| Input: F(c) ∈ ℝN for all objects c, n, M, V, θ |
| Output: X̃(c) ∈ ℝ̃n
|
| begin
|
| 0. Construct feature space F(c) ∈ ℝN, ∀c ∈ C (via feature extraction); |
| 1. for m = 1 to M do
|
| 2. Calculate Xm (c) = CreateWeakEmbed(F(c)|ℱm, M, V), ∀c ∈ C, hence yielding ; |
| 3. k=0; |
| 4. Calculate (based on classification accuracy); |
| 5. if
|
| 6. k++; |
| 7. Wk(i, j) = ‖Xm(c) − Xm(d)‖2 ∀c, d with indices i, j; |
| 8. endif
|
| 9. endfor
|
| 10. W̃(i, j) = MEDIANk [Wk(i, j)] ∀c, d; |
| 11. Apply MDS to W̃ to obtain ℝ̃n; |
| 12. Train a classifier on X̃(c) ∈ ℝ̃n, ∀c ∈ C, to distinguish object-class categories; |
| end |