discuss them below separately for time and level

binaural disparities.

Interaural level differences. The human head strongly

attenuates high frequency tones, acting as a low-pass filter [30].

For this reason, intensity differences between the ears do not carry

much information about the position of a low-frequency sound.

An ILD becomes informative about the location of a point-source,

when the tone frequency exceeds 4 kHz [19]. Based on those

observations, one could expect that naturally encountered ILDs

are also strongly frequency dependent. This was however, not the

case. Empirical ILD distributions were strikingly homogenous

across almost entire measured frequency spectrum. Distribution at

each frequency was approximately logistic and centered at 0 dB.

The ILD invariance to a frequency channel is not predictable by

the HRTF analysis (although it has been demonstrated before that

sound sources proximal to the listener can generate pronounced

ILDs also below 1:5 kHz [31,32]). Weak frequency dependence of

natural ILD distributions implies that binaural circuits computing

and encoding this cue are exposed to similar patterns of

stimulation across large parts of the cochleotopic axis. This allows

to make a prediction that similarly tuned neurons encoding both

high and low frequency ILDs should be present in the early

auditory system. ILD sensitive cells characterized by low best

frequencies have been found in the Lateral Superior Olive (LSO)

of the cat [33]. Their presence may constitute a manifestation of

an adaptation of the binaural auditory system to natural ILD

statistics.

A neuron maximizes its coding efficiency (defined by the

amount of the stimulus information it conveys), if its tuning curve

is equivalent to the cumulative distribution function (CDF) of the

naturally encountered stimulus [34]. Since natural ILD distribu-

tions are logistic, one can speculate that ILD tuning curves of

neurons in the early auditory system should be well approximated

by a CDF of this distribution i.e. the logistic function.

In addition to the frequency invariance, ILDs revealed only a

small variability across recorded auditory scenes. Despite strong

differences between spatial configurations of each scene, ILD

distribution parameters fluctuated very weakly. In the nocturnal

nature scene, centers of some ILD distributions were slightly

shifted away from 0 dB, but their shapes were the same. This

observation suggests that a very similar tuning curve suffices to

efficiently convey the ILD information in various listening

conditions. One may conclude that ILD coding neurons do not

have to strongly adapt their tuning properties, when an auditory

scene changes from one to another. This does not exclude the

possibility that adaptation on time scales shorter than analyzed

here may still occur. Experimental evidence of a rapid adaptation

to fast changes of a cue distribution has been delivered for ILDs

[35] (similar effects for ITDs have also been demonstrated in [36]).

Interaural phase differences. In anechoic environments,

point sources of sound generate interaural time disparities

constrained by the head size of the listener - no IPD value should

exceed the frequency dependent, physiological threshold. In more

complex listening situations larger values can appear, either due to
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a sound reflection or to a presence of two (or more) desynchro-

nized sound sources [15]. Even though large IPDs can not be

directly mapped to a source position, they still may be of high

value to the organism. Sound reflections generate reproducible

cues and carry information about the spatial properties of the

scene [37]. If a large IPD did not arise as a result of a reflection, it

means that at least two sound sources contribute to the stimulus at

the same frequency. In the latter case, IPDs become a strong

source separation cue.

The amount of IPDs larger than the head-imposed threshold is

another property of an auditory scene, which can not be derived

by the analysis of the head filtering - it has to be estimated from

empirical measurements. Present results demonstrate that in low

frequency channels large proportions of IPDs exceed the

‘‘maximal’’ value. This was true for to up to 45% of cues at

around 500 Hz. It means that a large amount of potentially useful

signal falls outside of the range predicted by analysis of point

sources in echo-free conditions. IPD coding circuits are often

exposed to cue values exceeding the threshold when the organism

explores the natural environment. In order to retain this

information, the auditory system should be adapted to encode

IPDs larger than the physiological limit. Interestingly, this notion

converges with experimental data. In many mammalian species,

tuning curve peaks of IPD sensitive neurons are located outside of

the head size constrained range [15]. Moreover, the observed

proportion of large IPDs decreased with the frequency increase

(since the maximal IPD limit increases with frequency). This

observation agrees with the experimental data showing that

neurons characterized by the low best frequency are predomi-

nantly tuned to IPDs lying outside of the head limit [38–41]. Based

on the above considerations, we conjecture that tuning to large

phase disparities could be also understood as a form of adaptation

to the natural distribution of this cue.

The natural auditory stimulus consists not only of external

sounds generated by environmental sources, but also of self-

generated sounds such as speech. We have found that speech alters

the IPD distribution by increasing the number of disparities equal

to 0 radians. Distribution structure different than in scenes where

no self-speech was present implies that binaural stimuli perceived

by humans and other vocalizing animals are strongly affected by

self generated sounds. This in turn influences activity of cue-

coding neurons, since they have to represent IPDs close to 0 more

often. Prior to localizing a source using binaural cues, it has to be

determined, whether it is an external source or is it a self-generated

one. To a limited extent this can be perfomed using instantenous,

single channel IPD values as we have demonstrated here by using

a simple mixture model to separate speech from background

sounds. The proposed model suggests a possible abstract

algorithm, which could be implemented by the nervous system

to differentiate between self generated sounds and sounds of the

environment. This is a behaviorally relevant task which has to be

routinely performed by many animals. One should note that the

separation of acoustic sources using binaural cues is a well-known

paradigm of computational scene analysis and substantial research

has been devoted to it in other contexts (see [42] for an exemplary

review).

Binaural hearing in complex auditory environments
Interaural cues can be directly mapped to a stimulus position

only if no other sources of sound overlap with the signal of interest.

A natural question to ask is - how often does this happen in the

natural environment? This is equivalent to asking - how useful are

instantenous, one-dimensional cues to localize typical, real world

sources?

Since a direct estimation of a number of auditory objects in real

environments is technically very difficult, we approached this

problem indirectly. By performing Independent Component

Analysis, we learned redundant patterns of natural binaural

stimulus. If signals in each ear originated typically from the same

source - their dependence was maximized and independent

components captured a signal structure in both ears. However, if

sounds in each ear were dominated by independent sources, they

were best represented by monaural basis functions, where the

signal power in one ear was greatly exceeding power in the other

one. In order to obtain a frame of reference, we performed the

same analysis using simulated datasets. One of them consisted

solely of solitary point-sources. Monaural sounds were therefore

maximally dependent given the head filter, and sound localization

could have been easily performed using simple cues. In the second

dataset, sound waves in each ear were completely independent,

and binaural cues carried no spatial information.

Basis functions trained on natural auditory scenes had a very

different binaural composition than those trained on simulated

point sources. In two out of three environments analyzed here, two

equinumerous, clearly separated subsets of independent compo-

nents emerged (in the third one the separation was not so

prominent). Each of them was dominated by the signal in only one

of the ears. This structure was rather reminiscent of basis functions

trained on the artificial, maximally independent data.

These results allow us to conclude that in real-world hearing

conditions binaural sound is rarely generated by a single object.

Actually, sounds in each ear seem to be dominated by independent

environmental causes. In such settings, an inversion of a binaural

cue to a sound source position becomes an ill-posed problem. This

is because multiple scene configurations can give rise to the same

cue value (for instance an ILD equal to 0 can be generated by a

single source located at the midline, or two identical sources

symmetricaly located on both sides of the head). A mere extraction

of the instantenous cue (as performed by the brainstem nuclei

MSO and LSO) is not equivalent to the identification of the sound

position. Computation of binaural cues is only a beginning of a

complex inference process, whose purpose is to estimate the spatial

configuration of an auditory scene [43].

The ICA analysis has yielded a large amount of monaural and a

smaller number of binaural features. One can interpret them as

model neuronal receptive fields [11–13], and ask which role could

neurons of such response characteristics play. One possible answer

is that while binaural neurons may subserve localization tasks,

monaural ones could be used for the purpose of the ‘‘better ear

listening’’ i.e. encoding ipsilateral sound sources. On the other

hand also monaural sound features similar to those described here

can be utilized in further stages of auditory processing to recover

spatial information.

Conclusions

In the present study, we analyzed low-order marginal statistics

of binaural cues and estimated the redundance of binaural sounds

encountered naturally. In this way, we provided a general

statistical characterization of the stimulus processed by the

binaural auditory system in natural listening conditions. We have

also described our attempt to estimate the complexity of binaural

sound localization in the natural environment, based on the

Independent Component Analysis. Finally, we have provided

stereo recordings of natural scenes, which are availible in the

supplementary material, and may be freely used.

In a broad perspective, this study contributes to lines of research

attempting to explain functioning of the auditory system by
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analyzing natural stimuli. Further understanding of binaural

hearing mechanisms will require a systematic analysis of high

order stimulus statistics. This is a subject of future research.

Materials and Methods

Recorded scenes
The main goal of the study was to analyze cue distributions in

different auditory environments. To this end, three auditory scenes

of different spatial configuration and acoustic properties were

recorded. Each of the recordings lasted 12 minutes.

1. Nocturnal nature - the recording subject sat in a randomly

selected position in the garden during summer evening. During

the recording the subject was keeping his head still, looking

ahead, with his chin parallel to the ground. The dominating

background sound were grasshopper calls. Other acoustic

events included sounds of a distant storm and a few cars passing

by on a near-by road. The spatial configuration of this scene

did not change much in time - the scene was almost static.

2. Forest walk - this recording was performed by a subject freely

moving in the wooded area. The second speaker was present,

engaged in a free conversation with the recording subject. In

addition to speech, this scene included environmental sounds

such as flowing water, cracks of broken sticks, leave crunching,

wind etc. Binaural signal was affected not only by the spatial

scene configuration, but also by head and body motion

patterns of the recording subject.

3. City center - the recording subject sat in a touristic area of an

old part of town, fixating the head as in the previous case.

During the recording many moving and static human speakers

were present. Contrasted with the previous example, the spatial

configuration of the scene varied continuously.

Two of the analyzed auditory scenes (nocturnal nature and city

center) were recorded by a non-moving subject, therefore sound

statistics were unaffected by listener’s motion patterns and self

generated sounds. In the third scene (forest walk) the subject was

moving freely and was speaking sparsely. Scene recordings are

publicly available at the following URL: http://figshare.com/

articles/Statistics_of_Natural_Binaural_Sounds_Supplementary_

Material/1157161

Binaural recordings
Recordings were performed using the Soundman OKM-II

binaural microphones which were placed in the left and the right

ear channels of the recording subject. Soudmann DR2 recorder

was used to simultaneously record sound in both channels in an

uncompressed wave format at 44100 Hz sampling rate. The

circumference of the recording subject’s head was equal to 60 cm.

Frequency filtering and cue extraction
Prior to analysis, raw recordings were down-sampled to 22050

Hz sampling rate. The filtering and cue extraction pipeline is

schematically depicted in figure 1.

To obtain a spectral decomposition of the signal, sound

waveforms from each ear were transformed using a filterbank of

64 linear gammatone filters. Filter center frequencies were linearly

spaced between 200 and 3000 Hz for IPD analysis and 200 and

10000 Hz for ILD analysis. Biological cochlear filters are spaced

logarithimcally. Here however, a linear spacing was utilized. This

resulted in a more uniform coverage of the frequency range than

in the case of a biologically plausible filterbank. Within the limits

of the analysis performed here, results should not be significantly

different when using different filterbanks for preprocessing.

A Hilbert transform of each frequency channel was performed.

In result, instantenous phase wL,R(v,t) and amplitude AL,R(v,t)

were extracted, separating level and time information. Instante-

nous binaural cue values were computed in corresponding

frequency channels v from both ears according to the following

equations:

ILD(v,t)~10| log10

AL(v,t)

AR(v,t)
ð7Þ

IPD(v,t)~wL(v,t){wR(v,t) ð8Þ

IPDs with absolute value exceeding P were wrapped to a

½{P, P� interval. Time series of IPD and ILD cues obtained in

this way in each frequency channel were subjected to further

analysis.

Computation of the ‘‘maximal’’ IPD value
In each frequency channel v, the maximal IPD value

constrained by the head size (IPDv,max) was computed in the

following way. The head shape was assumed to be spherical.

Given this assumption, the time period required by the sound

wave to travel the distance between the ears is equal to:

ITD~
Rhead

vsnd

(Hz sin (H)) ð9Þ

where Rhead is the head radius, vsnd the speed of sound and H the

angular position of the sound source measured in radians from the

midline. The ITD is maximized for sounds located directly oposite

to one of the ears, deviating from the midline by H~
p

2
. ITDm a x

becomes

I T Dmax~
Rhead

vsnd

(
p

2
z1) ð10Þ

The maximal IPD was computed separately in each frequency

channel v

IPDv,max~2pvITDmax ð11Þ

The above calculations assume a spherical head shape, which is

a major simplification. It was, however, satisfactory for the sake of

the current analysis.

Independent Component Analysis
Independent Component Analysis (ICA) is a family of

algorithms which attempt to find a linear transformation of the

data which minimses redundancy [24]. Given the data matrix

X [ Rn | m (where n is the number of data dimensions and m

number of samples), ICA finds a filter matrix W [ Rn | n, such

that:

W X~S ð12Þ
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where columns of X are data vectors x [ Rn, rows of W are linear

filters v [ Rn and S [ Rn | m is a matrix of latent coefficients,

which according to the assumptions are marginally independent.

Equivalently the model can be defined using a basis function

matrix A~W{1, such that:

X~AS ð13Þ

The columns a [ Rn of the matrix A are called basis functions. In

modelling of neural systems they are usually interpreted as linear

receptive fields forming an efficient code of the training data

ensemble [22]. Each data vector can be represented as a linear

combination of basis functions a, multiplied by linear coefficients s
according to the equation 14.

x(t)~
X

i

siai(t) ð14Þ

where t indexes the data dimensions. The set of basis functions a is

called a dictionary. ICA attempts to learn a linear, maximally non-

redundant code, hence the latent coefficients s are assumed to be

statistically independent i.e.

p(s)~ P
n

i~1
p(si) ð15Þ

The marginal probability distributions p(si) are typically assumed

to be sparse (i.e. of high kurtosis), since natural sounds and images

have an intrinsically sparse structure [44] and can be represented

as a combination of a small number of primitives. In the current

work we assumed a logistic distribution of the form:

p(si Dm,j)~

exp ({
si{m

j
)

j(1z exp ({
si{m

j
))2

ð16Þ

with position m~0 and the scale parameter j~1. Basis functions

were learned by maximizing the log-likelihood of the model via

gradient ascent [24].

Prior to ICA learning, the recordings were downsampled to

14700 Hz sampling rate. A training dataset was created by

randomly drawing 100000 intervals each 128 samples long

(corresponding to 8:7 ms). The sampling rate and the length of

the time interval were equal to those used in [11].

After learning, we rejected spectrally non-localized independent

components as they typically reflect noise, not data structures [12].

All basis functions for which the sum of two spectral maxima in

each ear constituted less than 15% total power were removed. This

resulted in 0, 41 and 5 components rejected from the nocturnal,

forest and city scenes respectively.

Generation of artificial data
Two artificial datasets corresponding to extreme cases of

binaural redundance were generated using sounds from each

recorded scene. Binaural recordings were transformed to a single

channel by averaging sound in both ears. Point-source datasets

were created by drawing random intervals of the mono recording

and convolving them with Head Related Transfer Functions

(HRTFs) corresponding to one of the 24 positions (15 degree

spacing) on a circle surrounding the head. Human HRTFs were

taken from the publically available LISTEN database [26].

Maximally independent datasets were created by independently

sampling two epochs of sound and treating each of them as an

input to one of the ears. Each dataset consisted of 1e5 samples of

binaural sound, each 8:7 ms long. Recorded and simulated

datasets had the same Fourier spectra, but a very different

dependence structure.

Supporting Information

Figure S1 Results of the goodness of fit test for ILD
distributions. Curves plot p-values of the Kolmogorov-Smirnov

test. The purpose of the test was to compare empirical ILD

distributions at each frequency with the logistic distribution. The

null hypothesis was that both distributions are equal. Black dots

mark frequency channels, where one of the p-values was below

0:01. As visible on the plot in all except 4 cases (across all scenes

and frequencies), the test did not allow for rejection of the null

hypothesis at 0:01 confidence level.

(TIFF)

Figure S2 Spectrotemporal representation of indepen-
dent components. Panels in the left and right columns

correspond to the left and the right ear IC parts respectively.

Rows correspond to auditory scenes. To obtain a time-frequency

representation, Wigner-Ville distributions were computed for each

monaural part of each IC. This transformation localizes energy of

a temporal waveform on a time-frequency plane. Each component

is represented by the iso-probability contour of the Wigner-Ville

distribution corresponding to 60% of the total energy. Monaural

vectors belonging to the same IC are plotted in the same color.

(TIFF)
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