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Purpose: 4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image
guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently
limited due to the long scan time and low image quality. The purpose of this paper is to develop a
new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data
acquired with a standard 3D-CBCT protocol.
Methods: The model optimizes a deformation vector field that deforms a patient-specific planning
CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward
splitting (FBS) method is invented to solve the optimization problem. It splits the original problem
into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By
iteratively solving the two subproblems, FBS gradually yields correct deformation information, while
maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to
improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three
real patient cases regarding the accuracy and quality of the reconstructed images, as well as the
algorithm robustness and efficiency.
Results: The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projec-
tion data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm
average differences and 0.484 mm maximum difference are found for the phantom case, and the max-
imum differences of 0.3–0.5 mm for patients 1–3 are observed. As for the image quality, intensity
errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient
cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to re-
sults from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time
of the algorithm on a NVIDIA GTX590 card is 1–1.5 min per phase.
Conclusions: High-quality 4D-CBCT imaging based on the clinically standard 1-min 3D CBCT
scanning protocol is feasible via the proposed hybrid reconstruction algorithm. © 2014 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4881326]
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1. INTRODUCTION

Respiratory motion is a major problem in lung and abdomen
radiotherapy. While advanced 4D treatment planning and de-
livery techniques have been developed to deliver a highly con-
formal dose to the moving target, their efficacies are com-

promised by static in-room imaging guidance, e.g., 3D cone-
beam CT (CBCT),1, 2 which is registered to the 4D-CT im-
age for patient setup. 4D image guidance is therefore needed
for precise tumor targeting,3 particularly in the context of the
increasingly used stereotactic body radio-surgery,2, 4 where
the high fractional dose makes it less forgiving to targeting
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error. Moreover, adaptive radiation therapy (ART) (Ref. 5)
is currently an active research topic, which addresses inter-
fractional variations of patients’ respiratory motion pattern6–8

and tumor shrinkage9, 10 by adaptively developing new treat-
ment plans based on the up-to-date anatomy. It calls for high-
quality in-room 4D images with accurate Hounsfield Units
(HU) to facilitate accurate deformable registration and dose
calculation for plan adaptations.

In recent years, respiratory-phase resolved CBCT, or 4D-
CBCT technique has been developed.4, 11–16 However, current
4D-CBCT technique cannot fully satisfy the aforementioned
clinical needs. Specifically, (1) Current 4D-CBCT needs a
long scan protocol (typically 4–6 min, referred as 4-min
scan hereafter) to provide enough number of projections per
breathing phase for reconstruction. This inherently impedes
the clinical workflow and elevates the imaging dose, greatly
limiting its clinical use; (2) the overall image quality (e.g.,
signal-to-noise ratio, SNR) of 4D-CBCT is still inferior to that
of a standard 3D-CBCT (referred as 1-min scan hereafter), let
alone the planning CT; (3) 4D-CBCT usually adopts a full-fan
mode to maximize the angular sampling. Nonetheless, the as-
sociated small field-of-view (FOV) (e.g., 25 cm in diameter)
usually cannot cover the whole thorax/abdomen, leading to
truncation problem,17, 18 and the truncated 4D-CBCT images
cannot serve the purpose of dose calculations due to missing
anatomies outside the FOV; and (4) the HU of 4D-CBCT im-
ages is inaccurate due to scatter contaminations. The factors
mentioned here are usually coupled together. Improving one
factor may inevitably worsen another. For example, any at-
tempt to reduce scanning time could speed up the workflow
and save imaging dose, but would further introduce view-
aliasing/streaking artifacts.19 Another example is adopting a
half-fan mode to increase the FOV. Yet, because only half of
the patient is covered at each view angle, the angular sam-
pling rate is effectively reduced. In light of all of these facts,
a fast, high-quality, low dose 4D-CBCT imaging technique is
in great demand.20–42

One unique feature of radiotherapy is that a patients’ own
planning CT (p-CT) is always available from the treatment
simulation stage. In light of the availability of this prior infor-
mation, 2D-3D matching-based reconstruction models have
been proposed in a wide spectrum of imaging tasks, such
as tomosynthesis, real-time volumetric imaging, and 3D/4D
CBCT.27, 36, 37, 39, 43–45 These methods optimize a motion vec-
tor field (MVF) to deform the p-CT, such that its forward
projections match the measurements. Brock et al. proposed
to match the forward projections by adjusting the MVF con-
trol points, so that the forward projections have minimal mis-
match with the measurements. They evaluated the algorithm
via simulation and reported that it is sensitive to contrast
mismatch errors between the measurements and the calcu-
lated projections.27 Ren et al. proposed to solve a MVF en-
ergy function using a nonlinear conjugate gradient (NCG)
method. They investigated various scan protocols, suggest-
ing that ∼57 projections over 360◦ are required to achieve
acceptable accuracy.36 To mitigate the local minima prob-
lem associated with the NCG framework, Wang and Gu in-
troduced a better initial image using a compressed sensing

(CS) based iterative reconstruction algorithm. They tested it
with one simulation case and one patient case of a 2-min
scan.37 Recently, a multiple-step algorithm combing PCA
modeling, optical flow based registration and reconstruc-
tion was proposed.39 It was validated with simulation stud-
ies and one patient data study and was compared with the
state-of-the-art CS-based methods, such as TV (Ref. 46) and
PICCS.21, 22 The results show that it offers better overall com-
promise in the depiction of moving and stationary anatomical
structures.

In spite of the success, there is still room for improve-
ment. It is desirable to reconstruct 4D-CBCT based on pro-
jections acquired in a short scan time, e.g., 1-min as in the
current clinical protocol for 3D-CBCT. In addition to the lim-
ited number of projections, practical issues such as intensity
difference due to scatter, truncation, and noise also make this
a challenging problem. The local-minima problem in 2D-3D
registration is another issue. While standard gradient-based
algorithm can be employed to solve the optimization problem,
more comprehensive evaluations of reconstruction results in
patient cases are needed to demonstrate the clinical utility of
algorithms of this kind, particularly with respect to both the
intensity accuracy and geometry accuracy. Finally, computa-
tion efficiency should be improved to render the algorithm in
a clinically applicable form.

In this paper, we will present an alternative approach to
the existing algorithms,36, 37, 39 called forward-backward split-
ting (FBS) algorithm, to solve the 2D-3D registration-based
4D-CBCT reconstruction problem. It splits the model into
two well-studied subproblems, i.e., image reconstruction and
deformable image registration (DIR). By alternatively solv-
ing these two problems in an iterative manner, FBS grad-
ually yield 4D-CBCT images with satisfactory even with
very sparsely acquired projections from a 1-min CBCT scan
(e.g., ∼10–20 projections over a 200◦ arc for each phase).
To achieve a clinically acceptable efficiency, all components
along the whole reconstruction workflow have been imple-
mented on graphic processing unit (GPU). The GPU imple-
mentation has substantially reduced the reconstruction time
to 1–1.5 min per phase. As a comparison, hours of compu-
tation time are usually observed for those CPU based 2D-3D
matching algorithms.39 Both phantom and multiple real pa-
tient data sets are used to test the efficacy of the proposed
algorithm. For each case, comprehensive evaluations are con-
ducted regarding the image quality, algorithm robustness, and
computational efficiency.

2. METHODS AND MATERIALS

2.A. The hybrid 4D-CBCT reconstruction algorithm

2.A.1. Reconstruction model

The p-CT fp(x), x = (x, y, z) ∈ R3 in this study is cho-
sen to be one phase of the 4D-CT image or a breath-hold CT
image, in which there is minimal motion artifacts. We first re-
construct an average 3D-CBCT image using all projections in
a 4D-CBCT scan via the conventional Feldkamp-Davis-Kress
(FDK) (Ref. 47) algorithm. The p-CT is then rigidly aligned
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with it. Let us denote 4D-CBCT image at phase i as fi(x),
which can be obtained by deforming fp(x) with an MVF
vi(x), i.e., fi(x) = fp(x + vi(x)). In our study, it is our ob-
jective to restore vi(x) by solving the following optimization
problem:

vi = arg minvi
E[vi]

= arg minvi

1

2

∣
∣
∣
∣Pifp(x + vi(x)) − c(gi)

∣
∣
∣
∣
2
2+

λ

2

∣
∣
∣
∣∇vi

∣
∣
∣
∣
2
2,

(1)

where ‖ · ‖2 represents l2 norm and ∇ is the gradient opera-
tor. Pi is the x-ray projection matrix for the phase i, and gi

is the corresponding measured projections. The first term in
the objective function is to ensure the fidelity between the re-
constructed results and the projection measurements. c repre-
sents a correction step to address the intensity inconsistency
between the measured x-ray projections gi and the calculated
forward projections Pifp due to, e.g., x-ray scatter contami-
nations in the projection measurements. The second term is
to enforce the MVF smoothness. λ is a penalty weight. Once
Eq. (1) is solved, fi(x) can be obtained by deforming fp(x)
via vi(x).

2.A.2. Forward-backward splitting algorithm

Let us first consider the optimality condition of the prob-
lem. By taking the derivative of Eq. (1), we arrive at

∇fpP T
i [Pifp − c(gi)] − λ�vi = 0, (2)

where fp is the simplified representation of fp(x + vi(x)), P T
i

denotes the matrix transpose of Pi, and � is the Laplacian op-
erator. By introducing an auxiliary function si(x) and a term
∇fp[fp − si], we can get

∇fpP T
i [Pifp − c(gi)] − λ�vi − ∇fp[fp − si]

+∇fp[fp − si] = 0. (3)

Since we have the freedom to choose the function si(x), we
would like to combine the first and the third term, and the
second and the fourth term together, respectively, and split
Eq. (3) into

∇fpP T
i [Pifp − c(gi)] − ∇fp[fp − si] = 0, (4)

∇fp[fp − si] − λ�vi = 0. (5)

For Eq. (4), assuming ∇fp �= 0, we can get

si = fp − P T
i [Pifp − c(gi)]. (6)

Interestingly, Eq. (6) is a typical gradient descent update
step for a CBCT reconstruction problem, and meanwhile,
Eq. (5) is essentially the Euler-Lagrange equation of E1(vi)
= ||fp(x + vi(x)) − si ||22 + ||λ∇vi ||22, an energy function of
the DIR problem between the moving image fp(x) and the
static image si(x). Based on these observations, we propose
a FBS algorithm to solve Eq. (1), by alternatively performing
CBCT reconstruction as in Eq. (6) and DIR corresponding to
Eq. (5).

Specifically, FBS can be summarized as three steps (S1)–
(S3) shown in Table I. In the reconstruction step of (S1), we

TABLE I. FBS algorithm solving the problem in Eq. (1).

si = f
(k)
i − F (Pf

(k)
i − c(gi )), (S1)

vi = arg minvi
1
2 ||si − fp(x + vi (x))||22 + λ

2 ||∇vi ||22, (S2)

f
(k+1)
i (x) = fp(x + vi (x)), (S3)

have heuristically substituted P T
i by FDK (Ref. 47) operator

F, which has been found to improve the convergence of the
reconstruction problem.48, 49 Since si is obtained purely based
on reconstruction, it contains the correct anatomy location in-
formation decoded from the CBCT projections, although it
is contaminated by streak artifacts due to limited number of
projections and inaccurate HU values due to scattering. In the
subsequent steps S2 and S3, si serves as a guidance to deform
the prior image fp. Steps S1–S3 are iteratively performed,
gradually leading to a fusion of both correct anatomy loca-
tion/motion information from si and accurate intensity values
from fp.

2.A.3. Implementation

Before FBS, all 4D-CBCT projections are sorted into ten
respiratory phases by performing a projection-based sorting
via local principle component analysis (LPCA).50 In princi-
ple, 4D-CT image at an arbitrary phase can serve as the p-CT
fp. However, in order to minimize the motion blur in the p-CT,
0% (maximum inhale) or 50% (maximum exhale) phase of
the 4D-CT is recommended. An average 3D-CBCT is recon-
structed using the FDK algorithm and a mutual information-
based rigid registration51 is performed to align the p-CT
with the average 3D-CBCT image. In (S1), to realize the c
operator, linear intensity equalization is implemented as in
Ref. 45. To address the residual intensity inconsistency be-
tween CT and CBCT images, which is indeed an open
problem existing in all 2D-3D matching-based methods,27

Demons with simultaneous intensity correction (DISC)
(Ref. 52) is adopted for the DIR step in (S2) and (S3), in-
stead of a conventional intensity-based registration algorithm,
such as Demons algorithm.53 We have used a standard mul-
tiscale registration strategy in DISC.52 At each scale, the it-
eration stops when the MVF does not change anymore. The
workflow of FBS is shown in details in Table II.

To yield a satisfactory efficiency, key components of FBS,
including FDK reconstruction F,54 forward projection cal-
culation P,55, 56 and DISC,52 have been implemented under
CUDA programming environment on a GPU platform with
an NVIDIA GTX590 card.

2.B. Evaluation

2.B.1. Experimental data

The experiments include one moving phantom case and
three patient cases. For all cases, the resolution of a CBCT
projection is 512 × 384 with pixel size of 0.784 × 0.784 mm2.
In each case, 4D-CBCT projection images are acquired. The
respiratory signal is obtained by analyzing those projections
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TABLE II. FBS algorithm for hybrid 4D-CBCT reconstruction.

Rigid registration from p-CT (fP) to the average 3D-CBCT image.
Repeat for each phase i (i = 0, 1, 2, . . . , 9)

Down-sample fP and CBCT projections gi to the coarsest resolution;
Initialize the moving vector vi to zero;
Repeat for each resolution level

While the stop criteria is not met, do
1. Calculate forward projection Pif

(k)
i ;

2. Reconstruct the difference image from Pif
(k)
i − c(gi ) and

get si (S1);

3. Deform f
(k)
i toward si to obtain vi (S2 and S3);

Up-sample vi to a finer resolution level
Until the finest resolution is reached

Until all phases are done

using a LPCA method.50 Projections are then distributed to
each breathing phase according to the obtained signal.

In the phantom case, a small ball is attached to a stick,
which is then set on a QUASARTM respiratory motion plat-
form. The platform motion follows a standard sinusoidal
curve along the superior–inferior (SI) direction with an am-
plitude of ±7.5 mm. In order to mimic patient interfractional
breathing variations, we have set the breathing period to 4 s
for the 4D-CT simulation to obtain the p-CT and 6 s for the
1-min 4D-CBCT scan. The 4-s period is a typical value for
a patient with normal breathing. The 6-s breathing period is
selected to create a challenging yet realistic case to test our
algorithm. In fact, for this case with a long breathing period,
there are only 9–10 projections for each respiratory phase dur-
ing the 1-min scan time. The purpose of this phantom study
is to evaluate the accuracy of the target (moving ball) loca-
tion, as we have the predefined tumor trajectory along the SI
direction as the ground-truth.

Three patients (patients 1–3) were scanned with a 4D-
CBCT protocol under a full fan mode with a slow gantry ro-
tation in 5.8, 4.5, and 5.7 min over a 200◦ arc.15 Their breath-
ing periods are 2.87 ± 0.65, 2.78 ± 0.26, and 4.45 ± 0.83 s,

respectively. According to the breathing signal, we extract
121, 97, and 77 projections for each phase. These data sets
are denoted as 4-min data here after. Furthermore, we select
among the 4-min data 21, 20, and 13 projections per phase
for the three patients, corresponding to 0.97, 0.93, and 0.96
min of scanning time over the 200◦ arc, to simulate scans
of 1 min scan time (denoted as 1-min data). In these pa-
tient cases, we consider the 4D-CBCT images reconstructed
by the FDK algorithm using all the 4-min data as ground
truth.

2.B.2. Evaluations

For the moving ball phantom, besides the visual inspec-
tion, we determine its incremental shift in the SI direction
between two adjacent phases by template matching, where
the shift is indicated by the maximum cross correlation (CC)
value between the shifted 4D-CBCT image at one phase and
the image at the next phase. The ball location at each phase
is then determined and compared with the ground truth ball
trajectory set at the motion platform. Average and maximal
location differences will be calculated. A region of interest
(ROI) is also selected to calculate the intensity differences.

For patients’ cases, in addition to directly compare the
images visually, we have conducted quantitative evaluations
on both geometry and image quality accuracy. For geome-
try accuracy evaluation, the reference is the 4D-CBCT im-
ages reconstructed by the FDK algorithm using the 4-min
data, denoted as FDK-4D (4-min). Test images are (1) Hybrid-
4D: 4D-CBCT images reconstructed by the proposed hybrid
method using the 1-min data, (2) FDK-4D: 4D-CBCT images
reconstructed by the FDK algorithm using the 1-min data, (3)
3D-CBCT: CBCT image reconstructed by the FDK algorithm
using all projections, and (4) p-CT: the image used as the in-
put of the proposed hybrid method. A ROI containing the tu-
mor has been selected. We have used the derivative of the ROI
images to highlight the structure edges in this test in order to
minimize the impacts of intensity differences between the ref-
erence and some of the test images. We have used two metrics

FIG. 1. Results of the moving phantom experiment. Display window: [−1000, 250] HU. (Upper-left) the transverse and sagittal images of (a) 3D-CBCT image,
(b) FDK based 4D-CBCT image at 0% phase, (c) FDK based 4D-CBCT image at 50% phase, (d) p-CT image, (e) and (f) 4D-CBCT image at 0% and 50% phases
reconstructed by the proposed hybrid algorithm, respectively. Arrows indicate the mean HU values inside the ball. In each group the two rows are transverse
view and sagittal view, respectively. (g) Sagittal views at all phases of the results from the proposed hybrid algorithm. (h) Comparison of the motion trajectories
derived from the results of the proposed algorithm and from ground truth.

Medical Physics, Vol. 41, No. 7, July 2014



071903-5 Yan et al.: Hybrid 4D cone beam CT reconstruction 071903-5

FIG. 2. Intermediate results of the moving ball experiment (all ten phases): (a-1)–(a-3): the difference images F (Pf
(k)
i − c(gi )) after 1, 2, and 3 iterations.

Display window: [−500, 500] HU; (b-1)–(b-3): si image after 1, 2, and 3 iterations. Display window: [−1000, 250] HU. In each subfigure, the upper and the
bottom rows show the transverse and the sagittal view, respectively.

that are robust to the intensity discrepancies to a certain de-
gree. The first metric is the spatial shift corresponding to the
maximum CC (denoted by S). Specifically, we shift the test
image pixel by pixel along the SI direction until the maxi-
mum CC value between the test and the reference images is
achieved. The smaller this shift S is, the better the alignment
between the two images is, indicating a good reconstruction
with correct anatomical structure locations. The purpose of
using this quantity is to test the anatomical structure location
accuracy with respect to the reference. The second one is fea-
ture similarity index (FSIM),57, 58 a novel human-perception
based metric, with a higher value reflecting a better similarity
between the test and reference images. FSIM ranges in [0, 1],
with 1 being the best. To evaluate images from intensity ac-
curacy aspect, intensity differences and SNR are calculated.
In this study, a ROI has been selected, which is located at the
center of the tumor. p-CT is considered as the reference im-

age, which has the highest image quality. The test images are
(1) Hybrid-4D, (2) FDK-4D, (3) 3D-CBCT, and (4) FDK-4D
(4-min). Absolute image intensity difference averaged in the
ROI between each of the test images and the reference image
is calculated. For SNR calculation, no reference is needed.
SNR = μ/σ is used, where μ and σ represent the mean and
the standard deviation of the ROI image.

3. RESULTS

3.A. Phantom case

Figure 1 summarizes the moving phantom results. While
the average 3D-CBCT image [Fig. 1(a)] shows significant
blurring and the FDK-based 4D-CBCT images suffer from
streaking artifacts [Figs. 1(b) and 1(c)], the proposed hy-
brid method yields 4D-CBCT images with superior quality
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FIG. 3. Experimental results for Patient 1. Display window: [−1000, 250] HU. (Upper) Transverse, coronal, and sagittal views of (a) FDK-based 3D-CBCT
image, (b) FDK-based 4D-CBCT image at 50% phase using 4-min data, (c) FDK-based 4D-CBCT image at 50% phase using 1-min data, (d) p-CT image, (e)
4D-CBCT image at 50% phase reconstructed by the proposed algorithm using 1-min data. (f)–(h) Sagittal ROI 4D-CBCT images corresponding to (b), (c), and
(e), respectively. ROI is indicated by the box in (a). Arrows in transverse views highlight structures with relatively large motions. Horizontal dashed lines are
plotted to help comparing the anatomy locations.

[Figs. 1(e)–1(g)]. Compared with the p-CT, the average 3D-
CBCT and the FDK based 4D-CBCT images attain inten-
sity difference of ∼–270 and ∼185 HU; the images from
the proposed hybrid method yield a negligible HU difference,
since it is deformed from the p-CT. Satisfactory agreements
have been observed in terms of motion trajectory. Comparing
the reconstructed ball trajectory with ground truth, our result
achieves 0.204 mm average and 0.484 mm maximum differ-
ences [Fig. 1(h)].

To investigate the iteration process of our algorithm in de-
tail, we present the intermediate results of the moving phan-
tom at all ten phases in Fig. 2. From the difference images
F (Pf

(k)
i − c(gi)) for k = 1, 2, 3 shown in Fig. 2(a-1)–(a-3),

we can see that the difference decreases quickly. After 3 iter-
ations, the resulting f

(3)
i has been deformed to a status such

that its projections match well with the measurements c(gi),
indicated by the small difference at this stage. From the cor-
responding siimages shown in Fig. 2(b-1)–(b-3), we observe
that these images always give the correct anatomical informa-
tion derived from the projection measurements. When regis-
tering f

(k)
i with them in the DIR step, the correct MVF can

be generated. It is this fact that leads to the successful estima-
tions of the MVF and hence the reconstruction of 4D-CBCT
images.

3.B. Patients case

3.B.1. Visual inspections

The results of the patient 1 are shown in Figs. 3 and 4.
From Fig. 3, we have the following observations: (1) FDK
based average 3D-CBCT image [Fig. 3(a)] shows minimal

noise but blurred anatomies; (2) FDK based 4D-CBCT im-
ages from the 4-min data [Fig. 3(b)] can greatly reduce mo-
tion artifacts, but the image quality is inferior to the aver-
age 3D-CBCT because of amplified streaks; (3) FDK based
4D-CBCT images from the 1-min data [Fig. 3(c)] shows am-
plified noise and severe undersampling streaking artifacts;
(4) Truncation exists in all the FDK-based images [Figs. 3(a)–
3(c)], which will lead to inaccurate dose calculations in radi-
ation therapy due to the missing tissue information outside
the FOV; (5) With the 1-min projection data and a p-CT im-
age [Fig. 3(d)], the proposed method yields 4D-CBCT images
with much better quality for tumor delineation, i.e., accurate
anatomy location and accurate HU value [Fig. 3(e)]. The im-
ages are also free of truncation artifacts, facilitating dose cal-
culations. Detailed comparisons of image quality inside ROI
are also shown in Figs. 3(f)–3(h).

Figure 4 shows intermediate results during the 4D-CBCT
reconstruction for the 0% phase by using the 4D-CT im-
age of 0% phase [Fig. 3(d)] as p-CT. Similar observations
to those in Fig. 2 are made. From the difference images
F (Pf

(k)
i − c(gi)) shown in Fig. 4(a), it can be seen that the

contents of f
(k)
i image are gradually deformed to the cor-

rect locations during the iterations, and the mismatch between
Pf

(k)
i and the measured c(gi) is reduced gradually. Figure 4(b)

uses ||F (Pf
(k)
i − c(gi))||2 calculated after 1, 2, 3, 10, 50, 100,

and 400 iterations to quantify this fact. It can be seen that the
first several iterations dramatically reduce the mismatch, and
this decrease becomes gradual in later iterations. Note that
this plot only illustrates the gradual reductions of the mis-
matches between the reconstructed results and the measure-
ments, rather than demonstrating the algorithm convergence.
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FIG. 4. Intermediate results during reconstructing the 0% phase of 4D-CBCT using the 0% phase of p-CT (Patient 1). (a) The difference images
F (Pf

(k)
i − c(gi )) after 1, 2, 3, and 50 iterations. Display window: [−700, 700] HU. (b) ‖F (Pf

(k)
i − c(gi ))‖2 as a function of iteration steps, with the x-axis in a

log scale. (c) The si images after 1, 2, 3, and 50 iterations. (d) Zoomed-in ROIs to compare the si image after 50 iterations and the FDK-based 4D-CBCT (4-min
scan). ROIs are indicated by the box. The three columns are FDK image, zoomed-in view of si, and the zoomed-in view of FDK image. In subfigures (a), (c),
and (d), the upper and the bottom rows show the transverse and the sagittal view, respectively.

From Fig. 4(c), we can see that the quality of si images is
also improved during the iteration. For example, the streaking
artifacts and the evident boundary around the original FOV
are eliminated greatly after 50 iterations. We have also shown
in Fig. 4(d) a zoomed-in ROI to demonstrate that si provides
correct anatomy information compared to that in the ground-
truth, despite the intensity variations. These facts help guiding
the deformations of the p-CT toward a correct location.

We have observed the same performance of our algorithm
in patients 2 and 3 shown in Figs. 5 and 6, respectively. In
general, the 1-min FDK reconstructed images are not suitable

for the tumor delineation due to the obvious streaks, espe-
cially for patient 3 where only 13 projections are available for
each phase [Fig. 6(g)] because of the long breathing period.
In contrast, the proposed hybrid method is able to reconstruct
images with better quality for both cases.

3.B.2. Quantitative evaluations

Figure 7 summarizes the quantitative evaluation results re-
garding the geometry accuracy for all the three patient cases.
We have the following observations: (1) Hybrid-4D method

FIG. 5. Experimental results of Patient 2. Subfigure arrangement is the same as that in Fig. 3 except that the upper part shows 0% phase.
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FIG. 6. Experimental results of Patient 3. Subfigure arrangement is the same as that in Fig. 3.

has the smallest shift S and the highest FSIM scores in almost
all cases, indicating the high quality of our reconstruction re-
sults. This is also consistent with the visual inspections per-
formed above. (2) FDK-based 4D-CBCT using the 1-min scan
data also has small S values for all cases. It indicates that these
images have correct anatomy locations, although the images
are full of streaking artifacts; however, for patients 2 and 3, the
FSIM scores are lower than those of our results, implying that
visualization-based tasks, e.g., soft-tissue/tumor delineations
are significantly affected by the artifacts. (3) 3D-CBCT image

generally has large S values and low FSIM scores. There are
a few cases where the 3D-CBCT has slightly better numbers
in these two metrics, e.g., lower S values for patient 2 at 40%
and 50% phases and patient 3 at 50% phase, and higher FSIM
scores for patient 2 at 70% phase and patient 3 at 30% and
40% phases. Since there is only one static average 3D-CBCT
for a patient, when the structure location in it happens to be
close to that in one breathing phase, the corresponding S value
may be very low. For the FSIM scores, not only does it com-
pare structures, it also considers intensity difference. Because

FIG. 7. Comparisons of S (left) and FSIM (right) of different methods. The results of patients 1–3 are shown in (a)–(c), respectively. For S value, absence of a
bar corresponds to zero.
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FIG. 8. Comparisons of different methods in terms of (a) intensity difference and (b) signal-noise-ratio based on the results of patient 2.

our reference images are reconstructed by the FDK algorithm,
the FSIM score is actually biased toward those images recon-
structed by this algorithm due to the similar HU values. It
is this fact that leads to higher FSIM scores to the average
3D-CBCT image sometimes. (4) p-CT always has the largest
S value and the lowest FSIM scores. This is due to both mis-
matched structural information and different image intensities
between the p-CT and the reference images. It implies that
only using rigid registration cannot guarantee accurate soft-
tissue alignment. Yet, using p-CT as an input, the proposed
method is able to generate high quality outputs.

Quantitative evaluations regarding the intensity accuracy
have also been conducted. An example result is shown in
Fig. 8 for patient 2 and similar results have been observed
in other patient cases. Our Hybrid-4D method has the small-
est intensity difference (from 14.76 to 18.21 HU for differ-
ent phases, 16.70 HU on average) and the highest SNR (from
60.94 to 83.35 for different phases, 69.55 on average) in all
phases. In contrast, all three FDK based reconstructions have
large intensity differences [254.96, 288.68, and 286.43 HU
on average for FDK-4D, 3D-CBCT, and FDK-4D (4-min)].
As for SNR, FDK-4D using the 1-min scan data has the low-
est ones (5.46 on average), due to the streaking artifacts and
amplified noise with limited data. For FDK-4D (4-min), SNR
is improved (13.58 on average) yet still lower than the regular
3D-CBCT (30.65 on average). The underlying reason for such
observations is that using the Hybrid-4D method, high im-
age quality is inherited from the p-CT, while FDK-based re-
construction results have inferior quality due to scatter (caus-
ing large intensity differences) and the limited data induced
streaking artifacts and noise (causing low SNRs).

3.B.3. Impacts of scanning time

The above experiments were focused on 1-min scan time.
We would also like to understand how the scan time impacts

on the results in our method. As such, we have extracted mul-
tiple subsets of projection data of patient 1 to simulate cases
with different scan time. To evaluate the results, we consider
the one reconstructed by the hybrid method using all the 4-
min scan data as ground truth. S and FSIM are calculated with
respect to it. Figure 9 shows the results. Along the x-axis,
the scanning time is increased from 0.39 min (∼7 projections
per phase) to 2.90 min (∼61 projections per phase). Verti-
cal black line indicates the case with 1-min scan time studied
previously. It is interesting to see that neither metric is sig-
nificantly affected by the scan time over a large range, until
the time is reduced to ∼0.53 min (∼9 projections per phase).
The existence of a margin from 1 min scan time to ∼0.53 min
scan time indicates the robustness of our algorithm against
the projection number reduction. The range of this margin is
certainly dependent on the patient breathing period. For those
patients with a long breathing period, e.g., patient 3, there are
less number of projections per phase for a given scan time.
It is therefore harder to reconstruct images for them, and the
margin is expected to be smaller.

3.B.4. Impacts of deformation size

Another aspect of the algorithm robustness is the depen-
dence on deformation size, since it is very challenging to ad-
dress cases with large deformations. To test our algorithm in
this regard, we have also reconstructed all the ten phases of
4D-CBCT for patients 1–3 using different p-CTs (0% or 50%
phase of 4D-CT). No observable difference is found in the re-
sults compared with those shown in Figs. 3–6. As an example,
Fig. 10 shows the results of patient 1, when reconstructing the
50% phase of 4D-CBCT using the 0% phase of p-CT. Due to
the large deformation (∼17 mm of diaphragm motion), this
case is more challenging than that shown in Fig. 4. In such a
case, FBS algorithm still performs very robust. As indicated

FIG. 9. S and FSIM as the functions of scan time (patient 1, phase 0%). The vertical black lines indicate the scanning time in Fig. 3 (0.97 min).
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FIG. 10. Intermediate results during reconstructing the 50% phase of 4D-CBCT using the 0% phase of p-CT (Patient 1). Figure layout is the same as in
Fig. 4.

by Figs. 10(a) and 10(b), f (k)
i image is deformed to the correct

locations, and the mismatch between Pf
(k)
i and the measure-

ment is reduced gradually. Figure 10(c) shows that through
two iterations, diaphragm in si image has already been seen
in the correct location, and small structures are gradually re-
fined in the following iterations. This guides the deformable
registration to generate a good final image.

The maximum motion amplitude in our patient cases
is ∼23 mm at diaphragm. While good results have been
achieved using p-CT at one phase (e.g., 0% phase) to recon-
struct the 4D-CBCT at another phase that is far away (e.g.,
50% phase), it does not exclude the possibility that registra-
tion may fail when the respiration deformation is extremely
large. We currently do not have patient data with larger de-
formations to test this. Yet, this concern is associated with all
registration-based algorithms. To prevent such a problem, a
feasible solution is to use the p-CT at a certain phase to re-
construct the 4DCBCT at the same or close phase, to ensure
that the deformation is within a reasonable range.

3.C. Efficiency

The entire reconstruction process has been implemented
on a GPU platform with a NVIDIA GTX590 card. Two res-
olution levels are used in our studies in all cases. The cor-
responding reconstruction time and the iteration number for
each multiresolution level are listed in Table III. It can be
seen that the computational time depends on the complexity
of the cases tested. Currently, for the typical clinical patient

TABLE III. Iteration number and computational time per phase.

Test cases Moving phantom Patient 1 Patient 2 Patient 3

Iterations Level 0 5 77 72 78
Level 1 3 53 57 53

Time (s) 2.16 83.90 81.38 67.33

cases shown here, the runtime is about 1–1.5 min for each
phase.

4. DISCUSSIONS AND CONCLUSION

In this paper, we have developed a 4D-CBCT reconstruc-
tion method to facilitate fast and accurate 4D-CBCT imag-
ing for lung and abdomen radiotherapy. The method has been
thoroughly evaluated in terms of efficacy and efficiency in
both phantom and real patients’ cases. By using this method,
we have obtained 4D-CBCT images with correct motion
information and good image quality inherited from p-CT,
namely, high SNR, correct intensities, and free of truncation
artifacts. We have also investigated algorithm robustness with
respect to scan time and deformation size. High computa-
tional efficiency (1–1.5 min per phase) has been observed due
to GPU implementations.

Despite the success in those cases studied here, we would
like to point out that there is no theoretical proof regarding the
convergence of the algorithm. In addition, the local-minima
issue associated with this and all other 2D-3D registration-
based reconstruction method may lead to geometrical inaccu-
racy in the results to a certain extent. There have been active
researches to solve this problem in deformable image registra-
tion context, such as using multiple resolution levels. These
methods may be employed here to maximally mitigate the
problem. Using p-CT at the same phase to the 4D-CBCT to
be reconstructed will also reduce the deformation amplitude
and therefore help preventing this problem.

We would like to further comment on the reconstruc-
tion image quality. For the moving phantom case, the results
show a certain amount of blurring at the superior and infe-
rior boundaries [Fig. 1(g)]. This can be ascribed to the blur-
ring in the p-CT at the same area [Fig. 1(d)]. Because of the
smoothness of the MVF, this blurring originated in the p-CT
will be transfer to the resulting images. Practical solution to
this problem will be using high quality p-CT images, e.g.,
those obtained with fast CT gantry rotations. Another interest-
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ing observation is that, even though the hybrid method yields
the best “similarity” with respect to the reference images, the
FSIM scores are still relatively low [Fig. 7]. This is because
FSIM method considers both structural and intensity similar-
ity between the test and the reference images. Since our refer-
ence images are reconstructed by FDK algorithm, which have
different HU values from the p-CT, the FSIM score underes-
timated the image quality to a certain extent.

While high computational efficiency has been achieved in
this work, further efficiency boost is still necessary for routine
clinical applications. For example, it may be possible to use
less strict stopping criteria to terminate the iteration early, as it
is observed in Fig. 4(b) that the later iterations only improve
the deformation marginally. Yet, this will inevitably impact
on the accuracy of deformation. Since clinically acceptable
tolerance of deformation accuracy definitely depends on spe-
cific applications, the termination stopping criteria will tie to
the applications as well, which will be investigated in our fu-
ture studies. Another direction to accelerate the computations
is to take advantages of the advanced hardware, such as multi-
GPU implementation.59
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