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Abstract

Desorption electrospray ionization mass spectrometry (DESI-MS) provides a highly sensitive 

imaging technique for differentiating normal and cancerous tissue at the molecular level. This can 

be very useful, especially under intra-operative conditions where the surgeon has to make crucial 

decision about the tumor boundary. In such situations, the time it takes for imaging and data 

analysis becomes a critical factor. Therefore, in this work we utilize compressive sensing to 

perform the sparse sampling of the tissue, which halves the scanning time. Furthermore, sparse 

feature selection is performed, which not only reduces the dimension of data from about 104 to 

less than 50, and thus significantly shortens the analysis time. This procedure also identifies 

biochemically important molecules for pathological analysis. The methods are validated on brain 

and breast tumor data sets.

1. DESCRIPTION OF PURPOSE

The development of the technique of desorption electrospray ionization mass spectrometry 

(DESI-MS) has provided a highly sensitive technique for molecular imaging in the ambient 

environment with short tissue sample preparation time. This enables greatly improved 

identification and characterization of the given tissue. In particular, for the critical decisions 

necessary during intra-operative tumor resection, it is crucial to understand the boundary and 

infiltration of the tumor with its surrounding tissue. In such cases, DESI-MS can provides a 

superior discrimination for the assessment of tumor cell concentration, tumor type, and 

grade.1–3

The goal is to infer the tissue type and cancer grade with MS scan in the intra-operative 

environment. The imaging and data analysis time are still critical factors for it to be 

ultimately used in the intra-operative situation so that such data acquisition and processing 

time is critical. Moreover, the data acquired from the DESI-MS imaging is huge: roughly 

104 numbers are obtained at a single voxel. This ”Big Data” problem constitutes a great 

opportunity for data analysis and classification, as well as a challenge for handling such data 

in a near real-time fashion. Hence the necessity to select or extract the important information 

from such big data sets, and perform the computation in a sparse manner. In addition to 

reducing the computational load, identifying a sparse sub-set in the rich spectrum of DESI-

MS would naturally link with exploring the biochemical significance of the MS data. 

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2014 October 07.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2014 March 12; 9036: 90360D–. doi:10.1117/12.2043273.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Indeed, among the 104 values at a single voxel, only less than 102 render themselves as the 

key chemical substances that differentiate the normal and cancerous tissue. Hence, 

determining the sparse spectral features would provide indications on which mass/charge 

ratios (m/z values) are significantly different among various tissues.

2. METHOD

In this work, we propose to address the needs described in the Introduction by employing 

the compressive sensing (CS) framework. CS and sparse signal representation have been 

actively studied in the past few years.4, 5 They provide an efficient methodology for the 

purpose of combining data capacity and efficiency for solving problems in big data. In 

sparse representation theory, it is observed that the many signals are often sparse when 

represented in a certain basis or dictionary. Such an idea of sparse representation and the 

related research have now drawn much attention in image restoration,6 segmentation,7 face 

detection,8 etc. In this work, we propose to use the CS and sparse representation for the 

reconstruction of DESI-MS spectra and feature selection.

2.1 DESI-MS image reconstruction

When acquiring a DESI-MS image for a tissue sample, the sample is prepared and scanned 

on an approximately 25 × 25 grid. For each point on the grid, a mass spectrum is acquired. 

As a result, a DESI-MS image may be described as a function f : Ω ⊂ ℝ2 → ℝD where D is 

the number of samples of the m/z values with a typical value of D ≈ 104. For aiding 

interventional tumor infiltration detection and decision purposes, it is of great advantage to 

reduce the scanning time of DESI-MS imaging. To that end, we perform sparse scanning 

and then reconstruct the spectra on the entire domain using the CS technique. Specifically, 

only a random subset of Ω is scanned and the corresponding spectra are obtained. The entire 

DESI-MS image is then found via a certain reconstruction technique, which is essentially an 

l1 optimization process as formulated below.

Mathematically, M random samples are drawn from {1, 2, …, Q} ≕ ℚ where Q = 252 in the 

current case. Denote the index set of the M random samples as ≔ {m1, m2, …, mM} ⊂ ℚ 

and their corresponding positions in Ω as ℙ ≔ {pi ∈ Ω; i = 1, 2, …, M}. Then, the DESI-MS 

is only performed on ℙ instead of on the entire Ω. Based on the values f(pi) ∈ ℝD; i = 1, 2, 

…, M, we can reconstruct the f(Ω) via l1-norm minimization. Specifically, set 

 with , i = 1, …, D. We wish to find sparse 

coefficients yi with respect to the basis Ψ ∈ ℝQ×Q:

(1)

where A ∈ ℝM×Q is constructed from the Q × Q identity matrix by removing all its i-th rows 

where i ∉  That is, assuming mi < mj; ∀i < j, A(i, j) = 1 if j = mi and A(i, j) = 0 otherwise. 

At convergence, the reconstructed image is computed as f̂i = Ψyi. The optimization of 

Equation (1) is repeated for all the i = 1, 2, …, D and the entire spectra on Ω is 

reconstructed.
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2.2 Spectrum feature extraction

The DESI-MS image has a high dimensional (D ≈ 104) range. Such high dimensional data 

pose computational difficulties in tissue characterization and classification. As a result, 

extracting fewer “important” features from the raw data will reduce the data analysis load, 

facilitating the intra-operative usefulness of the method. Furthermore, certain molecules are 

characteristic for cancerous tissue, which need to be extracted from the entire spectrum. To 

address both needs, a sparse feature selection is performed. Mathematically, among N 

spectra gi ∈ ℝD; i = 1, 2, …, N, some are sampled from the cancerous tissue and the others 

are from normal tissue. The tissue types are recorded as a class variable l = {l1, l2, …, lN} ∈ 

{−1, 1}N where li = −1 indicates that gi is from normal tissue and li = 1 for gi being from 

cancerous region. Then, we solve the optimization problem:

(2)

In the equation a and b defines the hyperplane separating the two groups and λ > 0 is a 

regularizing factor.9–11 Being convex, the above problem can be solved efficiently with 

global optimality. The resulting a is a sparse vector in which the non-zero locations indicate 

significant contributions of the spectrum at those m/z values. These selected m/z values and 

their corresponding weights (ai values) should provide key insights for chemists and 

biologists who can further investigate the presence (or lack thereof) of specific chemical 

substances.

3. EXPERIMENTS AND RESULTS

The proposed methods have been validated on both brain and breast tumor samples. The 

brain tissue samples were from grade IV astrocytomas obtained from the Brigham and 

Women's Hospital (BWH) Neurooncology Program Biorepository collection under an IRB 

approved protocol.1 The DESI-MS experiments were performed in both the negative and 

positive ion mode with a 5kV spray voltage, 175 psi N2 pressure and 1.5 µL/min ow rate. 

The solvent system has methanol:water=1:1.

3.1 DESI-MS image reconstruction

In this experiment, we reconstruct the brain DESI-MS image using only half of the sampling 

points (pixels) in the original images, that is, M = Q/2. The Ψ in Equation (1) is chosen as 

the inverse discrete cosine transform matrix. In total, 10 data sets are tested and one is 

shown in Figure 1. The top figure of each column is the original DESI-MS image. After 

randomly down-sampling by a half, the figures are shown in the middle row. The 

reconstructed images are in the bottom row. It can be observed that the bottom row is almost 

identical to the top row.

Applying the method to a total of 9 breast DESI-MS data sets, the reconstructed images of 

one data set at some key m/z values are shown in Figure 2.
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3.2 Feature extraction and validation on brain DESI-MS data

Among the 104 mass/charge ratios, only a few of them are significant for differentiating 

cancerous and non-cancerous tissues. In order to extract these m/z values, N = 1000 spectra 

are used for the feature selection among which 500 are from the high tumor concentration 

region, and the other 500 are from the low tumor concentration region, each determined by 

histopathological analysis. The λ in Equation (2) is set to 0.01 in all the tests. The extracted 

feature m/z values are shown in Figure 3. It can be seen that only very few (less than 40) 

m/z values are identified as “important” for tumor detection purpose among approximately 

104 m/z values. Moreover, the computed m/z values and their weights in the classification 

match quite closely with those verified by chemists and pathologists.1 This demonstrates the 

capability of identifying the chemically significant m/z values employing the proposed 

method.

3.3 Feature extraction and testing on breast DESI-MS data

Feature selection has also been applied to breast tumor cases. N = 800 spectra (400 in the 

tumor region and 400 in the non-tumor region) are used, which give the selected m/z values 

and their weights for the classification as shown in Figure 4. For breast tumors, no a priori 

m/z locations have been identified as with the brain case. As a result, the computed results 

offer a useful indication of the key substances contrasting the normal and cancerous tissues. 

In fact, the validation of the biochemical significance of the m/z values is one of our key 

ongoing projects. Furthermore, it is noted that the m/z values shown in Figure 2 for 

reconstruction are all computed using the preceding selection method. As a result, for the 

ultimate purpose of online cancer margin delineation, one need only perform the 

reconstruction at these “important” m/z values. This effectively reduces the image 

reconstruction task from the entire spectrum of dimension 104 to 40, and significantly 

increases the imaging and data analysis speed to reduce the critical time in intra-operative 

tumor resection procedures.

4. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this note, we utilized the CS technique for the reconstruction and feature selection in mass 

spectrometry imaging. Not only it is able to reduce the imaging time, but also a small 

number of mass/charge ratios can be identified for the purpose of differentiating between 

cancerous and non-cancerous tissue. Such techniques will assist in creating a fast and 

accurate computation framework to be employed in intra-operative DESI-MS imaging for 

online tumor delineation.

Future research directions include finding the optimal basis/dictionary for reconstruction so 

that the DESI-MS spectrum is represented as sparsely as possible. Another topic will be to 

further validate the m/z values identified using the proposed method with chemists. As a 

result, we will provide a better biochemical interpretation of the data for the specific clinical 

purpose of interest in this work.

The work has not been submitted for publication or presentation elsewhere.
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Figure 1. 
Reconstruction of brain DESI-MS at m/z values from 281.2 to 890.4. Top row: original 

DESI-MS at the m/z value above; Middle row: random sampled positions; Bottom row: 

reconstructed images are very close to the original ones at the top.
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Figure 2. 
Reconstruction of breast DESI-MS at m/z values from 279.2 to 820.7.
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Figure 3. 
(a) The computed vector a: only very few components are non-zero. (b) Feature m/z values 

and their weights (contributions for differentiating the two classes) computed using the 

proposed method and those in,1 in which the chemical significance of the m/z values have 

been verified by chemists and pathologists.
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Figure 4. 
(a) The computed vector a: only few components are non-zero. (b) Feature m/z values and 

computed weights.
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