Skip to main content
. Author manuscript; available in PMC: 2014 Oct 7.
Published in final edited form as: Proc SPIE Int Soc Opt Eng. 2011 Mar 4;7963:79630U. doi: 10.1117/12.878312
  Input: F(c) ∈ ℝN for all objects c, n, M, V, θ
  Output: (c) ∈ ℝ̃n
  begin
  0. Construct feature space F(c) ∈ ℝN, ∀cC (via feature extraction);
  1. for m = 1 to M do
  2. Calculate Xm (c) = CreateWeakEmbed(F(c)|ℱm, M, V), ∀cC, hence yielding mn;
  3.   k=0;
  4.   Calculate ψAcc(mn) (based on classification accuracy);
  5.   if ψAcc(mn)>θ
  6.     k++;
  7.     Wk(i, j) = ‖Xm(c) − Xm(d)‖2c, d with indices i, j;
  8.   endif
  9. endfor
  10. (i, j) = MEDIANk [Wk(i, j)] ∀c, d;
  11. Apply MDS to to obtain ℝ̃n;
  12. Train a classifier on (c) ∈ ℝ̃n, ∀cC, to distinguish object-class categories;
end