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SUMMARY

The pathogenicity and clinical pertinence of diffusely adhering
Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in
urinary tract infections (UTIs) and pregnancy complications are
well established. In contrast, the implication of intestinal Afa/Dr
DAEC in diarrhea is still under debate. These strains are age de-
pendently involved in diarrhea in children, are apparently not
involved in diarrhea in adults, and can also be asymptomatic in-
testinal microbiota strains in children and adult. This comprehen-
sive review analyzes the epidemiology and diagnosis and high-
lights recent progress which has improved the understanding of
Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr
DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat
toxin, and pks island products, in the development of specific
mechanisms of pathogenicity. In intestinal epithelial polarized
cells, the Afa/Dr adhesins trigger cell membrane receptor cluster-
ing and activation of the linked cell signaling pathways, promote
structural and functional cell lesions and injuries in intestinal bar-
rier, induce proinflammatory responses, create angiogenesis, in-
stigate epithelial-mesenchymal transition-like events, and lead to
pks-dependent DNA damage. UTI-associated Afa/Dr DAEC
strains, following adhesin-membrane receptor cell interactions
and activation of associated lipid raft-dependent cell signaling
pathways, internalize in a microtubule-dependent manner within
urinary tract epithelial cells, develop a particular intracellular life-
style, and trigger a toxin-dependent cell detachment. In response
to Afa/Dr DAEC infection, the host epithelial cells generate anti-
bacterial defense responses. Finally, I discuss a hypothetical role of
intestinal Afa/Dr DAEC strains that can act as “silent pathogens”
with the capacity to emerge as “pathobionts” for the development
of inflammatory bowel disease and intestinal carcinogenesis.

INTRODUCTION

Human Escherichia coli strains are classified as commensal mi-
crobiota E. coli, enterovirulent E. coli, and extraintestinal

pathogenic E. coli (ExPEC) on the basis of their genetic features
and clinical outcomes (1). Their serotypes are based on virulence
factors present in small or large virulence-associated plasmids or
chromosomal pathogenicity islands (PAIs) (2) and the molecular
and cellular mechanisms by which the intestinal disease is thought
to be provoked. For the pathogenic enteric E. coli strains, six
pathotypes, i.e., enterotoxigenic E. coli (ETEC), enteropathogenic
E. coli (EPEC), enterohemorrhagic E. coli (EHEC), enteroaggre-
gative E. coli (EAEC), enteroinvasive E. coli (EIEC), and diffusely

adhering E. coli (DAEC), were first defined by James P. Nataro and
James B. Kaper (3). Recently (4, 5), a seventh group of enteric E.
coli strains has been defined, the Crohn’s disease-associated ad-
herent-invasive E. coli pathotype (AIEC) (6), which have particu-
lar mechanisms of pathogenesis (7). It is noticeable that, distinct
from enterovirulent E. coli in expressing particular virulence de-
terminants and developing pathogenesis in extraintestinal tissues,
ExPEC strains include uropathogenic E. coli (UPEC) (8), sepsis-
associated E. coli (SEPEC) (9), and neonatal meningitis-associated
E. coli (NEMEC) (10).

The diffusely adherent E. coli (DAEC) class of pathogenic E. coli
(1, 3) was previously subdivided into two subclasses: DAEC ex-
pressing Afa/Dr adhesins (Afa/Dr DAEC) and DAEC not express-
ing Afa/Dr adhesins (11). The subclass of DAEC that does not
express Afa/Dr adhesins has recently evolved. Indeed, the main
member of this subclass, i.e., the diarrhea-associated DAEC ex-
pressing the aidA gene, encoding an adhesin involved in diffuse
adherence (AIDA-I) (12–15), belongs to the newly defined second
class of EPEC designated “atypical EPEC” (aEPEC) since it is eae
positive. The EPEC class of enterovirulent E. coli has been recently
subdivided into two subclasses: typical EPEC (tEPEC) and atypi-
cal EPEC (aEPEC) (4). The aEPEC subclass (16) comprises eae-
positive strains that express a wide range of genes, such as aida-1,
fimA, ecpA, csgA, elfA, hcpA, and lda, which code for known adhe-
sive factors triggering localized adherence-like (LAL), DA, or ag-
gregative (AA) patterns of adhesion, and that do not express-bun-
dle forming pili (BFP), a type IV pilus encoded by the EPEC
adherence factor (EAF) plasmid (pEAF), which allows intercon-
nection between bacteria within the dense microcolonies that
form the localized adhesion (LA) pattern of tEPEC.

Afa/Dr DAEC strains are associated with urinary tract infec-
tions (UTIs), pregnancy complications, and diarrhea in children
of ages 18 months to 5 years, but they can also be asymptomatic
intestinal microbiota strains in children and adults (11, 17). Five
phylogenetic groups, including the main phylogenetic groups A,
B1, B2, and D, have been identified in Gram-negative species us-
ing multilocus enzyme electrophoresis and sequence typing meth-
ods. Afa/Dr DAEC strains belong to the phylogenetic B2 group
(18, 19). In commensal E. coli from humans (in Europe, the
United States, Australia, and Japan), B2 group E. coli strains are
predominant (20), and it is noteworthy that these E. coli strains
displayed a high capacity to colonize epithelia (21–23). The name
“Afa/Dr DAEC” was proposed in 2005 to define a family of human
UTI- or diarrhea-associated clinical E. coli isolates harboring ad-
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hesins encoded by the afa (24–28), dra (29, 30), and daa (31, 32)
operons, having a similar genetic organization and displaying a
similar receptor specificity for human decay-accelerating factor
(hDAF) and members of the family of human carcinoembryonic
antigen cell adhesion molecules (hCEACAMs) (11). It is impor-
tant to note that the name “Dr family” has been used by Bogdan
Nowicki and coworkers as dictated by the receptor specificity of
Afa, Dr, and F1845 adhesins for the Dr blood group antigen (33,
34). In this review, I summarize recent advances in our under-
standing of Afa/Dr DAEC pathogenesis in the urinary and intes-
tinal tracts by analyzing how the Afa/Dr DAEC virulence factors
contribute to cause disease in humans.

EPIDEMIOLOGY

Detection

In order to detect E. coli bearing Afa/Dr adhesins, phenotype and
genotype methods have been developed. Scaletsky et al. (35) and
Nataro et al. (36), investigating the adhesion of diarrheagenic E.
coli onto cultured, nonintestinal, undifferentiated epithelial
Hep-2 and HeLa cells, were the first to observe three specific pat-
terns of adhesion: diffuse adherence (DA), resulting in adherent
bacteria being randomly distributed on all the whole cell surface;
localized adherence (LA), where adherent bacteria form organized
microcolonies randomly distributed on the cell surface; and ag-
gregative adherence (AA), in which adherent bacteria form typical
“stacked-brick” microcolonies randomly distributed on the cell
surface. However, this cell adhesion assay is not suitable for the
detection of enteric Afa/Dr DAEC, since several aEPEC strains
also developed a DA pattern of adhesion (16). Moreover, DA ad-
hesion onto Hep-2 or HeLa cells has been also observed for UPEC
strains expressing Afa-I (37), Afa-III (28), and Dr (38).

Goluszko et al. (39) have proposed a HeLa cell receptor assay
designated the diffuse clustering assay (DCA), which associates
the cell diffuse adhesion of Afa/Dr DAEC with the property of
Afa/Dr adhesins to promote hDAF receptor clustering around
adhering bacteria (40–42). However, the DCA did not detect all
the E. coli strains bearing Afa/Dr adhesins, considering that AfaE-
VII and AfaE-VIII adhesins did not recognize hDAF (26). This is a
particular drawback for the detection of human AfaE-VIII adhe-
sin-positive ExPEC strains (43–45). Moreover, the DCA could
give overestimated results since several aEPEC strains have been
found to be daaC positive (13, 46–53).

To detect daaC, daaE, afaB, and afaC sequences, probes and
PCR primers have been developed (32, 45, 54, 55). DNA probes
included the following: drb (56), a 260-bp PstI fragment of the
pIL14 plasmid (afa-1 operon) coding for the AfaE-I adhesin of
uropathogenic Afa/Dr DAEC KS52 strain (25); daaC, a 300-bp
PstI fragment of the plasmid pSSS1 daa operon (57); a 390-bp I
fragment of the pSLM852 daa operon (58); a DNA fragment ho-
mologous to daaE (59); and a probe designed from the M030
sequence found to be specifically present in wild-type, diarrhea-
associated Afa/Dr DAEC strain C1845 (60, 61).

PCR approaches have been developed, including primers de-
signed to amplify a 750-bp fragment of the afaB gene (62) and the
390-bp PstI fragment of the pSLM852 daa operon (63). Others
PCR assays have been developed to detect all the Afa/Dr adhesins,
including the afa1 and afa2 primers designed on the partial se-
quence of the afa-1 gene operon overlapping the afaB and afaC
genes (54), primers for afaE-I, afaE-II, afaE-III/draE, and afaEV

(64); and primers afa-f and afa-r, which flanked a 672-bp DNA
segment internal to the afaC gene of the afa-3, afa-7, and afa-8
operons. Yamamoto et al. (65) established a multiplex PCR to
detect UPEC-associated genes, including afa genes. Multiplex
PCRs to detect UPEC-associated genes have been described, in-
cluding afa1 (65) or genes expressed by diarrheagenic E. coli, in-
cluding daaD (66–68).

The specificity of the daaC probe for the characterization of
diarrheagenic Afa/Dr DAEC has recently been questioned. Smith
et al. (69) found that 80 of the 86 EAEC strains positive for the
AEAC probe (1-kb EcoRI-PstI fragment from pCVD432) (70)
also hybridized with the probe derived from the daaC gene.
Gomes et al. (71) reported that 5 of the 197 daaC-positive E. coli
isolates hybridized with the AAEC probe (eaeA). Recently, Snel-
ling et al. (72) have revealed that the daaC probe cross-reacts with
strains belonging to EAEC. This is due to 84% identity between
the daaC locus and the EAEC fimbria II cluster gene aafC at the
nucleotide level (73). Moreover, Montiero et al. (74), in a study
investigating the presence of dispersin in pathogenic and non-
pathogenic intestinal E. coli isolates, observed the presence of
agg3C-positive E. coli strains despite the absence of expression of
the pilin-encoding gene agg3A and have suggested that the agg3C
primers may have cross-reacted with an Afa/Dr usher-encoding
gene(s). Indeed, the biogenesis of the well-characterized EAEC
adhesins AAF-I, -II, and -III and Hda (75–78) involved a periplas-
mic chaperone, an outer membrane usher protein, a major adhe-
sin subunit, and a capping subunit (79–81). Afa/Dr DAEC and
EAEC strains are cause of diarrheal illness in young children. The
cross-reaction makes it difficult to establish a clear identification
of Afa/Dr DAEC in relation to diarrhea, notably in regions of the
world in which EAEC and Afa/Dr DAEC strains are known to be
responsible for acute diarrhea in children. It is obvious that new
PCR probes that are more specific for diarrhea-associated Afa/Dr
DAEC are called for future epidemiological studies. Blanc-Potard
et al. (60) have identified M030, S109, and S111 sequences in the
diarrhea-associated, wild-type strain C1845. These sequences are
highly widespread (77 to 80%) among Afa/Dr strains, but have
low prevalence (12 to 23%) in non-Afa/Dr strains. Additionally,
analysis shows that only the M030, S109, S111, and S164 se-
quences are present in diarrhea-associated Afa/Dr DAEC strains
and absent from non-Afa/Dr ECOR strains and diarrhea-associ-
ated clinical isolates (60). Moreover, M030 positivity has been
found in human enteric DAEC isolates belonging to phylogroups
A, B2, and D (61). In contrast, M030 positivity has been found to
be absent in ETEC, EAEC, EPEC, and EHEC isolates (61). Epide-
miological studies associating probes designed from these se-
quences and associating probes specific for EAEC remain to be
conducted in areas such as Latin America, where Afa/Dr DAEC
and EAEC have been found to be prevalent in children with acute
and persistent diarrhea illness (see below).

Urinary Tract Infections

The role of UPEC expressing Afa/Dr adhesins in recurrent UTIs
has been clearly established (82, 83). afaBC/daaC positivity has
been found in UPEC strains belonging to the B2 phylogroups (61).
Epidemiological studies show that E. coli isolates expressing
Afa/Dr adhesins are involved in cystitis in children (25 to 50%)
and pyelonephritis in pregnant women (30%) (34, 53, 55–57, 84–
93). In addition, these pathogenic E. coli strains cause UTIs in
pregnant women (30, 90, 91, 94–97). In patients with a first UTI,
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the presence of E. coli isolates expressing Afa/Dr adhesins leads to
an elevated occurrence of a second UTI (56, 57, 64, 98, 99). In
patients with pyelonephritis, there was a variable distribution of
afaE subtypes in afa-positive strains (100). Zhang et al. (64) have
found that UTI-associated and fecal E. coli isolates were afaE1
positive (18%), afaE2 positive (1.3%), afaE3 positive (1.3%), draE
positive (12%), daaE positive (1.3%), and draE-afaE3 hybrid pos-
itive (12%). Some human pyelonephritis E. coli isolates have been
found to be positive for afa1-afa2 and afa-f-afa-r PCR probes and
in some cases to express the afaE1 (5%), afaE8 (39%), and afaEX
(20%) operons (45). A UTI-associated E. coli strain generally ex-
presses a multiplicity of adhesive factors. Foxman et al. (92), ana-
lyzing E. coli strains isolated from women with first-time UTIs,
observed that drb-probe positive E. coli isolates displayed positiv-
ity with the type 1 pilus probe (80 to 100% positivity) and the P
fimbria probe (50% positivity) and no positivity for the S fimbria
probe. Szemiako et al. (101) have observed that combinations of
genes encoding two adherence factors (P and Dr fimbriae or S and
Dr fimbriae) in UTI-associated E. coli isolates result in an in-
creased risk of translocation to the vascular system, leading to
bacteremia. Moreover, daaC-positive, UTI-associated clinical iso-
lates have been found to express aerobactin (89), hemolysin (56,
86, 89, 90, 92, 102, 103), and cytotoxic necrotizing factor (CNF)
(19, 56, 89, 92). The same numbers of strains expressing the drb
probe have been found in isolates from the urinary tract or rectum
of women with UTIs (104).

Afa/Dr adhesins are frequently found in E. coli associated with
pyelonephritis in pregnant women with gestational complications
(30, 62, 90, 96, 97). In addition, Afa/Dr DAEC strains are associ-
ated with preterm labor/birth (82, 95, 105). Sledzinska et al. (97)
have reported the presence of an E. coli strain harboring the com-
bination of P and Dr fimbriae in a case of fatal sepsis in a pregnant
woman who developed pyelonephritis.

Diarrhea

It is well established that pathogenic ETEC, tEPEC, aEPEC, and
AIEC colonize the small intestine, EAEC colonizes small intestine
and/or colon, EHEC colonizes the distal ileum and colon, and
EIEC colonizes the colon (4, 5). In contrast, the intestinal site(s)
colonized by diarrhea-associated Afa/Dr DAEC currently remains
to be determined. There is an absence of a role of Afa/Dr DAEC in
diarrhea in adults. Indeed, when the wild-type strain C1845 was
inoculated in adult volunteers, none of the patients developed
diarrhea, despite the strain being detected in duodenal cultures
and stools (106). Moreover, examination of a large number of
human diarrhea-associated DAEC strains has shown that only two
carried the daaE gene, suggesting that the F1845 fimbria is rare
among diarrheagenic DAEC strains (59). In addition, epidemio-
logical studies in various areas of the world are inconclusive with
regard to a role of daaC-positive E. coli strains in diarrhea in chil-
dren or adults (13, 48, 50, 99, 107–115). However, the relationship
between Afa/Dr DAEC and diarrhea in children as a function of
age has been more convincingly demonstrated in age cross-sec-
tional studies showing an increased incidence in children �1 to 5
years of age. These studies were conducted in the United States
(116), Mexico (117), and different South American countries, in-
cluding Chile (118), Brazil (58, 71, 119–121), Colombia (122),
Peru (123–127), and Argentina (128), as well as in Thailand (50),
Bangladesh (129), Japan (119), New Caledonia (45, 63, 130), var-
ious places in Africa (131–133), and European countries, includ-

ing the United Kingdom (134) and France (135, 136). In Afa/Dr
DAEC strains isolated from stools of children, the sat gene has
been found in almost half of the diarrhea-associated Afa/DrDAEC
strains and was not present in all the non-diarrhea-associated Afa/
DrDAEC strains (137). Why and how Afa/Dr DAEC isolates are
potential pathogens in children with an age-dependent occur-
rence remain to be determined. A possible explanation, but one
that does not exclude other possible causes, is that in children in
this age range, the intestinal epithelial barrier is not structurally
and functionally mature, and therefore the strong host defense
responses against infection by Afa/Dr DAEC, which are described
below, are not yet functional.

The observation of daaC positivity of some aEPEC strains is
indicative that Afa/Dr adhesins are expressed by enterovirulent E.
coli strains other than Afa/Dr DAEC (13, 46–53). Moreover, E. coli
isolates displaying daaC and afaBC positivities have been found
among AIEC, inflammatory bowel disease (IBD)-associated, and
intestinal cancer-associated (6, 138–140) strains.

Intestinal Asymptomatic Portage

Most of the epidemiological studies conducted in various areas of
the world that were intended to identify Afa/Dr DAEC as cause of
diarrhea in children over 5 years of age and in adults were incon-
clusive, as the same numbers of daaC-positive strains were found
in cases and controls (13, 48, 50, 71, 99, 107–115, 141). This ob-
servation highlights the existence of asymptomatic carriers of in-
testinal Afa/Dr DAEC strains and suggests that these pathogenic E.
coli strains can be tolerated or controlled if the mature intestinal
epithelial barrier is in a healthy condition.

VIRULENCE FACTORS

Afa/Dr Adhesins

The processes by which epithelia are infected by pathogenic E. coli
start by the attachment of bacteria to specific host cells. To do this,
pathogenic bacteria express a wide variety of surface-exposed ad-
hesins responsible for specific binding to structural or functional
cell membrane-associated molecules (142). The attachments onto
the target host cells allow enteric and urinary tract bacterial patho-
gens to resist clearance by peristalsis and micturition, respectively.
The bacterial adhesion to target host cells can be more than a
simple attachment due to pathogen-specific recognition of host
cell membrane-associated molecules, since several of these mole-
cules functioned intrinsically as signaling molecules or after rec-
ognition/activation recruited cytosolic signaling molecules (143).
Attachment by fimbrial or afimbrial structures allows bacterial
pathogens to interact with the host cell membrane to ensure the
optimal delivery of their cytotonic or cytotoxic toxins in the vicin-
ity of their membrane-associated receptors, triggering signaling
events that affect transport/secretion functions or the cell struc-
tural organization. For other pathogenic bacteria, adhesive factors
allow the intimate association of bacteria with the cell membrane
that is necessary for the initiation and completion of signaling-
controlled structural lesions, which in turn dramatically impair
host cell functions. For invasive bacterial pathogens, attachment
initiates an orderly series of signaling-controlled events that lead
to host cell membrane rearrangements that are necessary for the
achievement of bacterial cell entry followed by the development of
sophisticated bacterial intracellular lifestyles.

Two major classes of adhesins are present on the bacterial sur-
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face of Gram-negative pathogens: the fimbrial adhesins, consist-
ing of linear homopolymers or heteropolymers, and the afimbrial
adhesins, formed of single proteins or homotrimers (142). For the
completion of fimbrial and afimbrial adhesins in Gram-negative
pathogens, different secretion systems have been identified, in-
cluding Sec-independent and Sec-dependent pathways (144). The
major families of adhesive proteins (145) include the classical
chaperone/usher pathway-dependent fimbrial adhesins (146,
147), the alternate chaperone/usher pathway-dependent E. coli
surface pili (148), the extracellular nucleation precipitation-de-
pendent curly or thin aggregative fimbrial adhesins (149), the type
I secretion system-dependent afimbrial adhesins (150), the type
III secretion system-dependent integral outer membrane proteins
(151), the polymerization-assembled type IV pili (152), and the
type V secretion system-dependent nonfimbrial trimeric auto-
transported adhesins (153).

The Afa/Dr family of adhesins contains fimbrial (29, 32, 75, 76,
154, 155) or afimbrial (25–27, 30, 37, 44, 64, 84, 156) adhesins
(Table 1). These adhesins are encoded by genes present in operons
containing five major genes, including highly conserved genes A
to D, encoding accessory proteins, and more divergent genes E,
encoding the adhesin subunits (Fig. 1A). Assembly via the FGS
(with a short F1-G1 loop) and FGL (with a long F1-G1 loop)
classes of periplasmic chaperones has been described, and the FGL
chaperone/usher protein secretion system assembles Afa/Dr ad-
hesins (146, 147) (Fig. 1B). The structural organization of long
and short Afa/Dr adhesins develops by the assembly of the bacte-
rial membrane usher, successive E adhesin subunits, and one D
subunit capping the structure. It is interesting to note that the
chaperone usher functions in UPEC to form adhesive structures
such as the P pili, resulting in the orderly assembly of PapA, PapK,
PapE, PapF, and adhesive PapG subunits, and type 1 pili, formed
by assembly of FimA, FimF, FimG, and adhesive FimH subunits
(146, 147). The PapG subunit, localizing at the tip of the fimbria,
triggers recognition of host cell membrane-associated globoseries
glycolipids, and the FimH subunit triggers the mannose-depen-
dent recognition. Crystallographic and nuclear magnetic reso-
nance (NMR) studies coupled or not coupled with mutagenesis

have been used to define the functional domains of the DraE and
AfaE-III-Dsc adhesins, which are required for binding to host re-
ceptors such as hDAF (157–160), hCEACAMs (160), and collagen
type IV (161, 162), and to explain the differential sensitivity to
chloramphenicol (161, 162).

Afa adhesins. Agnès Labigne and Chantal Le Bouguénec have
extensively described the pathogenicity mechanisms of E. coli
strains bearing the afimbrial adhesins (Afa) encoded by the afa
operons (Table 1). The first Afa adhesin was isolated from the
wild-type prototype UPEC strain KS52 by Labigne et al. (25, 37).
The 6.7-kb chromosomal DNA fragment essential for a mannose-
resistant hemagglutination (MRHA) phenotype in human eryth-
rocytes and for adhesion onto uroepithelial cells contains five
genes: afaA, afaE, afaD, afaB, and afaC (24). Adhesins AfaE-II and
AfaE-III were then isolated from two other UPEC strains, A22 and
A30, by Labigne et al. (84). Le Bouguénec et al. (27) isolated from
the UPEC strain A30 a 9-kb plasmid region containing the afa-3
gene cluster. The afa-3 gene cluster contains six genes designated
afaA to afaF (163). The AfaE-III and DraE adhesin subunits dis-
played 98% identity (of 160 amino acids, 157 are similar) (27, 30),
and the afa-3 gene cluster and daa operon are closely similar (31,
32, 164, 165). The atomic resolution structure for the AfaE-III
subunit has been determined (158, 159, 166, 167). Nuclear mag-
netic resolution and biophysical studies have revealed that the
structural organization of Afa-III adhesin develops by assembly
onto the bacterial membrane usher of AfaE-III adhesins subunits
(158, 159) capped by the AfaD-III subunit (166–168). The AfaD-
III subunit also has the ability to separate from the Dr fimbriae
(42). A diffuse and not well-ordered cell surface localization of the
AfaD-III subunit has been observed by immunoelectron micros-
copy (42, 168, 169). Using chimeras constructed from the afa-3
and daa operons, a study has revealed that the afimbrial or fim-
brial morphologies of the adhesins were influenced by the order in
the genes coding for the afimbrial or fimbrial adhesin subunits
(28). The AfaE-III adhesin subunit is involved in recognizing host
cell receptors (158, 159) such as the DraE and DaaE adhesin sub-
units (170). As shown in the analysis of epidemiological studies
below, Afa-possessing E. coli strains have been found to be ex-

TABLE 1 Characteristics of Afa/Dr adhesins and Afa/Dr-related adhesins

Adhesin Type Host

Receptors

Type IV collagen hDAF hCEACAMs

AfaE-I Afimbrial Human Negative Positive Positive
AfaE-II Afimbrial Human Unknown Positive Unknown
AfaE-III Afimbrial Human Negative Positive Positive
AfaE-V Afimbrial Human Unknown Positive Positive
AfaE-VII Afimbrial Bovine Unknown Negative Unknown
AfaE-VIII Afimbrial Human/animal Unknown Negative Negative
Dr Fimbrial Human Positive Positive Positive
Dr-II Afimbrial Human Negative Positive Negative
F1845 Fimbrial Human Negative Positive Positive

Distant membersa

NFA-I Afimbrial Human Unknown Positive Unknown
AAF-I Fimbrial Human Unknown Unknown Unknown
AAF-II Fimbrial Human Unknown Unknown Unknown
AAF-III Fimbrial Human Unknown Unknown Unknown
HdaA Fimbrial Human Unknown Unknown Unknown

a Like Afa/Dr adhesins, AAF-I, -II, and -III and HdaA promote an MRHA phenotype in human erythrocytes (78).
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pressed by UPEC, diarrhea-associated E. coli, and E. coli isolated
from the feces of asymptomatic patients.

The afa-7 and afa-8 operons encode the AfaE-VII and AfaE-
VIII adhesins (26, 44) (Table 1). Like the Afa-III adhesin, the
Afa-VII and Afa-VIII adhesins can aggregate to form amorphous
masses (26, 42). Among the four sRNA genes (171) present in the
PAIAL862 strain and expressed by afa-8-positive E. coli (44), the
AfaR small RNA, the transcription of which is temperature con-
trolled, regulates the expression of the AfaD-VIII subunit (172). It
is noticeable that despite the presence of the Afa-VIII adhesin in
human intestinal E. coli isolates (43), these E. coli isolates have
never been found to be responsible for diarrhea in humans (45).
In contrast, in calves, pigs, and poultry with diarrhea there was the
presence of E. coli isolates expressing sequences of the afa-8
operon (173).

Dr adhesins. Bogdan Nowicki and coworkers have magnifi-
cently demonstrated the role of E. coli expressing Dr adhesins in
pyelonephritis, recurrent bladder cystitis, and pregnancy compli-
cations and have also dissected their molecular and cellular mech-
anisms of infection. The human pyelonephritis-associated wild-
type prototype UPEC strain E. coli IH11128 (O75) has a K5
capsule, lacks the flagellar antigen, expresses a type 1 pilus, devel-

ops MRHA, does not exert hemolytic activity, and does not pro-
duce colicin (155) (Table 1). Strain IH11128 exhibits mannose-
resistant Dr fimbriae (29). Five Dr operon-associated proteins
with molecular masses of 15.5, 5, 18, 32, and 90 kDa are necessary
for the development of the complete MRHA (55).

The role of the FGL chaperone/usher biogenesis pathway of Dr
fimbriae has been investigated in detail (174–178). To allow
proper folding of the DraE adhesin subunits to occur, the DraC
usher creates an assembly and secretion platform, and premature
DraE subunit-subunit association is prevented by the DraB chap-
erone. When the DraC is lacking, there are no protein subunit
secretion and fimbria assembly, since the protein complexes
amass in the periplasm. Mutagenesis of the DraC N terminus
shows that DraC-F4A, DraC-C64, DraC-C100A, and DraC-
W142A play a pivotal role in the bioassembly of fimbriae. In the
case of the E subunit, two conserved cysteine residues forming a
disulfide bond are important for stabilizing elements of the im-
munoglobulin fold of the Dr fimbriae. With regard to the DraD
subunit (179), it has been reported that when the DraE subunit
assembles, the DraD subunit localizes at the tip of the fiber (158,
159, 166, 167, 180). Jedrzejczak et al. (181) have shown that the
DraD subunit localizes at the tip, because it lacks a donor strand

FIG 1 Genetic organization of Afa/Dr operons (A) and assembly of Dr adhesin via the chaperone-usher pathway (B).
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and as a consequence functions only as an acceptor. However,
expression of the DraD subunit has been found to be independent
of the DraC usher, and DraD appears not to be necessary for the
polymerization of DraE subunits (182). Recently, Zalewska-
Piatek et al. (183) showed that the DraD subunit can be produced
by a chaperone/usher-independent, type II secretion-dependent
process that allows the translocation of the DraD subunit onto the
cell surface of Dr-positive E. coli.

The major structural subunit DraE is involved in host cell re-
ceptor recognition (170), as are the AfaE-III (158, 159) and DaaE
adhesin subunits (170). Calculation of the electrostatic potentials
of the DraE structure shows an electronegative area around the
cluster of amino acids involved in binding onto hDAF (Asp61,
Asp63, and Asp75) (157). In the genes encoding Dr fimbriae, sin-
gle-nucleotide polymorphisms conferring an adaptive advantage
have been identified (184). Dr fimbriae are unique among Afa/Dr
adhesins in expressing chloramphenicol sensitivity for binding
onto host cell receptors, whereas binding of Afa-I to -III and
F1845 is not affected (27, 185, 186). Korotkova et al. (187) have
interestingly shown that genes encoding Dr fimbriae form eight
structural groups displaying a high level of amino acid sequence
diversity among them. It is noticeable that a functional analysis
has revealed the presence of distinctly different binding pheno-
types controlling affinity to hDAF, capability to bind collagen type
IV and hCEACAMs, and sensitivity of adhesiveness capacity to
chloramphenicol. Since the AfaD/DraD/DaaD subunits localize at
the tip of the Afa/Dr fimbriae, their possible involvement in adhe-
sion onto epithelial cells and, in addition, that of the AfaE/DraE/
DaaE subunits has been envisaged. Conflicting results have been
obtained. Recombinant DraE�/DraD� or AfaE�/D�-III E. coli
failed to adhere to differentiated primary bladder cells (188) and
CHO-hDAF-�5�1 cells (189), respectively. In contrast, Zalewska-
Piatek et al. (190) have reported that in HeLa cells, DraE�/DraD�

E. coli displays a low level of adhesion, �3-fold lower that of
DraE�/DraD� E. coli. In contrast to the chloramphenicol-sensi-
tive adhesion of DraE, the DraD-induced binding is chloram-
phenicol insensitive (190).

The Dr-II adhesin has been isolated from the human pyelone-
phritis-associated strain EC7372 (Table 1). Compared to the
members of the Afa/Dr adhesin family, the Dr-II adhesin displays
poor sequence identity (17 to 20%) (30). Dr-II has 96% identity
with the nonfimbrial adhesin I (NFA-I) expressed by UTI-associ-
ated E. coli (191). Interestingly, NFAs and Afa/Dr adhesins have a
very similar genetic organization, and the nfa gene cluster encodes
NfaA subunits assembled via the chaperone-usher pathway (191).

F1845 adhesin. Steve L. Moseley and coworkers discovered the
diarrhea-associated E. coli expressing F1845 adhesin and beauti-
fully described the structural aspects of the interaction between
Afa/Dr adhesins and their epithelial cell hDAF and hCEACAM
receptors. The human wild-type prototype diarrheagenic strain
C1845 expresses a fimbrial adhesin, designated F1845 (Table 1).
The order and regulation of the genes necessary for F1845 adhesin
assembly have been identified (31, 32, 164, 165, 192–194). The
F1845 and Dr adhesins display 57% identity (91 amino acids of
160 are identical) (30). Five polypeptides (10, 95, 27, 15.5, and
14.3 kDa) are encoded by daaA, daaB, daaC, daaD, and daaE
genes, respectively. The major structural subunit, DaaE, is in-
volved in host cell receptor recognition like the AfaE-III (158, 159)
and DraE adhesin subunits (170). Bilge et al. (31) have demon-
strated that the fimbrial gene expression in the daa operon was

regulated by both phase variation and environmental regulatory
mechanisms. White-Ziegler et al. (193) have reported that in re-
sponse to multiple environmental signals, the histone-like H-NS
acts as an overall regulator by controlling transcription of the daa
operon.

Flagella

The biogenesis of flagella involves the coordinated structural as-
sembly of flagellar proteins (195). A variety of flagellar structural
proteins and capping proteins compose the flagellar propeller
(195), and cytoplasmic membrane proteins compose the force-
generating unit of the flagellar motor (196). In an aqueous envi-
ronment, many bacterial species move by rotating their flagella,
allowing individual bacteria to swim in three dimensions (197).
Moreover, flagellar swarming coordinates the movement of bac-
teria across the host cell surface (198). Flagella expressed by UPEC
contribute to colonization of the epithelium, dissemination to the
kidney by ascending progression from the bladder, and biofilm
formation (199). It has been observed that UPEC strains express-
ing type 1 pili or P fimbriae are less flagellated and display re-
pressed motility, suggesting that when fimbrial expression is
switched off, UPEC strains are motile (200, 201). Afa/Dr DAEC
strains express or do not express flagella. The prototype pyelone-
phritis-associated, wild-type Afa/Dr DAEC strain IH11128, ex-
pressing a type 1 pilus, does not possess flagellar antigens (155). In
contrast, the UPEC wild-type strain A30, which does express
AfaE-III adhesin, is positive for flagellar antigen (unpublished
data), and the animal wild-type Afa-VIII-positive strain AL511 is
H8 positive (202). It is worth mentioning that that the prototype
diarrheagenic wild-type Afa/Dr DAEC strain C1845 (32) does not
express flagellar antigens (unpublished data). According to
Arikawa et al. (203), only seven of the 19 afaE1-, afaE2, or afaEX-
positive, diarrhea-associated E. coli isolates they examined are
motile. In contrast, Meraz et al. (107), who examined 18 DAEC
isolates, found that all nine diarrhea-associated, afaE1- or afaEX-
positive E. coli isolates are motile. These findings indicate that
UPEC and diarrhea-associated Afa/Dr DAEC display heteroge-
neous flagellum expression.

Secreted Autotransporter Toxin

Secreted autotransporter toxin (Sat) belongs to the type V secre-
tion pathway-dependent subfamily of serine protease autotrans-
porters of Enterobacteriaceae (SPATE) toxins (81, 153, 204). As the
result of differences in the toxins structures and activities, there
are two classes of SPATE toxins. Class I includes plasmid-encoded
toxin (Pet) of EAEC, extracellular serine protease, plasmid en-
coded (EspP) of EHEC, EspC of EPEC, SigA of Shigella flexneri
and EAEC, Sat of intestinal E. coli and ExPEC, and the hypothet-
ical EspC-like SPATE toxins with EcPCN033-C1sp (NCBI acces-
sion number EGP21815.1) of ExPEC, EcNA114-C1sp (NCBI ac-
cession number AEG39156.1) of UPEC, and EcM605-C1sp
(NCBI accession number ZP_08351236.1) of AIEC (204). Class II
includes protein involved in intestinal colonization (Pic) of Shi-
gella, EAEC, and UPEC, SepA of Shigella, EatA of ETEC, vacuo-
lating autotransporter toxin (Vat)-like toxins of UPEC, SEPEC,
and NEMEC, EcRN587-C2sp (NCBI accession number
EFZ76879.1) of EAEC and EPEC, and EpeA of Shiga toxin-pro-
ducing E. coli (204). Class I SPATE toxins are generally cytotoxic,
whereas class II display diverse activities, including the cleavage of
mucus, which provides a competitive advantage for host epithe-
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lium colonization (81, 204). The sat gene has been characterized in
the UPEC prototype strain CFT073 (205), where it resides within
PAI-IICFT073 (206–209). The sat gene is prevalent in UPEC strains,
including those bearing Afa/Dr adhesins (8, 56, 137, 206, 208,
210–214), resident intestinal microbiota E. coli stains, and patho-
genic strains of E. coli, including EAEC (137, 215–218), and Shi-
gella isolates (219, 220). The sat gene has been found present in
daaC-positive E. coli strains isolated from stools of children with
diarrhea in Brazil and France (137, 218, 221). In Afa/Dr DAEC
isolates, the sat gene has been found to be expressed equivalently
by diarrheic and asymptomatic adults (222). Interestingly, the sat
gene is prevalently expressed in Afa/Dr DAEC isolated from chil-
dren in a context of diarrhea (222).

Hemolysin

The pyelonephritogenic strain EC7372, which expresses Dr-II ad-
hesin (30), is the only Afa/Dr DAEC strain that produces a func-
tional hemolysin. Indeed, unlike other Afa/Dr DAEC strains,
strain EC7372 promotes a strong cellular lysis in epithelial cells
preceded by apoptosis (102). On the basis of results reported by
Blanc-Potard et al. (60), the hemolysin-positive strain EC7372
carries both the hly and pap operons and seems to have acquired a
larger part of the PAIsCFT073 (207–209) than Afa/Dr DAEC. The
recombinant E. coli strain EC901, which carries plasmid pBJN406
and contains the draA to -E genes involved in expression of Dr
fimbriae (223), has been observed to display a curious hemolytic
activity. Insertion mutations in draD and draE, but not in draA,
draB, and draC, abolish hemolytic activity, indicating that this
activity is supported by the extracellular domain of Dr fimbriae.
This observation is intriguing, since strain IH11128, gestational
pyelonephritis Dr-positive E. coli isolates (94, 155), and clinical
Dr-positive E. coli isolates (60) all lack either hemolytic activity or
hly gene expression. In contrast, the wild-type O75X strain
IH11032 does display hemolytic activity (155). Moreover, four
afaE1-positive and one afaEX-positive diarrheagenic E. coli iso-
lates have been found to trigger hemolysis, while 14 other afaE1-
positive and one afaEX-positive isolates do not (203). Collectively,
these findings show that Afa/Dr DAEC strains are heterogeneous
in terms of �-hemolysin expression, suggesting a variable distri-
bution of the part of PAICFT073 containing the hly gene among the
Afa/Dr DAEC strains.

Other Factors

Blanc-Potard et al. (60) identified several short sequences (73 to
495 bp) that are prevalent in Afa/Dr adhesin-positive E. coli clin-
ical isolates in comparison with E. coli clinical isolates not express-
ing Afa/Dr adhesins (GenBank accession numbers AZ935556 to
AZ935604). Several sequences are homologous to virulence genes
expressed in other pathotypes of E. coli, including genes for two
siderophores (irp2 and iuc), a catechol siderophore receptor
(iroN), and two transport systems (shu and modD) (60). Interest-
ingly, several C1845-specific sequences display no likeness with
known sequences (60). Importantly, the diarrhea-associated wild-
type C1845 strain does not express the genes encoding ETEC and
EAEC virulence factors and is devoid of genes encoding EPEC and
EHEC virulence factors, including the genes of the locus of entero-
cyte effacement (LEE) island involved in the type III secretion
system (T3SS) or T3SS-associated effector proteins and not hy-
bridized with eae probes (60). The wild-type C1845 and IH11128
strains expressed a part of PAICFT073 (207–209) not including the

hlyA, hlyD, hp1-hp4, papG, or papF sequences (60). A remnant of
the pap operon which has the F10 papA allele but lacks most of the
central region of the pap operon has been detected. It is notewor-
thy that regions of the PAICFT073 complete genome sequence (207,
209, 224) have been found in E. coli strains of the B2 phylogenic
group (208) and are prevalently expressed in ExPEC strains of
group B2 involved in UTIs (8). Moreover, parts of PAICFT073 have
recently been found in intestinal commensal E. coli strains, partic-
ularly those of phylogenic group B2 (225–227), and in an AIEC
strain (228).

The PAIAL862 expressed by afa-8-positive E. coli strains (44)
includes the deoK gene, which confers metabolic adaptability and
increases the competitive advantage with regard to host infectivity
(229). The locus designated vpe (virulence-associated phospho-
transferase) contains the vpeA, vpeB, and vpeC genes, which en-
code, respectively, the EIIA, EIIB, and EIIC constituents of a pu-
tative carbohydrate-specific permease of the SgaTBA family (230).
This locus is present in the pyelonephritis-associated strain
AL511, which expresses the afa-8 operon (43), which confers an
ability to adapt for kidney and intestinal colonization (231). The
presence of the vpe locus in other UTI- and diarrhea-associated
Afa/Dr DAEC strains has not been documented.

The capacity to form filamentous forms results from a plasticity
capacity developed by a bacterial pathogen in order to escape host
defenses when in an intracellular location or to assemble to form a
biofilm-like structure that leads to resistance to anti-infective
treatments, such as antibiotics (199). Some excellent experiments
have demonstrated that type 1 pilus-positive UPEC strains, after
internalization into superficial epithelial cells known as “umbrella
cells” lining the luminal surface of the bladder, form biofilm-like
bacterial assemblages designated “intracellular bacterial commu-
nities” (IBCs) that function as transient protective structures for
UPEC intracellular growth (199, 232). UPEC cells in IBCs consti-
tute reservoirs of UPEC, which, after switching to filamentous
forms, become detached from the bacterial community and may
be flushed out of the host cells. Zalewska-Piatek et al. (233) were
the first to observe that that Dr-positive E. coli formed biofilms.
This phenomenon means that Dr-positive E. coli strains form live
filamentous bacteria, depending on their nutritional environment
(190, 233). It has been observed that adhering Dr-positive E. coli
forms filamentous forms at the cell surface of CHO-hDAF-�5�1
(189) or CHO-hDAF (234) cells. Filamentous bacteria residing
within the phagosome escaped phagosomal killing as the bacteria
manipulated the phagosome compartment by blocking the acqui-
sition of hydrolytic components (235, 236). Even though the in-
tracellular vacuole-containing Dr-positive E. coli in HeLa cells
lack the characteristics of a degradative compartment (189), no
filamentous forms of Afa- or Dr-positive E. coli residing intracel-
lularly have ever been observed. This aspect of Afa/Dr pathogen-
esis remains to be explored in the appropriate model of bladder
epithelial cells. Bacterial biofilm formed by UPEC after aggrega-
tion of three-dimensional structured cells connected by self-pro-
duced exopolysaccharide matrix plays a major role in persistent
and chronic UTIs (199). Exopolysaccharide production, which
plays a pivotal role in biofilm completion, has been found in UTI-
associated E. coli strains expressing Dr (190, 233) or Afa-VIII
(231) adhesins. Interestingly, exopolysaccharide production is
controlled by the vpeBC gene (231), which is present in the vpe
locus of afa-8-positive E. coli (43). DraE�/DraD� E. coli strains
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form dense biofilms, and DraD, whether associated with fimbriae
or not, plays a role in biofilm formation (190, 233).

A large variety of bacteria have been found to produce toxins,
named cyclomodulins, that dramatically interfere with the cell
cycle (237). Cyclomodulins produced by pathogenic E. coli in-
cluded colibactin, cycle-inhibiting factor (Cif), cytotoxic necrotiz-
ing factor (CNF), and cytolethal distending toxin (CDT) (238).
Currently, the two known genotoxins are colibactin and CDT
(238). The cluster of genes known as the “pks island” (239) en-
codes a multienzymatic machinery for synthesizing the hybrid,
nonribosomal, peptide-polyketide genotoxin colibactin (240). It
has been suggested that the pks island may affect the host immune
response and could be involved in chronic inflammation, in the
accumulation of genomic instability, and in tumor progression
(241). Whether the pks island contains other genes encoding ad-
ditional bacterial factors and whether the pks-related colibactin is
a prototype of a family of molecules or not remain to be investi-
gated. The pks genomic island is present in the prototype Afa/Dr
DAEC wild-type IH11128 and C1845 strains (J. P. Nougayrede
and E. Oswald, unpublished result) and in colonic afa-I-positive E
coli strains isolated from patients with IBD and colorectal cancer
(140). The pks island has been also found in ExPEC strains of
phylogenetic group B2 (242), in fecal E. coli strains isolated from
healthy patients but not in pathogenic EPEC and EHEC isolates
(243), in group B2 E. coli strains that are long-term colonizers of
the intestine (22), in E. coli isolated from the mucosa of patients
with IBD (244), in mucosa-associated or internalized E. coli of
tumors and mucosa of colorectal cancer patients (244–246), and
in urosepsis E. coli strains (247). It was noted that the intestinal
microbiota E. coli strain Nissle 1917 expresses the pks genomic
island and displays similarities with the prototype Afa/Dr DAEC
wild-type C1845 and IH11128 strains, since it harbors parts of
PAICFT073 that lack the expression of �-hemolysin and P fimbriae
but includes iron uptake systems (225, 227). This probiotic E. coli
strain with diverse activities (248) is intriguing since its promotion
of gut homeostasis activity in response to mucosal injury cannot
be dissociated from the presence of the pks island (249). Whether
the presence of the pks island in intestinal E. coli and ExPEC strains
is deleterious for the host or without pathological consequences
remains to be investigated.

MECHANISMS OF PATHOGENICITY

Host Cell Receptors for Afa/Dr Adhesins

On the basis of the differential recognition of human epithelial cell
membrane-associated receptors by Afa/Dr adhesins (Table 1),
Afa/Dr DAEC strains have been subdivided into two subclasses
(11). The first subclass includes E. coli strains harboring the Afa-I
(25, 37), Afa-II (27), Afa-III (27), Afa-V (64), Dr (29, 155), Dr-II
(30), and F1845 (32) adhesins recognizing hDAF, which also may
or may not recognize members of the hCEACAM family. The
second subclass includes strains that express Afa-VII (26, 44) and
Afa-VIII (26, 44) adhesins that do not recognize hDAF. In addi-
tion, the NFA-I adhesin of UPEC (191) belongs to the Afa/Dr
family of adhesins (Table 1). Moreover, despite a similar genetic
organization with the gene clusters triggering the biogenesis of
Afa/Dr adhesins, the EAEC adhesins AAF-I (77), AAF-II (76),
AAF-III (75), and Hda (78) are distant pathogenic factors of the
Afa/Dr family of adhesins (Table 1). The four major characteris-
tics of EAEC pathogenesis (79–81) are as follows: (i) adherence to

the intestinal mucosa via adhesins (18, 75–78), (ii) the formation
of typical “stacked-brick” microcolonies as each bacterium inter-
acts with others, (iii) production of enterotoxins and cytotoxins,
and (iv) the development of a severe mucosal inflammation. Boi-
sen et al. (78), analyzing this superfamily of adhesins, have pro-
posed a pertinent phylogram composed of three distinct clusters.
The first cluster comprises Afa-I, Afa-II, Afa-III, Afa-V, Dr, Dr-II,
and F1845, the second comprises AAF-I, AAF-II, and AAF-III,
and the third comprises Afa-VII, Afa-VIII, and Hda. It is worth
mentioning that cluster 3 (78) also includes the nonfimbrial M-
agglutinin encoded by the bma gene cluster of UPEC (250).

hDAF. Nowicki et al. (33) were the first to report that human
decay-accelerating factor (hDAF) (CD55) expressing the antigens
of the Cromer blood group system (251) acts as an epithelial cell
receptor for E. coli expressing Afa/Dr adhesins (Fig. 2) (Table 1).

(i) Structure and functions. DAF is a complement-regulating
protein with an Mr of 55,000 to 70,000 (251). The physiological
function of DAF is to control the amplification of the complement
cascade by a direct interaction with membrane-bound C3b or
C4b, which in turn impedes the ulterior uptake of C2 and factor B.
Membrane-bound DAF is formed by a membrane glycosylphos-
phatidylinositol (GPI) anchor followed by a serine/threonine/
proline (STP)-rich region and by four complement control pro-
tein repeat (CCP) domains, previously named short consensus
repeats (SCRs) (Fig. 2). Modeling of the extracellular domain of
DAF reveals that CCPs are organized in a helical manner. While
CCP-1 had no effect on hDAF regulatory activity, deletion of
CCP-2, CCP-3, or CCP-4 entirely abolished the regulatory activ-
ity. Interaction of DAF with the convertases is mediated predom-
inantly by two patches approximately 13 Å apart, one centered
around Arg69 and Arg96 on CCP-2 and the other around Phe148
and Leu171 on CCP-3 (252). Phe123 and Phe148, localizing at the
interface between CCP-2 and CCP-3, and also Phe154, which is
present in the CCP-3 cavity, are pivotal for the regulatory activity
(253). The GPI anchor increases the lateral mobility of DAF
within the cell membrane in relation to its localization into mem-
brane-associated lipid rafts, and the O-glycosylated STP serves as a
spacer for the projection of the hDAF functional domains at the
cell membrane (253).

(ii) Receptor for Afa/Dr adhesins. hDAF is one of the receptors
recognized by Afa/Dr adhesins in epithelial cells (Fig. 2) (Table 1).
It is noteworthy that Afa/Dr adhesins bind specifically to hDAF
but not to rodent or pig DAF (254). Dr fimbria binding develops
in the digestive, urinary, genital, and respiratory epithelia and in
skin (255), consistent with the hDAF expression (251). Only uro-
pathogenic and diarrhea-associated E. coli strains bearing the
F1845, AfaE-I, AfaE-III, AfaE-V, Dr, and Dr-II adhesins recog-
nized hDAF as a receptor (62, 160, 256). In contrast, the Afa-VIII
adhesin expressed by human ExPEC does not recognize hDAF
(26, 43, 44). It has been established from functional studies and
atomic resolution models that Afa/Dr adhesins recognize the
CCP-2 and CCP-3 on hDAF (41, 158, 159, 257–259) (Fig. 2). In
contrast, gestational pyelonephritis-associated E. coli expressing
dra-related X adhesins recognized the CCP-3 and CCP-4 domains
of hDAF (62). In the CCP-3, a single point substitution (Ser155-
Ala and Ser165-Leu, mimicking the Dra-to-Drb allelic polymor-
phisms) results in a complete loss of Dr fimbria binding to hDAF
(257, 260). The amino acids (148 to 171), in particular Ser155,
present at the surface of CCP-3 controlled the Dr adhesin binding
(260). A surface plasmon resonance study of Afa-III adhesin bind-
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ing onto CCP domains of hDAF has revealed that a construct
formed of CCP-1 and -2 did not show any measurable binding to
the AfaE-III adhesin subunit, while constructs formed of CCP-2,
-3, and -4, CCP-2 and -3, or CCP-3 and -4 allowed AfaE-III bind-
ing with affinities comparable to that for the entire hDAF, con-
firming the previously observed importance of the combined
CCP-2 and CCP-3 domains for the recognition of hDAF by
Afa/Dr adhesins (158, 159). The Dr adhesin-binding and comple-
ment-regulating epitopes of hDAF have been found to be distin-
guishable and are approximately 20 Å apart (260). However, An-
derson et al. (158) observed that the binding of AfaE-III to hDAF
antagonized the hDAF regulatory activity.

The AfaE-I, AfaE-III, AfaE-V, DraE, and DaaE subunits func-
tion as receptor ligands for hDAF (27, 160, 170) (Fig. 3A to D). In
DraE/AfaE-III subunits, the hDAF-binding site forms a large con-
vex surface involving seven � strands (158, 159). The residues
Asp61, Ile73, and Asn77 have been found to be important for
binding to hDAF (158, 159). Mutagenesis and crystallographic
studies of DaaE have been conducted in order to define the de-
tailed molecular interactions between Afa/Dr adhesins and hDAF
(157). Five daaE mutants (T8N, A60V, D61A, D63V, and T133S)
showed a 30 to 50% reduced ability to bind onto CHO cells trans-
fected for hDAF expression (157). Mapping the sites of DaaE re-
veals that positions Asp61 and Asp63 are necessary for binding to
hDAF, and calculation of the electrostatic potentials of the DaaE
structure has revealed an electronegative region around the cluster
of amino acids involved in hDAF recognition (Asp61, Asp63, and
Glu126) (157). Moreover, the ability of the DraE adhesin to bind
hDAF has been found influenced by individual amino acid

changes at positions 10, 63, 65, 75, 77, 79, and 131 of the mature
DraE sequence (261).

Binding of the DraE adhesin subunit onto hDAF is sensitive to
chloramphenicol, which also inhibits the hDAF-dependent
MRHA of human erythrocytes (chloramphenicol-sensitive hem-
agglutination [CSHA]) (33, 256). In HeLa cells, the presence of
chloramphenicol diminished the adhesion of DraE�/DraD� E.
coli by �3-fold and totally abolished the adhesion of DraE�/
DraD� E. coli but did not change the adhesiveness capacity of
DraE�/DraD� E. coli (190). According to Swanson et al. (262), the
domains involved in the CSHA are present within the N-terminal
domain of the DraE subunit. According to Pettigrew et al. (161,
162), a hydrophobic pocket including Gly113, Gly42, Pro40,
Pro43, Ile111, Tyr115, and Ile114 plays a pivotal role in the chlor-
amphenicol-binding site in the DraE subunit. The inhibition of
the binding of the DraE subunit onto hDAF by chloramphenicol
has received a structural explanation, since by covering the func-
tional portion of the adhesin subunit, chloramphenicol disrupts
the recognition of hDAF (161, 162). In contrast to the case for the
Dr adhesin, chloramphenicol does not affect the hDAF-depen-
dent MRHA exerted by the AfaE-I, AfaE-III, and F1845 adhesins
(27, 256). This is a result of a difference in expression of amino
acids between the adhesin subunits (161, 162). Moreover, it has
been established that binding of chloramphenicol onto the DraE
subunit develops via the interaction of its chlorine “tail” rather
than its benzene ring (161, 162). Analyzing structural chloram-
phenicol modifications, Pettigrew et al. (162) have demonstrated
that acylating the 3-hydroxyl group has no effect on the binding
onto hDAF.

FIG 2 Membrane-associated proteins expressed by human epithelial cells that function as receptors for Afa/Dr adhesins. Center, representations of the
structures of hDAF and hCEACAMs. Left, surface representation of hDAF. Right, homology model of human N-CEA. (Representations of hDAF and N-hCEA
reprinted from reference 158 with permission of Elsevier and from reference 160 with permission of the publisher, respectively.)
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(iii) Receptor for microbial pathogens and viruses. The cell
membrane-bound hDAF is also hijacked by viruses, including
coxsackievirus serotypes B1, B3, and B5 (263, 264) and coxsacki-
evirus A21 (265), enteroviruses (266), and echoviruses (267, 268).
Various different hDAF sites are recognized by echoviruses (269).
It is worth underlining that like Afa/Dr DAEC (254), echoviruses
and coxsackieviruses (270) express high specificity for hDAF. In
addition, hDAF acts as a receptor for hantavirus (271). Moreover,
epithelial hDAF has been identified as a gastric epithelial receptor
for Helicobacter pylori and has been found to be upregulated by the
pathogen in relation to inflammatory responses (272, 273).

hCEACAMs. Guignot et al. (41) were the first to show that
hCEA (CEACAM5, CD66e) is recruited around the prototype Dr
adhesin- or F1845 adhesin-positive wild-type Afa/Dr DAEC
strains IH11128 and C1845, respectively, adhering to cultured hu-
man enterocyte-like Caco-2 cells and that an anti-CD66 antibody
inhibits this bacterial adhesion (Fig. 2) (Table 1). Berger et al.
(274), using Chinese hamster ovary (CHO) cells and human cer-
vical cancer HeLa cell lines transfected for the expression of each
of the human carcinoembryonic antigen-related cellular adhesion
molecules (hCEACAMs) (CEACAM1 to 8), found that the Dr,
F1845, and AfaE-III adhesins bound only to cells expressing epi-

thelial hCEACAM1, hCEA, or hCEACAM6, whereas the AfaE-I
and Dr-II adhesins did not (Fig. 2) (Table 1). Korotkava et al.
(160) demonstrated Afa-V adhesin binding to hCEA (Table 1). In
addition, the Dr, F1845, and AfaE-III adhesins recognize the non-
epithelial CEACAM3 as a receptor (188, 189). In contrast, the
murine CEACAM1 is not recognized by Afa/Dr adhesins (274).

Twelve members, i.e., CEACAM1 (biliary glycoprotein
[BGP], CD66a), CEACAM3 (CEA gene family member 1
[CGM1], CD66d), CEACAM4 (CGM7), CEA (carcinoembryonic
antigen, CD66e), CEACAM6 (nonspecific cross-reacting antigen
[NCA], CD66c), CEACAM7 (CGM2), CEACAM8 (CGM6,
CD66b), CEACAM16, and CEACAM18 to -21, compose the fam-
ily of CEACAMs (275). CEACAM proteins generally have one
variable (V)-like Ig domain, identified as the N domain (except
CEACAM16, which has two N domains), but they differ in the
number of constant C2-like Ig domains as well as in their mem-
brane anchorage (Fig. 2). CEACAM5, CEACAM6, CEACAM7,
and CEACAM8 are anchored within the cell membrane through a
GPI linkage, whereas six other CEACAM family members
(CEACAM1, CEACAM3, CEACAM4, CEACAM19, CEACAM20,
and CEACAM21) are anchored via bona fide transmembrane
domains (275) (Fig. 2). CEACAM16 is devoid of any membrane an-

FIG 3 Receptor clustering by Afa/Dr DAEC. (A to D) Representations of the DraE, DaaE, AfaE-V, and AfaE-I adhesin subunits, respectively. Surface electrostatic
potentials of the DraE, DaaE, AfaE-V, and AfaE-I adhesins (red indicates the negative charges and blue the positive charges) are shown. (Reprinted from reference
157 with permission of the publisher.) (E) Representation of DraE adhesin subunit-associated surfaces allowing the specific recognition of hDAF or N-hCEA.
Green, surface recognition of hDAF. Red, surface recognition of N-hCEA. Yellow, chloramphenicol bound onto the domain of AfaE-III that recognizes N-hCEA.
(Reprinted from reference 160 with permission of the publisher.) (F) Micrographs showing the observation by confocal laser scanning microscopy (CLSM) of
hDAF, hCEACAM1, and hCEA receptor clustering around Dr adhesin-positive E. coli adhering to untransfected HeLa cells constitutively expressing hDAF and
to transfected HeLa cells expressing hCEACAM1 and hCEA. Yellow shows colocalization of immunolabeling of Dr adhesin (red) and hDAF, hCEACAM1, or
hCEA (green). (Reprinted from reference 274 with permission of the publisher. Copyright 2004 Blackwell Publishing Ltd.) (G) Receptor clustering of hDAF
(green) and hCEACAM1 (red) around Dr adhesin-positive E. coli adhering onto transfected HeLa cells expressing hCEACAM1. Yellow, colocalization of
immunolabelings of hDAF and hCEACAM1. Arrows show immunolabelings of interest around adhering bacteria. (Reprinted from reference 274 with permis-
sion of the publisher. Copyright 2004 Blackwell Publishing Ltd.)
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chorage and is the only known secreted CEACAM. The CEACAM1
cytoplasmic domain has immunoreceptor tyrosine-based in-
hibitory motifs (ITIMs), whereas CEACAM3, CEACAM4,
CEACAM19, and CEACAM20 carry immunoreceptor tyrosine-
based activation motifs (ITAMs) (Fig. 2). All family members are
highly glycosylated on their extracellular domains, and as a func-
tion of the cell type and differentiation state of the cells, the level of
glycosylation of each CEACAM may vary, since multiple glyco-
forms of the same protein have been characterized. Epithelial,
endothelial, and hematopoietic cells variously expressed
CEACAMs (275, 276). CEACAMs function mainly as adhesion
molecules engaged in homotypic and/or heterotypic intercellular
adhesion, and several CEACAMs exert regulating cell signaling
activities (275, 276). CEACAMs are engaged during complex bio-
logical processes such as cancer progression, inflammation, im-
mune responses, angiogenesis, and apoptosis (275, 276).

(i) hCEACAM1 structure and functions. CEACAM1 was pres-
ent in leukocytes, including granulocytes, activated T cells, B cells,
and CD16�/CD56� natural killer cells (275). It was present in
endothelial cells (275). CEACAM1 was also expressed in epithelial
of the stomach, intestine, bile ducts, kidney, prostate, endome-
trium, and mammary ducts (275). The gene encoding CEACAM1
contains 9 exons that, after alternatively splicing, generate 11 dif-
ferent isoforms with long or short cytoplasmic tails and long or
short cytoplasmic domains (275). The long cytoplasmic domain
contains two ITIMs (Fig. 2). ITIMs after tyrosine phosphorylation
associate with diverse cytoplasmic signaling molecules, including
the tyrosine kinases of the Src family, the tyrosine phosphatase Src
homology 2 (SH2) domain-containing protein tyrosine phospha-
tase 1 (SHP-1) or 2 (SHP-2), and Shc (275). In contrast, the cyto-
plasmic S domain lacks the presence of tyrosine residues (275).
The two major isoforms CEACAM1-L and CEACAM-1S can be
cell coexpressed, but CEACAM1-L isoforms predominate in most
cell types (275). However, the CEACAM1-L/CEACAM-1S ratio
can vary as a function of the cell types and the cell differentiation
states. In polarized epithelial cells, the CEACAM1-L and
CEACAM-1S isoforms are expressed at both the apical domain
and cell-cell contact areas (277, 278). CEACAM1 acts as a cell-cell
adhesion molecule by hemophilic interaction (275). Down-ex-
pression of CEACAM1 occurred in several tumor types, such as
breast, prostate, and colorectal cancer, and high levels of
CEACAM1 expression are related to poor prognosis and tumor
metastasis (275).

(ii) hCEA structure and functions. hCEA is a GPI-anchored
protein (275) (Fig. 2). hCEA was initially defined as a tumor-
associated marker, since it is overproduced in an elevated number
of carcinomas. Overexpression is often associated with enhanced
metastatic potential and thus with poor prognosis (279, 280).
However, it is important to remember that despite its name, hCEA
is normally expressed in tissues, including intestinal M cells, en-
terocytes, and colonic cells, in which it is abundantly expressed at
the brush border (281). hCEA is localized within cell membrane-
associated lipid rafts via its GPI anchor and can act as a cell mem-
brane-bound cell signaling receptor (275). In addition, hCEA is
present in the intestinal apical glycocalyx. The physiological role
played by hCEA remains unknown, but it has been shown to me-
diate cell-to-cell Ca2�-independent, homotypic interactions.

(iii) hCEACAM6 structure and functions. Like CEA,
CEACAM6 is a GPI-anchored protein (275) (Fig. 2). In colorectal
cancers, the deregulation of CEACAM6 expression suggests a role

in tumor onset (275). CEACAM6 is brush border expressed in
polarized epithelial intestinal cells. CEACAM6 has the capacity to
signal in cells. For example, following CEACAM6 cross-linking,
there was subsequent activation of Src that led to the tyrosine
phosphorylation of focal adhesion kinase (FAK), in turn trigger-
ing cross talk with �v�3 integrin, and cell interaction with extra-
cellular matrix molecules (ECMs) (282, 283).

(iv) Receptors for Afa/Dr adhesins. Human UPEC and diar-
rhea-associated Afa/Dr DAEC strains expressing the Dr, Afa-III,
Afa-V, and F1845 adhesins recognize the epithelial hCEACAM1,
hCEA, and hCEACAM6 and the nonepithelial hCEACAM3 as
host cell receptors (41, 160, 187–189, 274, 284) (Fig. 2) (Table 1).
The Afa-I adhesin does not recognize hCEACAMs well, and the
Dr-II adhesin fails to recognize hCEACAMs (274). It is not known
whether hCEACAMs are recognized by the Afa-VIII adhesin. By
surface plasmon resonance (SPR) binding analysis, the N-termi-
nal domain of hCEA has been identified as being recognized by the
DraE, AfaE-I, AfaE-III, AfaE-V, and DaaE adhesin subunits (160)
(Fig. 2). The recognition of the N-terminal domain of nonepithe-
lial hCEACAM3 observed by SPR analysis (187) has been con-
firmed in transfected cells expressing hCEACAM3 (188). The
AfaE-I subunit displays lower-affinity binding to hCEA than the
DraE, AfaE-III, AfaE-V, and DaaE adhesin subunits (160),
which is consistent with a previous observation in transfected
hCEACAM-expressing epithelial cells (274). For the hCEA/DraE
interaction, the N-terminal 58 amino acids of hCEA are necessary,
since the N-terminal F29I, I91A, and L95A hCEA mutants showed
a decreased affinity for the DraE adhesin subunit (160, 284). Cou-
pled mutagenesis analysis has identified residues F29, Q44, and
D40, localizing in the exposed loops of the GFCC=C� face of the
N-terminal domain of hCEA, as being involved in DraE adhesin
subunit binding. In contrast, the hCEACAM8 N-terminal domain
is not recognized by Afa/Dr adhesins (160), which is consistent
with previous results in transfected CHO cells expressing
hCEACAM8 (274). A nuclear magnetic resonance (NMR) analy-
sis of the hCEA binding site of DraE and AfaE-III-dsc adhesin
subunits has revealed a site that overlaps a surface area of approx-
imately 1,446 Å, localizing primarily in the A, B, E, and D strands
(160) at the opposite end of the � sheet including the binding site
for hDAF (158) (Fig. 3E). Korotkova et al. (188) analyzed the
receptor clustering induced by E. coli expressing DraE, the DraE
D61A adhesin subunit mutant deficient in hDAF binding, or the
NfaE adhesin subunit, which binds only to hDAF, and showed
that the DraE-expressing E. coli recruited both hDAF and
hCEACAMs, that the DraE-D61A adhesin subunit-expressing E.
coli recruited only hCEACAMs, and that the NfaE adhesin sub-
unit-expressing E. coli recruited only hDAF when adhering to pri-
mary epithelial bladder cells expressing hDAF and hCEACAMs.

The P40S, P43V, R86G, G113A, and Y115A mutations in the
DraE adhesin subunit severely affect binding to hCEA (160). As
for hDAF (161, 162, 170, 185, 187, 261), the binding of DraE
adhesin subunit-expressing E. coli to hCEA was inhibited by
chloramphenicol, whereas the binding of the AfaE adhesin sub-
unit III-expressing E. coli to hCEA was resistant to chloramphen-
icol (160).

Some hCEACAMs can form homophilic (hCEACAM1/
hCEACAM1, hCEA/hCEA, and hCEACAM6/hCEACAM6) and
heterophilic (hCEA/hCEACAM1, hCEA/hCEACAM6, and hCEA/
hCEACAM8) complexes which form strong intercellular adhesion
bonds that are involved in cell-to-cell interactions (275). Al-
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though no relationship has been established with microbial
pathogenesis, the recognition of the N-terminal domain of hCEA
by the DraE adhesin subunit leads to an unexpected structural
consequence (284). The binding of the DraE adhesin subunit to
the N-terminal domains of the hCEA/hCEA dimer is followed by
the dimerization of the complex. It is noteworthy that in the phys-
iological situation of the epithelia, the homophilic and hetero-
philic dimers of hCEACAM are not accessible to Afa/Dr DAEC,
since they are located at the junctional domain of polarized epi-
thelial cells.

(v) Receptors for microbial pathogens. hCEACAM1, hCEA,
and hCEACAM6 have been shown to be recognized by some
strains of E. coli and some Salmonella species, probably at ex-
tramembrane glycosylated domains (285–287). Moreover,
hCEACAM6 functions as a cell receptor for the AIEC strain LF82
(288). hCEACAMs are important for the pathogenicity of Neisse-
ria, since after they are recognized by opacity proteins (Opa), these
membrane-bound molecules triggered cell signaling, allowing
the bacteria to penetrate into human tissues (289). As described
above for Afa/Dr adhesins, Opa interactions with hCEACAM1,
hCEACAM3, hCEA, and hCEACAM6 have been identified,
whereas Opa do not interact with hCEACAM4, hCEACAM7,
and hCEACAM8. It is worth underlining that Opa52 binds
hCEACAM1, hCEACAM3, hCEA, and hCEACAM6, Opa53 spe-
cifically recognizes hCEACAM1, Opa54 binds to hCEACAM1 and
hCEA, and Opa55 is hCEA specific. It is important to note that
CEACAM recognition by Neisseria Opa (290) and Afa/Dr ad-
hesins (274) is highly human specific. hCEACAM1 is also recog-
nized as a receptor by the outer membrane protein P5 of typeable
and nontypeable Haemophilus influenzae which can cause diseases
including otitis media, conjunctivitis, sinusitis, pneumonia, and
chronic bronchitis and the progression of chronic obstructive pul-
monary disease (COPD) (291). Moreover, a major outer mem-
brane protein of Moraxella catarrhalis strains associated with
sinusitis, exacerbations of asthmatic conditions, and otitis and a
cause of lower respiratory tract infections in adults, especially in
patients with COPD, also interacts with CEACAM1 (292). It is
interesting to note that like Afa/Dr DAEC (160, 284), the N-ter-
minal domains of CEACAMs are targeted by the adhesive factors
of Neisseria (293), H. influenzae (291), M. catarrhalis (292), and
mouse hepatitis virus strain A59 virus (294, 295). In contrast, the
FimH variant of the AIEC prototype wild-type strain LF82 prob-
ably recognizes glycosylated epitopes at the IgAs domain of
CEACAM6 (288). In addition, CEACAM1-4L acts as a receptor
for lipopolysaccharide (LPS) and lipooligosaccharide (296), in
turn promoting Toll-like receptor 4 (TLR4)-dependent cell sig-
naling responses (296, 297).

Basement membrane type IV collagen. Basement membrane-
associated proteins include fibronectin, laminin, tenascin, and
heparin sulfate proteoglycans and type IV collagen (298). Type IV
collagen interacts with integrins expressed at the membrane basal
domain of polarized intestinal cells to structurally form the epi-
thelium (299). Dr adhesin is unique in the Afa/Dr family of ad-
hesins as recognizing the 7s domain of the type IV collagen (186,
300) (Table 1). By SPR analysis, the resonance signal indicates that
the DraE adhesin subunit and type IV collagen form a stable com-
plex (187). Carnoy and Moseley (185) have shown that mutations
at positions 32, 40, 54, 88, 90, and 113 of the DraE adhesin subunit
affect the type IV collagen binding and chloramphenicol sensitiv-
ity of binding, without affecting the hDAF-binding capability. The

amino acids Pro40, Pro43, Ile114, and Tyr115 are also important
for DraE adhesin subunit/type IV collagen interactions, since mu-
tations P40A, P43V, I114A, and Y115A lead to a complete loss of
recognition (187). Moreover, mutations in the two conserved cys-
teine residues forming a disulfide bond, which is necessary for
stabilizing elements of the immunoglobulin fold of the Dr adhesin
(174), abolish both MRHA and binding to type IV collagen (185).
The role of type IV collagen in the pathogenesis of Afa/Dr DAEC
remains largely elusive. It has been reported that the type IV col-
lagen-binding phenotype is necessary for Dr adhesin-positive E.
coli to induce pyelonephritis in a mouse model (301). However,
the basolateral localization of type IV collagen in the epithelium
prevents it from functioning as a receptor for Dr adhesin during
Afa/Dr DAEC intestinal and urinary tract infections, since epithe-
lial colonization strikingly develops at the cell domain facing the
luminal compartments, which are devoid of type IV collagen ex-
pression. In the context of diseases in which the epithelia are struc-
turally deregulated, the basement membrane domain becomes
available for pathogenic bacteria that recognize basement mem-
brane-associated molecules as receptors.

�1 Integrin. AfaED-dsc, but not AfaE-dsc, interacts with two
integrins: �5�1 and �v�3 (167). However, there was a low-affinity
interaction between DraD subunit and �1 integrin as observed by
SPR analysis (167, 188). Considering the presence of DGR tripep-
tides and an RDG sequence in the AfaD-III subunit, Cota et al.
(167) have proposed that the recognition of �1 integrin at a low
level of affinity results in binding by these two nonsequential mo-
tifs. Intriguingly, when Korotkova et al. (188) used SPR analysis to
test the binding to �1 integrin of the whole Dr adhesin, they found
no detectable association, suggesting that the association detected
with the DraD adhesin subunit cannot reflect the normal bacterial
situation in which the Dr adhesin is well formed and expressed at
the E. coli cell surface.

Receptor Clustering and Cell Signaling

As recently reviewed by Schmick and Bastiaens (302), the signal-
ing activity at cellular membranes depends on constant mem-
brane reshaping plus interactions with the dynamic cytoskeleton,
thereby regulating the potency of molecular reactions between
membrane-associated structural components and signaling mol-
ecules. The epithelial membrane-bound proteins that function as
receptors for Afa/Dr adhesins are known to trigger cell signaling
after antibody ligation (303, 304) or activation by chemical mol-
ecules (305–307). It is noteworthy that the physiological ligands
that produce cell signaling by hDAF and hCEACAMs are not
known. Adhesive factors of bacterial pathogens and viruses have
been reported to trigger cell signaling in epithelial cells expressing
hDAF and/or hCEACAM1 and CEACAM6 (308, 309). Whether
cell signaling is induced following the recognition of hCEA by
adhesive factors of bacterial pathogens remains in debate. Afa/Dr
adhesins have been found to trigger various different cell signaling
pathways after recognition of hDAF and hCEACAM1 in epithelial
cells, some of which are involved in a wide variety of cellular inju-
ries or cell responses.

Mobilization of adhesin receptors and constituents of cell
membrane-associated lipid rafts. Membrane lipid rafts are het-
erogeneous sterol-sphingolipid-enriched domains that can dy-
namically associate and dissociate (310, 311). How lipids and pro-
teins assemble for the structural and functional organization of
the membrane lipid rafts remains not entirely understood. In the
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cell membrane, these dynamic entities assemble molecules ex-
pressing the GPI anchor, acylation, or certain transmembrane do-
mains which, following the recruitment and connection with cy-
toplasmic effectors, function as platforms of signal transduction.
Different models of lipid raft organization have been proposed,
including the model for the apical membrane of epithelial cells
proposed by Kay Simons and coworkers (312) consisting of a con-
tinuous lipid raft phase within which isolated non-lipid raft-phase
domains are randomly distributed. It has been proposed that the
family of integral membrane flotillin/reggie proteins facilitates the
physical organization of lipid raft macrodomains (313–315).
Moreover, a particular lattice network of filaments named the
cortical actin cytoskeleton underlies the plasma membrane and
allows a connection with lipid rafts (316). In addition, other pro-
teins, including supervillin, myosin-IIA, myosin IG, and ezrin-
radixin-moesin (ERM), associate with lipid rafts to establish a
connection with the cortical actin cytoskeleton (316). By their
adhesins that recognize signaling molecules associated with lipid
membrane rafts, Afa/Dr DAEC activates diverse signaling path-
ways that produce deleterious effects on the host cells but also

various cellular defense responses against infection (Fig. 4). Wild-
type Afa/Dr DAEC and recombinant strains of E. coli that express
the AfaE-I, AfaE-II, and AfaE-III Dr adhesin subunits, the Dr-II
adhesin, or the F1845 adhesin promote the hDAF receptor clus-
tering around bacteria adhering to the epithelial cell surface (39–
41, 45, 102, 188, 189, 258, 317, 318) (Fig. 3F and G). Using draE
mutants with impaired type IV collagen and chloramphenicol
binding sensitivity but retaining hDAF-binding capability (185),
it has been observed that D54V, D54Y, T90M, and I113T DraE
adhesin subunit mutants conserved the property of inducing
hDAF receptor clustering around adhering bacteria, while the
D54G mutant (Asp54 was replaced with glycine) and the D54C
mutant (Asp54 was replaced with cysteine) lose the receptor-clus-
tering activity (41). Das et al. (319) observed that hDAF receptor
clustering around adhering bacteria was lower in HeLa and CHO-
hDAF cells infected with E. coli mutants in which mutations at the
T31A and Q34A amino acids of the DraE adhesin subunit hydro-
phobic II domain had been induced. Guignot et al. (41) deter-
mined the roles of hDAF epitopes in hDAF receptor mobilization
around adhering Dr-positive bacteria. Using hDAF mutants ex-

FIG 4 Summary of lipid raft-associated signaling pathways involved in Afa/Dr DAEC pathogenesis. A high-magnification micrograph shows a bacterium
interacting with a large number of microvilli at an early time postinfection. Afa/Dr adhesins recognize as receptors the GPI-anchored hDAF, hCEA, and
hCEACAM6 and the transmembrane hCEACAM1 proteins. hDAF, hCEA, and hCEACAM6 are endogenously associated with lipid rafts, and a part of
hCEACAM1 is translocated within membrane lipid rafts after Afa/Dr DAEC infection. hDAF-dependent signaling involving protein tyrosine kinase(s), phos-
pholipase C	, phosphatidylinositol 3-kinase (PI3K), protein kinase C, and an increase in [Ca2�]i leads to structural and functional lesions at the brush border of
enterocyte-like cells. hDAF-, hCEA-, and hCEACAM6-dependent signaling involving the Rho GTPase Cdc42 and ERM proteins leads to membrane elongation.
hDAF-dependent signaling involving MAPKs and PI3K/Akt lead to HIF-�-dependent VEGF production and epithelial-mesenchymal transition (EMT). hDAF-
dependent signaling involving MAPKs leads to proinflammatory cytokines responses, PMNL transmigration, and autophagy followed by cell detachment. Src
kinase is necessary for hDAF clustering around adhering bacteria. Phosphorylation of hCEACAM1-4L at ITIMs and recruitment of SHP-2 lead to a negative
regulation of phosphorylation of Src associated with hDAF signaling. The DraE-, DaaE-, and AfaE-triggered dynamic microtubule-dependent internalization of
bacteria is a lipid raft-dependent phenomenon involving hDAF, hCEACAM1, hCEA, and hCEACAM6.
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pressed by stably transfected CHO cells, it has been found that the
absence of CCP2 or CCP3 entirely abolished the receptor-cluster-
ing activity. Absence of the CCP-4 domain did not affect receptor
clustering, whereas the role of the CCP-1 domain remains uncer-
tain (41, 258). Moreover, the lack of the heavily O-glycosylated
STP region abolished the receptor-clustering activity (41).

Guignot et al. (41), when they first identified hCEA as a recep-
tor for Dr and F1845 adhesins in stably transfected HeLa cells
expressing hCEA, observed the hCEA receptor clustering around
Dr adhesin-positive E. coli infecting HeLa cells (Fig. 3F and G).
Berger et al. (274), when identifying the epithelial hCEACAM1
and hCEACAM6 as additional receptors for the Dr adhesin, F1845
adhesin, and AfaE-III adhesion subunit, observed hCEACAM re-
ceptor clustering around adhering Dr adhesin-positive E. coli (Fig.
3F and G). Like hDAF receptor clustering, the hCEA receptor
clustering is not promoted by the DraE adhesion subunit mutant
D54C (41). Consistent with the presence of distinct hDAF and
hCEA binding domains in the DraE adhesin subunit (160) (Fig.
3E), colocalization of hDAF and hCEACAM immunolabeling de-
velops around Dr adhesin-positive E. coli adhering to HeLa cells
constitutively expressing hDAF and transfected for the expression
of hCEA (274) (Fig. 3G).

Membrane-associated lipid rafts are currently defined as dy-
namic sterol-sphingolipid-enriched nanoscale domains of differ-
ent sizes containing GPI-anchored proteins (310–312). Interest-
ingly, quite large and highly stably organized “super lipid rafts” are
present at the membrane of the brush border of enterocytes (320,

321). Adherence of Dr adhesin-positive bacteria to epithelial
HeLa cells constitutively expressing hDAF, to stably trans-
fected CHO cells expressing hDAF, hCEA, and/or hCEACAM6,
or to HeLa cells transfected for stable expression of hCEA or
hCEACAM6 results in recruitment of raft markers GM1 and
VIP21/caveolin (188, 317) (Fig. 5A). A similar recruitment of
VPI21/caveolin has been observed around Dr adhesin-positive E.
coli infecting primary bladder epithelial cells (188). The mobiliza-
tion of lipid rafts has also been observed for viruses recognizing
hDAF (322, 323) and Opa-expressing Neisseria recognizing
hCEACAMs (324, 325). The cortical actin cytoskeleton provides a
structural organization of lipid rafts, and a well-organized actin
cytoskeleton is required for the completion of regulating raft-as-
sociated signaling events (316). In stably transfected cells express-
ing hDAF, hCEA, or hCEACAM6, the receptor clustering around
adhering Dr adhesin-positive E. coli is associated with the cluster-
ing of fine rings of cytoskeleton-associated proteins, such as F-ac-
tin, �-actinin, and phosphorylated ezrin (40, 188, 317). In con-
trast and surprisingly, there was an absence of recruitment of
F-actin around Dr adhesin-positive E. coli infecting primary blad-
der epithelial cells constitutively expressing hDAF (188). The
Afa/Dr adhesin-induced F-actin mobilization differed markedly
from the dramatic F-actin mobilization induced by EPEC (326)
and Salmonella (327). Fine rings of F-actin have also been ob-
served to be associated with Opa-expressing Neisseria infecting
hCEACAM1-, hCEA-, and hCEACAM6-expressing cells, whereas
dense rings of F-actin ringed the Opa-expressing Neisseria adher-

FIG 5 hDAF- and hCEACAM1-4L-associated lipid raft signaling pathways involved in Afa/Dr DAEC pathogenesis. (A) Micrographs show the observation by
CLSM of the mobilization of the lipid raft marker ganglioside GM1 around Dr adhesin-positive E. coli adhering to HeLa cells. Yellow, colocalization of Dr adhesin
and GM1 immunolabelings. (Reprinted from reference 317.) (B) Dr adhesin-induced phosphorylation of Src in infected HeLa cells. (C) Passage of hCEACAM1
into lipid rafts in transfected hCEACAM1-HeLa cells infected with Dr adhesin-positive E. coli. TfR, non-lipid raft transferrin receptor. (D) Recruitment of SHP-2
around Dr adhesin-positive E. coli adhering to transfected HeLa cells expressing hCEACAM1. (E) Time-dependent association of SHP-2 with hCEACAM1 in
transfected HeLa cells expressing hCEACAM1 and infected with Dr adhesin-positive E. coli. (In panels B to E, data and micrographs reprinted from reference 318
with permission.) The drawing on the right indicates the sites of phosphorylation observed in hDAF and hCEACAM1-4L after Afa/Dr DAEC infection.
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ing to hCEACAM3-expressing cells (328). The fine rings accom-
panied the low level of F-actin-independent cell entry into
hCEACAM1-, hCEA-, and hCEACAM6-expressing cells, and
the dense rings accompanied the high level of F-actin-depen-
dent, small Rac1- and Cdc42 GTPase-triggered cell entry into
hCEACAM3-expressing cells (329, 330). It is noticeable that the
low level of Afa/Dr DAEC internalization into hCEA- and
hCEACAM6-expressing HeLa and CHO cells is not affected by
cytoskeleton blockers (189, 284, 317, 331). Moreover, the recruit-
ment of F-actin around adhering Dr adhesin-positive bacteria
plays no role in bacterial internalization, since although the DraE
adhesion subunit mutant D54G has impaired F-actin mobiliza-
tion, it displays an unchanged level of cell entry (317). Collec-
tively, the results obtained with Afa/Dr DAEC indicated that the
recruitment of F-actin forming a fine ring around adhering bac-
teria probably reflects the physical mobilization of F-actin-con-
taining lipid rafts by the adhering bacteria rather than the recruit-
ment of F-actin for subsequent bacterium-triggered cellular
events.

During the adhesion step preceding cell entry, the �5�1 integ-
rin has been observed to be mobilized so as to form fine rings
around adhering Dr adhesin- or AfaE-III adhesion subunit-posi-
tive bacteria (188, 189, 317, 332). In addition, AfaE/D adhesin
subunit-coated beads adhering onto HeLa cells are decorated by
rings of positive immunofluorescence for �5�1 integrin (167).
Moreover, it was noted that the clustering of �1 integrin around E.
coli adhering to CHO-hDAF-�5�1 cells occurred for bacteria ex-
pressing DraE or AfaE-III adhesin subunits alone, regardless of the
presence or absence of DraD or AfaD-III adhesin subunits (189).
The mobilization of �1 integrin by Afa/Dr DAEC adhering to the
cell surface of undifferentiated epithelial cells could result from
the mobilization of lipid rafts containing integrins. Indeed, integ-
rins have been found in lipid rafts engaged in cell adhesion (333–
335), cell migration (336, 337), and contractile forces for cell in-
vasion (337–339). As discussed above for F-actin mobilization,
the recruitment of �1 integrin by adhering Afa/Dr DAEC can
reflect the physical mobilization of �1 integrin-containing lipid
rafts by the adhering bacteria.

hDAF-dependent signaling. hDAF has a signal transduction
capacity associating Src tyrosine kinases p56lck and p59fyn (251).
Phosphorylation of Src develops in epithelial HeLa cells infected
with Dr-positive E. coli (318) (Fig. 5B). When examining the in-
volvement of Src kinases in Dr adhesin-induced hDAF signaling,
Queval et al. (258) observed the recruitment of phosphorylated
Src kinases together with hDAF around adhering recombinant Dr
adhesin-positive E. coli in infected hDAF-transfected CHO cells
and in constitutively hDAF-expressing HeLa and human embry-
onic kidney HEK293 cells. CCP-4 of hDAF plays a crucial role in
the recruitment of phosphorylated Src kinases and Src kinase ac-
tivation, while deletion of CCP-1 had no effect. Moreover, small
interfering RNA (siRNA) silencing of c-Src in HeLa cells abolishes
hDAF clustering around adhering Dr-positive bacteria, while
siRNA silencing of the Src kinases Yes, Fyn, and Lyn does not
(258). Finally, the observation that the D54C DraE adhesion sub-
unit mutant fails to induce hDAF clustering and Src recruitment
confirms the predominant role of this domain of the DraE adhesin
subunit in triggering cell responses.

A variety of cell signaling pathways are activated after the rec-
ognition of hDAF by Afa/Dr adhesins. Phosphatidylinositol 3-ki-
nase (PI3K) is activated in undifferentiated intestinal INT407 cells

(340), and phosphorylated PI3K is recruited around Dr adhesin-
positive E. coli adhering to human differentiated primary bladder
cells expressing hDAF and hCEACAMs (188). Triggered by the Dr
and F1845 adhesins, an hDAF-dependent activation of mitogen-
activated protein kinases (MAPKs), including extracellular signal-
regulated kinase 1/2 (Erk1/2), p38 mitogen-activated protein ki-
nase (p38), and stress-activated protein kinase/c-Jun N-terminal
kinase SAPK/JNK (JNK), occurred in enterocyte-like Caco-2 cells
and colonic T84 cells (341–345). Src kinase and NF-
B and AKT
signaling pathways are hDAF-dependently activated in C1845-
infected T84 cells (345). Moreover, hDAF-dependent activation
of tyrosine kinases and protein kinase C (PKC) develops in Afa/Dr
DAEC-infected polymorphonuclear leukocyte (PMNL)-like cells
(346). In addition, MAPK and NF-
B activation occurred in
PMNL-like cells triggered by type 1 pili and independently of
hDAF recognition (347).

hCEACAM-dependent signaling. Like the Opa52 protein of Neis-
seria, which recognizes the N-terminal domain of CEACAM1-4L
and promotes its association with the tyrosine phosphatases
SHP-1 and SHP-2 in the cytoplasmic ITIM domains (348), Dr
adhesin-expressing E. coli binding to HeLa cells transfected for the
expression of hCEACAM1-4L leads to the translocation of a part
of CEACAM1-4L into the membrane lipid rafts and phosphory-
lation of its ITIM and SHP-2 recruitment (318) (Fig. 5C to E). In
turn, hCEACAM1-4L has been found to play a key role in down-
regulating the activity of the protein tyrosine Src kinase associated
with hDAF signaling (318).

Urinary Tract Infections and Pregnancy Complications

Recurrent cystitis in the bladder and acute pyelonephritis in the
kidney, corresponding to 80% of all UTIs, result from infection by
UPEC (199, 349). Bacteriuria is the clinical sign of UTI. Recurrent
cystitis is a major health problem. Indeed, a recurrence of cystitis
within 3 to 4 months develops in 20 to 30% of women who had
developed a first acute infection. Lower UTIs affect the urethra
and bladder, whereas upper UTIs affect the ureters and kidneys,
and both can be either uncomplicated or complicated. Cell insults
together with an intense mucosal inflammatory response, includ-
ing the recruitment of neutrophils, lead to cystitis in bladder and
pyelonephritis in kidney. It should be noted that asymptomatic
bacteriuria (ABU) has been observed in 2 to 20% of the popula-
tion, depending on age and gender (199). The infecting E. coli
strain involved in ABU colonizes the urothelium and may remain
present for months or years, resulting in a low-level deleterious
tissue attack effect and an innate immune response that is too
weak to cause symptoms. The observation that UPEC virulence
gene sequences remained present in ABU strains has led to the
suggestion that the lower virulence of ABU results from a shift
from UPEC as a result of genome reduction caused by inactivation
of virulence genes as well as by deletions or by the accumulation of
point mutations (350, 351), although other causes can also be
involved (352).

UPEC strains have an elevated organ tropism and ascend the
urinary tract from the urethra to the bladder and kidneys (1, 199,
232). To do this, UPEC expresses a wide variety of adhesive fac-
tors, including type 1 pili, type IV pili, and P, S, F1C, Auf, Yad, Ygi,
and F9 fimbriae (199, 353). Moreover, UPEC has developed a
reciprocal regulation of adhesive factors and motility (199). UPEC
strains have developed sophisticated strategies to avoid clearance
by micturition involving colonization of the urothelium and cell
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internalization, which thus allow them to survive and evade host
innate immune defenses. For pathogenesis, UPEC expresses PAIs
of different sizes containing assemblages of genes encoding viru-
lence factors such as adhesins, invasins, capsule, proteases, and
multiple siderophore systems, including aerobactin, IroN, and
IreA (199). Moreover, UPEC secretes cytotoxic toxins, including
the repeat-in-toxin �-hemolysin (HlyA), cytotoxic necrotizing
factor (CNF-1), and diverse SPATE toxins, such as Sat, Pic, PicU,
Tsh, and Vat. In addition, UPEC adapts to survive in the urine by
expressing factors involved in scavenging of nutrients.

Internalization. Cell entry of E. coli expressing the Dr, F1845,
or Afa-III adhesin has been examined in cervical epithelial HeLa
cells and endometrial cells constitutively expressing hDAF but not
hCEACAMs, in undifferentiated intestinal cells and differentiated
primary epithelial bladder cells constitutively expressing hDAF
and hCEACAMs, and in CHO or HeLa cells transfected for stable
expression of hDAF, hCEACAM1, hCEA, or hCEACAM6 (38, 42,
188, 189, 234, 259, 317, 319, 331, 332, 354). Afa/Dr DAEC displays
a rate of cell entry similar to that observed with UPEC expressing
type 1 pili (199, 232). Dr and Afa-III adhesin-positive E. coli used
a membrane zipper-like mechanism to enter the HeLa cells (42,
317), and Afa-III adhesin-positive E. coli entered the cells via a
single internalization vacuole (42). The cell membrane lipid rafts
play a pivotal role in the internalization of Dr- and Afa-III adhe-
sin-positive E. coli into cultured cervical HeLa cells, primary cul-
tured human bladder cells, and epithelial cells transfected to ex-
press hDAF, hCEACAM1, hCEA, or hCEACAM6 by a mechanism
involving cell microtubules but not microfilaments (38, 188, 189,
259, 317, 331). A particular network of microtubules, i.e., the dy-
namically unstable microtubule network, has been found to be
involved in the cell entry of Dr adhesin-positive E. coli (331). Rana
et al. (234), using a PCR-based proximity ligation assay to detect
protein-protein interactions, observed a strong fluorescent signal
of hDAF/tubulin in Dr-positive E. coli-infected HeLa cells result-
ing from the proximity between the two molecules, suggesting
that hDAF and microtubules can be physically associated after
infection. The Afa/Dr DAEC cell entry resembles the lipid raft-
and microtubule-dependent zipper-like uptake of Opa-express-
ing Neisseria into transfected CHO and HeLa cells expressing
hCEA or hCEACAM6 (330). It was noted that a few invasive bac-
teria, including, for example, Haemophilus influenzae, Klebsiella
pneumoniae, and pilus type 1-expressing UPEC, also require a
functional host microtubule network for the invasion of host ep-
ithelial cells (355). Consistent with the F-actin microfilament-in-
dependent cell entry of Dr-positive E. coli, the DraE adhesin sub-
unit mutant strains D54G and D54C, showing absence and
presence of changes in F-actin mobilization around adhering bac-
teria, respectively, displayed unchanged levels of cell internaliza-
tion (317). Microtubule-dependent internalization of Dr adhesin-
positive E. coli within primary bladder epithelial cells has been
found to result from the engagement of the actin-binding proteins
ezrin/radixin/moesin (ERM) (188). Observations that phosphor-
ylation of ERM accompanied the Dr-positive E. coli cell entry
(188) agree well with the know role of ERM, which together with
Rho GTPases act in the remodeling of host cell cytoskeleton (356).
It has been noticed that the efficiency of bacterial cell entry result-
ing from the action of T3SS-dependent effectors seems to be
higher than that resulting from microtubule-dependent processes
triggered by bacteria that do not express the T3SS.

Selvaragan et al. (259) have determined the roles of hDAF
epitopes in the cell entry of Dr adhesin-positive bacteria using
hDAF deletion mutants expressed by stably transfected CHO cells.
The absence of CCP-2 or CCP-3 entirely abolished the cell entry of
Dr-positive bacteria, whereas the lack of CCP-1 or CCP-4 had no
effect. Deletion of the heavily O-glycosylated STP region abol-
ished the cell entry. In contrast, replacing the GPI anchor with the
transmembrane anchor of HLA-B44 or membrane cofactor pro-
tein did not modify the cell entry. Rana et al. (234) have examined
for adhesion/invasion five hDAF mutants previously used to map
the extracellular CCP-2/CCP-3 domains of hDAF involved in Dr
adhesin-positive E. coli adhesion (260). Compared to hDAF, the
Phe123-Ala mutant conserves both normal binding activity and
invasion rate, the Ser165-Ala mutant conserves normal binding
activity but displays a lower invasion rate, and the Gly159-Ala
mutant shows both reduced binding capacity and a lower invasion
rate. In contrast, the Phe148-Ala and Phe154-Ala mutants display
normal binding capacity combined with an increased rate of in-
vasion.

In terms of cell signaling, protein tyrosine kinases (PTKs),
phospholipase C	 (PLC-	), and protein kinase C (PKC) blockers
have no effect on the cell internalization of Dr adhesin-positive E.
coli (317). In contrast, the PI3K-dependent signaling pathway is
engaged in the internalization of Dr adhesin-positive E. coli into
hCEACAM1-, hCEA-, and hCEACAM6-expressing epithelial
cells but not hDAF-expressing cells (188). While Src-dependent
signaling does not play any role in internalization (188), Src and
phosphorylated Src have been observed to be recruited around
adhering Dr-positive E. coli (258).

The �1 integrin is the host cell receptor triggering the zipper-
like internalization of type 1 pilus-expressing UPEC (199, 232). A
polyclonal antibody directed against anti-�5�1 integrin abolishes
the basolateral entry of Dr adhesin-positive E. coli within undif-
ferentiated intestinal Caco-2 cells (331). Comparison of the cell
entry of beads coated with rAfaD-III adhesin subunit into mouse
endodermal carcinoma F9-TKO cells stably transfected or not to
express �1 integrin shows that the presence of the integrin in-
creased the bead internalization level 2.3-fold (332). In addition,
in HeLa cells subjected to incubation with AfaD-III or AfaD-VIII
adhesin subunits, membrane immunoprecipitation showed that
AfaD-III and -VIII adhesin subunits coprecipitated with �1 integ-
rin (332). The role of �5�1 integrin as a receptor for internaliza-
tion of E. coli expressing Dr- or Afa-III adhesin subunits into ep-
ithelial cells has been recently revisited (189). The overexpression
of �5�1 integrin as a result of transfection in the CHO B2 clone,
which does not express �5�1 integrin, does not increase the levels
of adhering and internalized Dr- or Afa-III adhesin-positive E. coli
compared to that in untransfected cells. To test whether the coex-
pression of �5�1 integrin together with hDAF, hCEACAM1,
hCEA, or hCEACAM6 influences the adhesion and/or cell entry of
Dr adhesin-positive E. coli, CHO cells transfected for the stable
expression of hDAF, hCEAM1, hCEA, or hCEACAM6 were trans-
fected again with the gene coding for the �5 or �1 integrin subunit
(189). In all cases, the presence of �5�1 integrin together with
hDAF or CEACAMs did not increase the levels of adhering and
internalized Dr adhesin-positive E. coli. In addition, the knock-
down of the gene coding for �1 integrin by siRNAs in HeLa cells
constitutively expressing �5�1 integrin did not affect the level of
adhering and internalized Dr- or Afa-III adhesin-expressing E. coli
compared to that in untreated cells (189). It is important to note
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that the fact that integrins are located exclusively at the basolateral
domain and never at the brush border of the polarized intestinal
epithelial cells renders the integrins inaccessible for intestinal ep-
ithelium infection by enterovirulent Afa/Dr DAEC residing
within the luminal compartment.

The identity of the virulence factor(s) of Afa/Dr DAEC in-
volved in the invasion of epithelial cells has long been debated. It
has been proposed by Le Bouguénec and coworkers (357) that the
D adhesin subunits encoded by the dra, daa, and afa-1 to -3 oper-
ons function as an invasin for the entry of Afa/Dr DAEC into
urothelial and bladder cells. DraD and AfaD adhesin subunits
have been identified at the tips of Afa/Dr fibrils (167, 180). AfaD
protein, unlike the AfaE protein, was able to detach from the bac-
terium (28, 168, 169). Using recombinant E. coli producing the
AfaD or AfaE-III adhesin subunit, it has been observed that the
AfaE-III adhesin subunit triggers the binding of the recombinant
E. coli to cells and that the AfaD adhesin subunit mediates the cell
entry within epithelial HeLa cells (42, 168). When HeLa cells are
infected with an Afa-III adhesin-positive E. coli strain, the AfaE-III
protein remains localized at the membranes of infected cells, and
only the AfaD-III protein coats the internalized bacteria residing
within an internalization vacuole (169). In addition, coating poly-
carbonate beads with AfaD protein allows the beads to penetrate
the epithelial cells (28). Moreover, using colloidal gold-tagged
AfaE-III and AfaD proteins, it has been shown that AfaE-III– gold
complexes associate with the cell surface, whereas AfaD-gold
complexes are internalized within the cells (42). In human undif-
ferentiated Caco-2, T84, and INT407 cells, urothelial T24 cells,
and cervical HeLa cells, rAfaD-III- and rAFaD-VIII adhesin sub-
unit-coated beads invaded the cells, whereas rAfaE-III adhesin
subunit-coated beads were not internalized (332). In contrast, ac-
cording to Nowicki and coworkers, the DraE adhesin subunit
alone is sufficient to allow the entry of Dr adhesin-positive bacte-
ria into epithelial cells. Indeed, both the purified Dr fimbriae and
latex beads coated with Dr adhesin are internalized into HeLa cells
(259, 319). Moreover, the insertional draE, draC, and draB and
adherent draD mutants were unable to enter epithelial cells, and
complementation of the draE mutation restored the invasion
property (38). Mapping of the DraE adhesin subunit shows that
amino acids localized on hydrophilic domain II, and in particular
the V28, T31, G33, Q34, L35, T36, and P40 amino acids, reduced
or abolished bacterial cell entry into transfected CHO-hDAF cells
and HeLa cells constitutively expressing hDAF but did not affect
attachment (319). The role of E and/or D adhesin subunits in the
internalization of Afa/Dr DAEC has been recently reexamined
using appropriate E. coli mutant strains and cultured unpolarized
epithelial cells and bladder cells (188, 189). Korotkova et al. (188)
found that expressing combinations of the DraE�/DraD� and
DraE�/DraD� adhesin subunits allowed E. coli to enter differen-
tiated primary bladder cells, while the combination of DraE�/
DraD� adhesin subunits did not. Guignot et al. (189) have found
that in CHO cells transfected to express hDAF and �5�1 integrin,
recombinant E. coli expressing combinations of DraE�/DraD� or
AfaE�/AfaD�-III adhesin subunits adhered and were internalized
and that deletion of the DraD adhesin subunit did not modify the
level of internalized bacteria. Collectively, these last findings fit in
well with the previous results reported by Nowicki and coworkers
(38, 319), and taken together they clearly establish that the DraE
and AfaE-III adhesin subunits are necessary and sufficient to pro-
mote the cell entry of Dr and Afa-III adhesin-expressing E. coli

into epithelial cells. However, one question remains unresolved
concerning the functions of the DraD, AfaE, and DaaD adhesin
subunits in the pathogenesis of Afa/Dr DAEC when the proteins
are detached from the fimbriae (42) or when each of the proteins
are present alone at the bacterial cell surface (42, 168, 169). It is
noteworthy that the DraD adhesin subunit, whether fimbria asso-
ciated or not, seems to function in the formation of biofilm by Dr
adhesin-expressing E. coli (190, 233).

Intracellular lifestyle. When internalized within nonphago-
cytic epithelial cells, enteric bacterial pathogens reside and survive
in the cell cytoplasm in small or large vacuoles, where they may or
may not replicate (358); only a few invasive enteric bacterial
pathogens have developed strategies to escape from the vacuole to
gain access to and proliferate within the host cell cytosol (359).
After entering HeLa cells inside a single internalization vacuole,
Afa/Dr DAEC survived within large late vacuoles (38, 40, 42, 94,
189, 234, 259, 319, 331, 332) (Fig. 6A). As revealed by transmission
electron microscopy examination, the late large vacuole contain-
ing internalized Dr or Afa-III adhesin-expressing bacteria appears
to result from the fusion of early vacuoles formed during the ini-
tial step of the internalization process, each containing a single
bacterium (42, 234, 259, 319). Recent data have shown that the
internalization vacuoles containing Dr adhesin-positive bacteria
interacted with the cell endocytic pathway. This pathway includes
a complex and multifunctional set of vesicular compartments es-
sentially derived from internalization of the plasma membrane,
resulting in the formation and maturation of well-formed endo-
cytic compartments (360). These compartments are sequentially
modified by acquiring diverse vesicular elements to form the early
endosomes and subsequently the late endosomes. In the last step,
the intraluminal vesicles are taken for delivery of their contents to
the lysosome, which is a stable organelle that avoids self-degrada-
tion (361). The intracellular vacuoles containing Dr adhesin-pos-
itive E. coli display some of the characteristics of late endosomes,
such as the membrane expression of the Lamp-1, Lamp-2, and
CD63 proteins but not of cathepsin D, and are acidic (189) (Fig.
6B). This resembles the characteristics of the UPEC UTI89-con-
taining vacuoles, which are positive for Lamp-1 and CD63, ca-
thepsin D negative, and acidic (362). Surprisingly, despite the facts
that Dr adhesin-positive bacteria bind to membrane-associated
hDAF during the first step of cell association (41, 257–260) and
that hDAF has been observed associated with the membrane in-
vagination during the first step of adhesion/internalization (45),
the membranes of the large late vacuoles containing the internal-
ized Dr-positive bacteria do not contain hDAF (189).

Cellular autophagy (363) is an evolutionarily conserved pro-
cess by which cellular cytosolic structures and cell constituents are
degraded and recycled (364). Some intracellular bacteria are de-
tected and eliminated via the autophagic pathway, and several
intracellular bacteria have developed sophisticated avoidance
strategies, but this pathway may also serve as a protected niche
providing a source of nutrients for intracellular bacteria (365).
Infecting UPEC was rapidly cleared in the presence of a deficiency
of the key autophagy protein Atg16L1, suggesting that UPEC may
subvert autophagy proteins to establish latency (366). However,
the autophagy pathway can favor the pathogen, since internalized
bacteria present within intracellular bacterial communities in su-
perficial bladder cells colocalized with Atg16L1 and LC3 puncta
(366). No interaction has been observed between the Dr adhesin-
positive E. coli-containing vacuoles and the autophagic pathway
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(189, 234). Moreover, induction of autophagy in Dr adhesin-pos-
itive E. coli-infected cells has no effect on the survival of internal-
ized bacteria (137). It is noteworthy that autophagy clears intra-
cellular AIEC and that induction of autophagy accelerates this
phenomenon (367–369). These results indicate that by blocking
the association of vacuole-containing bacteria with the autopha-
gosome, Dr adhesin-positive E. coli has developed a strategy to
escape the host defense autophagy. The same phenomenon has
been observed for several invading pathogens (370).

Internalized Dr adhesin-positive E. coli survived up to 72 h
postinfection in HeLa cells transfected to express hDAF and
to a lesser extent in cells expressing hCEACAM1, hCEA, or
hCEACAM6 (189). Dr adhesin-positive bacteria intracellularly
present within a vesicular compartment in the host cell have no

impact on the cell survival (189, 331) and do not affect functional
epithelial intestinal cell differentiation (331). It has been recently
observed that a Ser165-Ala mutation in the CCP-3 extracellular
domain of hDAF promotes the dormant vacuolar persistence of
internalized Dr adhesin-positive E. coli, whereas a Phe154-Ala
mutation promotes the multiplication of vacuolar bacteria (234).
Whether these mutations in the extracellular domain of cell mem-
brane-associated hDAF can impact the lifestyle of internalized Dr
adhesin-positive E. coli remains unclear and needs to be explained,
considering that hDAF is not present at the membrane of intra-
cellular vesicles containing the internalized bacteria (189). On the
basis of these results, it looks as if internalized Dr adhesin-positive
E. coli cells enter the endocytic pathway (364, 371) in order to
reach a protective niche with a low-pH environment where they

FIG 6 Cellular events observed in cervical epithelial HeLa cells infected with uropathogenic Afa/Dr DAEC or subjected to Sat toxin treatment. The drawing on
the left summarizes the observed cellular events. Internalization of bacteria occurs in nonpolarized epithelial cells via the recognition of membrane-associated
hDAF, or hCEACAM1, hCEA, and hCEACAM6 by a mechanism involving lipid rafts and dynamic microtubules (1). Internalized Afa/Dr DAEC cells have
survived within large vacuoles, which seems to result from the fusion of early vacuoles, each containing one bacterium formed during the initial step of
internalization, that tested positive for early and late endosome markers but not for the autophagy LC3 marker (2). The secreted and cell internalized Sat toxin
(3) promotes a dramatic loss of F-actin stress fibers (4), and in turn the intoxicated cell engage an autophagy cell survival response (5). The massive appearance
of autophagosomes is followed by the blockade of autophagy flux, leading to the lack of maturation of autophagosomes into autophagolysosomes (5). As the
result of autophagic cell death, the cells lose the focal adhesion contacts and become detached from the substratum (6). (A) Transmission electron micrograph
showing vacuoles containing internalized Afa-III adhesin-positive E. coli in HeLa cells. Arrows indicate the vacuole-containing internalized bacteria. (Reprinted
from reference 332 with the permission of the publisher. Copyright 2003 Blackwell Publishing Ltd.) (B) High-magnification micrographs show the observation
by CLSM of Lamp1 or CD63 immunolabeling (blue) in membranes of vacuoles containing the internalized Dr adhesin-positive E. coli in infected HeLa cells
(green). Red, extracellular adhering bacteria. (Reprinted from reference 189.) (C) High-magnification micrographs show the observation by CLSM of Sat
immunolabeling present in the cytoplasm of cells treated with cell-free culture supernatant of AAEC185pSatIH11128 containing the secreted Sat toxin (CFCSSat)
(red) and the appearance of green fluorescent protein (GFP)-LC3 autophagic vacuoles in CFCSSat-treated cells (green). (Reprinted from reference 374 with the
permission of the publisher. Copyright 2011 Blackwell Publishing Ltd.) (D) High-magnification micrographs show the observation by CLSM of paxillin
immunolabeling (red). Note the disappearance of paxillin in in CFCSSat-treated cells. (Reprinted from reference 374 with the permission of the publisher.
Copyright 2011 Blackwell Publishing Ltd.)
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can live and remain metabolically active in order to replicate or
enter dormancy. The observation that the Dr adhesin-positive E.
coli-containing large vacuoles are phenotypically quite similar to
lysosomes indicates that internalized bacteria have developed a
capacity to actively modify this compartment so as to create a
distinct compartment. The mechanism(s) by which internal-
ized uropathogenic Afa/Dr DAEC cells modify the vacuolar
compartment and lead it to engage in dormancy or intracellu-
lar replication remains to be elucidated. A process designated
“nutritional virulence” (372) has recently been defined as used
by several invasive bacteria which, to allow themselves to grow,
subvert the host cell machinery so as to create a vesicular de-
velopmental niche where they receive components from the
secretory pathway as a source of nutrients. It will be interesting
to investigate whether internalized Afa/Dr DAEC cells do or do
not develop a “nutritional virulence” mechanism in order to
permit their intracellular residence and survival. The observa-
tion of an intracellular lifestyle of Dr adhesin-positive E. coli
with intracellular survival is interesting in term of persistence and
recurrence of infection. Indeed, it is worth mentioning that type 1
pilus-positive UPEC after cell entry resided in endocytic vesicles in
which its replication is restricted and which form an intracellular
niche that is protected from host immunity responses and killing
of intracellular bacteria by antibiotics (232). This intracellular life-
style permits the long-term maintenance of quiescent UPEC in the
bladder cells (232).

Cell detachment. To protect the epithelia against bacterial col-
onization and invasion and to maintain tissue homeostasis, the
host has developed defense systems including exfoliation and cell
death of bacterially infected cells (370). The eviction of cells from
the epithelium can occur by a process known as extrusion follow-
ing detachment from the extracellular matrix and loss of cell-to-
cell contact or toward the basal surface by delamination after dis-
ruption of cell-to-cell contacts (373). For example, exfoliation of
fully differentiated umbrella epithelial cells infected by FimH-pos-
itive E. coli is an innate host defense mechanism that has the effect
of removing adhering and invaded bacteria from the bladder (199,
232). However, some invasive bacterial pathogens have developed
countermeasures intended to antagonize the host epithelial turn-
over to exploit infected epithelial cells as a survival and replicative
niche (370). As an adverse effect for the host, the detachment of
cells containing intracellular UPEC promotes the reinitiation of
the UPEC infectious cycle (199, 232).

A cell detachment effect triggered by the Sat toxin expressed by
Afa/Dr DAEC has been recently described (137, 206, 210–212).
Sat promotes a profound disorganization of the F-actin cytoskel-
eton in HeLa cells that is followed by a host cell survival response
involving the noncanonical autophagy pathway (374). The
autophagy pathway induced is not intended to destroy the intra-
cellular toxin, since the toxin is never present in autophagic vesi-
cles. The Sat-intoxicated cells displayed a massive intracellular
appearance of autophagic vacuoles which, at the autophagosome
step, fail to mature into autophagolysomes. In turn, the Sat-intox-
icated cells overexpressing autophagosomes die as a result of au-
tophagy cell death. A similar effect has been reported for �-hemo-
lysin of Streptococcus aureus (375). The Sat-induced autophagy
cell death is accompanied by a dramatic disassembly of the focal
adhesion-associated vinculin and paxillin, which finally promotes
cell detachment (374). It is noteworthy that Capello et al. (376)
have observed that the class I SPATE toxin Pet of EAEC induces

the cleavage of FAK and a deterioration of focal adhesion com-
plexes resulting from the redistribution of paxillin and vinculin
and the depletion of phosphotyrosines. Together with a loss of
F-actin stress fibers and �-actinin and spectrin network disassem-
bly, these dramatic rearrangements of structural and functional
proteins result in cell rounding and detachment of Pet-intoxicated
cells from the substratum (376–378). Interestingly, the UPEC
pore-forming HylA triggering cell exfoliation of bladder epithelial
cells induces cell rounding and a complete loss of the microtubule
network and F-actin stress fibers, accompanied by the degradation
of paxillin (379).

Inflammatory responses. New information on immune re-
sponses accompanying UPEC infection have recently been ob-
tained in mice models (380, 381). UPEC infection is accompanied
by a strong inflammatory response, including the production of
cytokines such as tumor necrosis factor alpha (TNF-�), interleu-
kin-6 (IL-6), IL-8, IL-17a, and granulocyte colony-stimulating
factor (199, 382). Moreover, neutrophils and macrophages play a
pivotal role in the defense against UTI (383). Although not ob-
served in urinary cell models, it is important to note that the UTI-
associated wild-type Afa/Dr DAEC strain IH11128 promotes an
hDAF- and MAPK-dependent production of IL-8 (341) followed
by transepithelial migration of PMNLs (341), triggering the pro-
duction of TNF-� (342).

Animal models of UTIs. Dr adhesin-positive E. coli leads to
chronic pyelonephritis in experimental mice (301, 384). In con-
trast, wild-type strain IH11128, an isogenic mutant that is devoid
of Dr adhesin, does not cause kidney infection or cellular lesions
and is gradually eliminated compared to the wild-type strain. In
the kidney tissue of Dr adhesin-positive E. coli-infected mice, Dr
antigen was present in the injured parenchymal regions character-
ized by histological changes indicating tubulointerstitial nephritis
(384). It is notable that mouse DAF (mDAF) probably plays no
role in this Dr adhesin-induced chronic ascending pyelonephritis
in mice, since Hudault et al. (254) have demonstrated that Dr
adhesin binds specifically to hDAF but not to rodent DAF. Impor-
tantly, Selvarangan et al. (301) have demonstrated the crucial role
of the type IV collagen-binding capability of Dr adhesin for patho-
genesis in mouse kidney. Indeed, an isogenic DraE adhesin sub-
unit mutant lacking binding to type IV collagen fails to persist
within the mouse renal tissues, and the transcomplementation of
the mutant strain, restoring the type IV collagen-binding activity,
allows the reestablishment of a long-term renal infection. It was
noticed that immunization of LPS-nonresponder C3H/HeJ mice
with purified Dr protein resulted in delayed mortality when the
immunized mice were infected by instilling wild-type Dr adhesin-
positive strain IH11128 into the bladder, and incubation of
IH11128 with sera of immunized mice resulted in a marked de-
crease in bacterial adhesion to ex vivo specimens of mouse blad-
ders and kidneys (385). However, additional bacterial factors may
also be involved, since Meitinen et al. (386) observed that after
injection of O75X fimbriae in mice, there was an absence of his-
tological damage despite persistent O75X deposits in glomeruli.
Interestingly, the Sat toxin of the prototype UPEC wild-type strain
CFT073 has been found to promote renal histological lesions in
mice (387). It remains to be determined whether Sat expressed by
strain IH11128 plays a role in the IH11128-induced mice kidney
lesions.
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Pregnancy Complications

Bogdan Nowicki and coworkers have illuminated the risk gener-
ated by UTIs caused by UPEC harboring the Dr adhesin in women
who have undergone pregnancy termination or preterm labor
(105), and this is related to the levels of tissue expression of hDAF
(82, 388–390) and TLR4 (390, 391). Dr adhesin-positive E. coli
strains have been found to be often present in pyelonephritis-
associated E. coli strains isolated from pregnant females (30, 62,
90, 91, 96, 97). Nowicki and coworkers (82, 105) have convinc-
ingly demonstrated the role of Dr-positive UPEC in pregnancy
complications. In the uterus, hDAF is present in the endometrial
glands, spiral arterioles, and myometrial arteries. In these tissues,
the density of hDAF expression correlates with a high level of
regulation of the complement-induced cell damage (392, 393).
Moreover, it has been demonstrated that interindividual differ-
ences in hDAF density in the endometrium influence the tissue
colonization by Dr adhesin-expressing E. coli (393, 394).

A set of elegant studies have provided a clear demonstration of
the role of UPEC expressing the Dr and Afa adhesins in the lethal
outcome of gestational infection. Nowicki et al. (395) have shown
that the level of uterine Dr adhesin-positive E. coli infection in
pregnant rats was higher than that in nonpregnant rats. In an
experimental model of nonpregnant lipopolysaccharide-hypore-
sponder C3H/HeJ mice, Kaul et al. (396) observed that Dr adhe-
sin-positive E. coli-induced chronic pyelonephritis resulted in a
high level of preterm deliveries compared to that in mice infected
with an E. coli isogenic Dr mutant. A high rate of maternal mor-
tality has been observed in rats infected with an AfaE�/AfaD�

strain that causes high rates of maternal mortality (397). Mice
infected with the AfaE�/AfaD� strain show a 2-fold-decreased
level of maternal mortality and infection with AfaE�/AfaD� strain
results in a 5-fold decrease in death, while in contrast, the AfaE�/
AfaD� double mutant fails to promote death, even though all the
mutants showed an equal infection level in uteri. The observation
that the decrease in the mortality rate paralleled the decrease in the
invasiveness capacity of a Dr adhesin-positive E. coli strain (397)
correlates well with the in vitro observation by Goluszko et al. of a
high rate of invasiveness capability in Dr adhesin-positive E. coli
isolated from pregnant women with UTIs (94).

It has been proposed that infectious complications of preg-
nancy such as host gestation-dependent sensitivity to UPEC are
related to the host nitric oxide (NO) status. When Dr-positive E.
coli invades human endometrial adenocarcinoma Ishikawa cells,
there is a decrease of cell entry after an induction of NO produc-
tion and an increase of cell entry after NO inhibition (354). Inter-
estingly, elevation of NO production is accompanied by a signifi-
cantly reduced expression of hDAF protein and mRNA (354).
Mechanistically, NO triggers a displacement of hDAF from the
membrane lipid rafts coupled to its internalization within human
endometrial cells (398). In rodents, an increase in rat uterine NO
synthase (NOS) activity has been observed during pregnancy, and
one function of NO generated in the uterus, which declines at
term (399), is to inhibit uterine contractility (400). It has been
observed, interestingly, that urogenital tract colonization by Dr
adhesin-positive E. coli is followed by a defense mechanism in-
volving the production of NO (401). Moreover, there is a localized
increase in type II NOS expression and NO production after in-
trauterine Dr-positive E. coli infection in pregnant versus non-
pregnant rats (402). Comparing LPS responder (C3H/HeN) and

nonresponder (C3H/HeJ) mice and Dr adhesin-positive E. coli
and P fimbria-positive E. coli infections, Nowicki et al. (403) ob-
served that the infection level in the Dr-positive E. coli-infected
C3H/HeN group treated with an inhibitor of NO, nitro-L-arginine
methyl ester (L-NAME), was about 100-fold higher than that in
the P adhesin-positive E. coli-infected, L-NAME-treated group. Dr
adhesin-positive E. coli infection in mice (403) and AfaE/AfaD
adhesin subunit-positive E. coli infection in rats (404) are followed
by complications in pregnancy and death. Moreover, the death
rate was increased by treatment with the NO blocker L-NAME in
both mice and rat (403, 404). As indicated above for Dr adhesin-
induced pyelonephritis in the mouse model, the role of the mouse
DAF in Dr adhesin-induced complications during pregnancy in
the rat model is intriguing, considering that the rodent DAF is
clearly not recognized by Afa/Dr adhesins (254). Banadakoppa et
al. (405) recently demonstrated an NO-independent regulation of
hDAF expression in endometrial Ishikawa and cervical HeLa cells
involving the PI3K/Akt pathway engaging the PI3K/Akt regula-
tory protein PTEN. Interestingly, the PI3K/Akt pathway nega-
tively regulated the membrane expression of hDAF and conse-
quently downregulated the adhesion of Dr adhesin-positive E.
coli. As underlined by Nowicki and coworkers, two independent
host cell systems, NO and PI3K/Akt, by the downregulation of
hDAF expression at cell membrane level represent a functional
host pathogen strategy to achieve a well-controlled limited level of
infection by Dr adhesin-positive E. coli.

Intestinal Tract Infection

Facing the luminal compartment, the intestinal epithelium is
lined by a monolayer of highly polarized epithelial cells, including
four extremely specialized cell phenotypes, each with specialized
functions: enterocytes, neuroendocrine cells, goblet cells, and
Paneth cells. Enterocytes, neuroendocrine cells, and goblet cells
are constantly renewed by detachment from the villus tip (373) via
a specific type of apoptosis known as “anoikis” (406) and are re-
placed by a cell cycle renewal characterized by a differentiation/
migration process occurring along the crypt-villus axis and start-
ing from stem cells localizing at the crypt of the villus (407).
Polarized intestinal epithelial cells express an apical domain facing
the luminal compartment. In the cell lateral domain, the cell-to-
cell junctional domain, including the tight junction (TJ), the ad-
herens junctions (AJs), and the desmosome, establish tight con-
tacts with neighboring cells and seal the intestinal cell barrier (299,
408). In addition, the basal domain establishes a connection with
the basement membrane. Structural or functional breaches of the
intestinal epithelial barrier by enterovirulent bacteria lead to dis-
eases (409).

Structural and functional injuries at the intestinal epithelial
barrier. Afa/Dr DAEC strains infecting cultured enterocyte-like
Caco-2 (410–412) and colonic T84 (342) cells attach at the brush
border. Adhesion of F1845 adhesin-positive E. coli strain C1845
parallels the cell differentiation-dependent appearance of the
brush border (413). As the result of the recognition of brush bor-
der-associated hDAF, recombinant Dr adhesin- and Afa-I adhe-
sin-positive E. coli strains adhere to cultured human enterocyte-
like HT-29 and Caco-2 cells (414). Similarly, Adlerberth et al.
(415) have found that Dr adhesin-positive E. coli cells adhere at the
brush border of freshly isolated ileal enterocytes or colonic cells.
The wild-type strain C1845 displays a low level of cell entry when
infecting the permissive epithelial Hep-2 cell line, 20-fold lower
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than that of the prototype invasive AIEC wild-type strain LF82 but
equaling the rate of internalization of noninvasive EHEC and
EAEC strains (416). Moreover, Afa/Dr DAEC strains are nonin-
vasive when they infect cultured enterocyte-like cells via the nat-
ural apical infection route. Indeed, Guignot et al. (331) have
shown that after apical infection of cultured human enterocyte-
like Caco-2/TC7 cells, the level of internalized Afa/Dr DAEC was
very low, indicating that these bacteria are noninvasive when in
contact with the brush border of human enterocytes lining the
intestinal epithelial barrier. In contrast, when Afa/Dr DAEC in-
fected the Caco-2/TC7 cells basolaterally, it was internalized by a
mechanism involving the basolaterally expressed �1 integrin. It
should be noted, however, that Afa/Dr DAEC never uses the
basolateral domain of intestinal epithelial barrier as its natural way
of infection. However, treating Caco-2/TC7 cells with Ca2�-free
medium containing EGTA, disrupting intercellular junctions and
exposing the junctional domain of the cells, results in an increased
level of internalized Afa/Dr DAEC infecting the brush border.
This indicates that when Afa/Dr DAEC infects a diseased intestinal
epithelial barrier in which the closure at the junctional domain is
impaired, it can enter the cells.

(i) Structural lesions at the brush border. The highly differen-
tiated apical pole structure of enterocytes is composed of a dense
array of microvilli, considerably increasing the intestinal surface
area (299). The formation of the brush border in enterocytes dur-
ing the establishment of the apical-basal polarity results from a
complex and highly regulated epithelial polarity program (408).
Microvilli are formed by assembly of parallel arrays of actin fila-
ments that create the actin bundle, and myosin-1a links the actin
network to the plasma membrane (417, 418). In addition, zonula
occludens (ZO) proteins required for TJ assembly also regulate
the organization of the apical cytoskeleton, particularly the peri-
junctional antimyosin ring, and in turn function in the polarized
organization of the cells (419).

The molecular and cellular mechanisms of the intestinal
pathogenesis of Afa/Dr DAEC have been investigated using cul-
tured fully differentiated human intestinal Caco-2 cells and T84
cells, which structurally and functionally mimic enterocytes and
colonic cells of the intestinal barrier (420, 421). Unlike that of
other enteric pathogenic E. coli strains (4, 5, 422), the intestinal
pathogenesis of Afa/Dr DAEC is triggered predominantly via in-
teractions between Afa/Dr adhesin and brush border membrane-
associated proteins functioning as signaling receptors (410–412).
Adhering diarrhea-associated wild-type strain C1845 and recom-
binant F1845 adhesin-positive E. coli induced hDAF-dependent
injuries in microvilli in fully differentiated Caco-2 and T84 cells
(341, 410) (Fig. 7A to F). Bacteria at the sites of attachment were
trapped by an elevated number of microvilli as a result of contact
with the tips of microvilli (Fig. 4). Elongation of microvilli occurs,
and finally, the lesion results in a loss of microvilli (Fig. 7C to F).
This brush border injury results in rearrangements of structural
brush border proteins, including the disappearance of the F-actin
cytoskeleton and clumping of villin, fimbrin, and �-actinin within
cytoplasmic aggregates (410, 412). Loss of the brush border has
been also observed after apical infection of human enterocyte and
cultured enterocyte-like cells by EPEC and EHEC (326, 423). The
EPEC- and EHEC-triggered attaching and effacing (A/E) lesions
at the microvilli of the intestinal brush border follow a common
mechanism of virulence resulting from the expression of the PAI
locus of enterocyte effacement (LEE) controlling via a type III

secretion system (T3SS) the completion of a bacterial syringe al-
lowing the translocation of virulence factors into target intestinal
host cells (4, 5, 422). Even though the disappearance of brush
border microvilli induced by Afa/Dr DAEC, EPEC, and EHEC
infection is morphologically similar, the mechanism controlling
the deleterious effect of Afa/Dr DAEC at the brush border is very
different from those for EPEC and EHEC, since Afa/Dr DAEC
does not express any T3SS and is devoid of the EPEC and EHEC
virulence factors involved in A/E lesions (60).

Mechanistically, the lesions induced by diarrhea-associated
wild-type strain C1845 in the F-actin cytoskeleton result from
F1845 adhesin-triggered, hDAF-dependent signaling events. In
permanently undifferentiated human embryonic intestinal
INT407 and undifferentiated intestinal Caco-2 cells, both express-
ing hDAF, infection by the wild-type strain C1845 and by an
F1845 adhesin-expressing recombinant E. coli strain triggers F-ac-
tin cytoskeleton disassembly accompanied by the appearance of
cytoplasmic phosphotyrosylated proteins and the activation of
signaling molecules, including PTKs, phospholipase C	, PI3K,
PKC, and Ca2� (340). In enterocyte-like Caco-2 cells, the F1845
adhesin-triggered disassembly of brush border cytoskeleton-asso-
ciated proteins is Ca2� signaling dependent (412).

Elongation of microvilli precedes the disappearance of brush
border in diarrhea-associated wild-type strain C1845-infected en-
terocyte-like Caco-2 cells (410). Cell membrane extensions at-
tached or entrapping adhering Afa/Dr DAEC have been observed
in infected epithelial cells. Yamamoto et al. (51) observed that cell
membrane extensions are connected to the daaC-positive strain
D2 adhering to Hep-2 and HeLa cells. Cookson and Nataro (424)
observed cell membrane extensions in close contact with adhering
bacteria in C1845-infected Hep-2 cells. Berger et al. (274) have
dissected the mechanism by which Afa/Dr DAEC promotes cell
membrane extensions. In epithelial cells infected with a Dr adhe-
sin-expressing E. coli strain, the phenomenon results from the
recognition by Dr adhesin of membrane-associated GPI-an-
chored receptor hDAF, hCEA, or hCEACAM6. In contrast, the
phenomenon does not occur after recognition of the transmem-
brane receptor hCEACAM1. Mechanistically, the Dr adhesin-in-
duced cell membrane extension is microfilament dependent and
follows the activation of the small GTPase Cdc42 and the phos-
phorylation of ERM (274). The observation that phosphorylation
of ERM accompanied the Dr adhesin-induced cell membrane ex-
tensions (274) is consistent with the known roles of Rho GTPases
and ERM in the completion of the actin cytoskeleton (356). In-
deed, the low-molecular-weight GTPases RhoA, Rac, and Cdc42
are enzymes that in the host cells control a wide range of physio-
logical processes, including membrane trafficking, cytoskeletal
dynamics, and nuclear importation and signal transduction path-
ways (425). The endogenous activators of the Rho family GTPases
are guanine nucleotide exchange factors and GTPase-activating
proteins (426). Bacterial pathogens hijacking the low-molecular-
weight GTPases are critical targets of bacterial effector proteins
(427).

After infection of cultured human enterocyte-like Caco-2 cells
with the diarrhea-associated wild-type strain C1845, there was an
original cell lesion characterized by the release of the tips of mi-
crovilli that were in close contact with the infecting bacteria (410).
Indeed, disrupted tips of microvilli in contact with adhering bac-
teria vesiculated and remained attached to the bacteria. The re-
leased C1845 bacteria are newly positive for the brush border-
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associated functional dipeptidylpeptidase IV (DPP IV), indicating
a decoration by detached membrane microvilli (410). Under
physiological conditions, vesicles expressing membrane-bound
sucrase-isomaltase (SI) and maltase-glucoamylase aminopepti-
dase N (APN) are spontaneously formed at the microvillar tips by
a mechanism involving the membrane-binding actin-based mo-
tor Myo1a, but not Myo2, and are subsequently shed into the
luminal compartment (428, 429). Interestingly, the released vesi-
cles contain particularly high levels of proteins that are preferen-
tially partitioned into lipid rafts (429). Several vesicle cargoes con-
taining brush border hydrolases and several proteins that have
immunological function or are involved in inflammatory re-
sponses have been identified (429). This Afa/Dr DAEC-induced
sacrificial cellular effect, which has as a direct consequence the
extrusion of brush border-attached bacteria, probably has a lim-
ited and/or temporary impact on intestinal function, since the
intestinal epithelial cells are entirely renewed at between 3 and 5
days (299, 373, 406).

(ii) Functional lesions at the brush border. In enterocyte-like
Caco-2 cells (430–434), the asymmetric presence of membrane-
associated functional proteins is monitored during the epithe-
lial polarity program by biosynthetic and recycling routes me-

diating the apical or basolateral delivery of proteins possessing
these specific apical or basolateral sorting signals (408). Func-
tional proteins, including hydrolases, transporters, exchang-
ers, some members of the aquaporin (AQP) family, and glyco-
phosphatidylinositol (GPI)-anchored proteins, are expressed
at the enterocyte brush border (299). It is interesting to note that
large and highly well-organized “super lipid rafts” have been de-
tected at the membrane of the brush border of enterocytes (320,
321, 435) containing some of the major brush border-associated
functional proteins (436), including maltase-glucoamylase ami-
nopeptidase N (APN) and sucrase-isomaltase (SI) (437), Na�/H�

exchanger (NHE) isoforms 1 to 3 (438), downregulated in ade-
noma Cl�/base exchanger (DRA) (439), Cl�/HCO3

�/OH� ex-
changer (440), and peptide transporter 1 (PEPT1), which is re-
sponsible for the uptake of di- and tripeptides (441). Sophisticated
strategies including the hijacking of the cellular machinery have
been developed by enteric pathogenic E. coli, which result in the
alteration of activities of membrane-associated transporters, ion
channels, and/or exchangers and water channels, in turn modify-
ing the normal transports of nutrients and the water balance (4, 5,
409, 422, 442). Accompanying the C1845-induced brush border
structural injuries in enterocyte-like Caco-2 cells (410, 412), the

FIG 7 Structural and functional brush border lesions caused by diarrhea-associated Afa/Dr DAEC in enterocyte-like cells. The drawing on the left summarizes
the observed cellular events. Afa/Dr DAEC interact with the brush border-associated hDAF and hCEACAM1, hCEA, and hCEACAM6 receptors (1). In turn,
hDAF-associated signaling pathways, including protein tyrosine kinase(s), phospholipase C	, phosphatidylinositol 3-kinase, protein kinase C, and Ca2�, are
activated (2). Loss of the brush border results in the disassembly of the microvillus cytoskeleton and induces defective expression of functional proteins, such as
SI, DPP IV, SGLT1, and GLUT5 (3). (A and B) Low and high magnifications of transmission electron micrographs showing the well-ordered brush border
microvilli of uninfected cells. (C to F) Low and high magnifications of transmission electron and scanning electron micrographs show the disappearance of the
brush border at a late time postinfection. (Micrographs in panels A to F reprinted from reference 410.) (G and H) Micrographs show the observation by CLSM
of immunofluorescence labeling of brush border-associated DPP IV (x-y section). (Reprinted from reference 412.)
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distribution at the brush border of functional intestinal proteins
such as SI and DPP IV hydrolases, sodium/glucose cotransporter 1
(SGLT1), and the fructose GLUT5 transporter was profoundly
impaired (412) (Fig. 7H and I). The default of SI and DPP IV
expression at the brush border induced by strain C1845 relates
directly to the promoted disassembly of the brush border cytoskel-
eton, since stabilizing the F-actin cytoskeleton by jaspakinoline
treatment abolishes the disappearance of SI and DPP IV (411). In
C1845-infected cells, there is a strong decrease of enzyme activity
of SI and DPP IV (411, 412). It was logical to assume that this
decrease in enzyme activity was related to the disorganization of
the microvillus cytoskeleton and the disappearance of microvilli.
However, it was not. Indeed, unlike C1845-induced, signaling-
dependent cytoskeleton disassembly (340, 412), the loss of SI and
DPP IV enzyme activity is independent of PTK, phospholipase
C	, PI3K, PKC, and Ca2� signaling pathways and also of C1845-
induced cytoskeleton disassembly (411). This indicates that when
SI and DPP IV are delocalized from the brush border in infected
enterocyte-like cells, the hydrolases relocated into the cytoplasm
lose their enzyme activity. In addition, the biosynthesis of the two
hydrolases is severely affected without any change in mRNA levels
and protein stability (411).

(iii) Structural and functional lesions at the junctional do-
main. The junctional domain in epithelia plays a critical role in
health, and barrier dysfunction at the junctional domain can lead
to disease (409). The adherence junctions (AJs) and desmosomes
act as adhesive domains between intestinal epithelial cells. Indeed,
cadherin-based cell-cell junctions are mechanical connections
creating contractile force which, after interaction with the con-
tractile antimyosin cortex, actively couples neighboring cells in
the intestinal epithelial barrier (443, 444). The most apical junc-
tional complex is TJs, which are highly regulated and formed by
the assembly of specialized proteins such as the cytoplasmic ZO-1,
ZO-2, and ZO-3 proteins connected with the F-actin cytoskele-
ton, the transmembrane occludin connected both with ZO pro-
teins, cytoskeleton, and junctional adhesion molecules, and clau-
dins connected with ZO proteins (445, 446). Functionally, TJs act
as a “fence” separating the apical and basolateral membrane do-
mains of polarized intestinal cells. This function results in the
segregation in each membrane domain of cell proteins and lipids.
Moreover, TJs, by the sealing of intercellular space, act as a “gate”
regulating the paracellular passage of small particles and solutes.
On the basis of functional studies (447), it has been recently evi-
denced that the gate activity includes two functional paracellular
pathways: the first one, named the leaky pathway, engaging occlu-
din that controls the paracellular passage of larger molecules, and
the second, named the high-capacity pore pathway, engaging the
claudin family of proteins functioning as cation-selective and an-
ion-selective protein-forming channels and as protein-forming
channels without a clear established selectivity. Enterovirulent
bacteria have developed sophisticated strategies to breach the in-
testinal barrier by means of effectors that by signaling-dependent
mechanisms target the structural molecules that compose the TJs
(448). Pathogen-induced intestinal barrier deficiencies have been
linked to the onset of inflammation and diarrhea (409).

The infection of fully differentiated Caco-2/TC7 cell monolay-
ers by strain C1845, which expresses F1845 adhesin, is followed by
an elevated level of paracellular permeability without affecting the
transepithelial resistance (449). At an early stage of infection, the
distributions of TJ-associated occludin and ZO-1 proteins are

profoundly modified, showing the disappearance of the proteins
at the TJs, whereas there was no change in expression of the AJ-
associated E-cadherin. The TJ lesions develop from an F1845 ad-
hesin-induced, hDAF-dependent mechanism. Guignot et al.
(137) identified the toxin Sat of wild-type strain IH11128 as the
virulence factor that triggers the TJ lesions (Fig. 8A). Sat induces
rearrangements of the TJ-associated proteins ZO-1, ZO-3, and
occludin without modifying significantly the claudin-1 distribu-
tion. In Sat-treated cells, there was a dramatic decrease of the
membrane expression of ZO-1 and ZO-3 and a slight decrease in
the membrane expression of phosphorylated and nonphosphory-
lated forms of occludin. In turn, Sat increases the paracellular
permeability, since there is elevation the paracellular passage of
mannitol without affecting the passage of nonionic molecules
with higher molecular masses (137, 449). In addition, Sat induces
the formation of fluid domes by increasing the transcellular pas-
sage (137) (Fig. 8B). These fluid-filled, blister-like structures
known as fluid domes are randomly distributed areas that evolve
permanently into the cell monolayers as the result of transcellular
passage of fluids accumulating basolaterally (450, 451). This result
is interesting since Taddei et al. (221) have reported that Sat can
induce secretory activity, resembling the enterotoxic activity of
ETEC, in rabbit ileum tissues mounted in an Ussing chamber,
with a dramatic fluid accumulation in rabbit ileum loops.

Inflammatory responses. Diverse host cell proinflammatory
responses followed the infection of enterocyte-like and colonic
cell lines by Afa/Dr DAEC. Flagella expressed by EPEC, EAEC, and
EHEC contribute to favor epithelium colonization and proin-
flammatory responses, such as the induction of proinflammatory
IL-8 production (4, 5). Motile, AfaE1-, AfaE2-, or afaEX-positive
diarrhea-associated strains induced the production of high levels
of IL-8 in T84 and Caco-2 cells (203, 452). Meraz et al. (107) have
reported that nine motile diarrhea-associated AfaE1- or AfaEX-
positive E. coli strains induced the production of IL-8 in T84 cells.
Paul Hofman and coworkers (341, 342, 344, 453) have nicely dis-
sected the Afa/Dr adhesin-triggered, hDAF-dependent signaling
pathways controlling the production of proinflammatory cyto-
kines and related cellular events in colonic T84 cells. The nonflag-
ellated, wild-type Afa/Dr DAEC C1845 and IH11128 strains were
able to promote the basolateral secretion of IL-8 in monolayers of
polarized intestinal T84 cells (341). The production is daa or dra
operon dependent, involves binding onto brush border-associ-
ated hDAF, and develops by activation of the extracellular signal-
regulated protein kinase (Erk1/2), p38, and c-Jun NH2-terminal
kinase signaling pathways. Arikawa et al. (203) observed that 12
nonmotile, AfaE1-, AfaE2-. or AfaEX-positive, diarrhea-associ-
ated strains also induced the production of IL-8, but at a level nine
times lower than that found in the motile strain. Flagella isolated
from motile Afa/Dr DAEC to produce IL-8 recognize the basolat-
eral Toll-like receptor 5 (TLR5), and in addition, TJ function is
observed to be reduced (454). To explain this phenomenon, it has
been proposed that an unknown additional virulence factor caus-
ing the structural opening of TJs allows flagellin to reach basolat-
erally expressed TLR5 (454).

PMNLs play a pivotal role in maintaining intestinal homeosta-
sis and are critical actors in the innate immune response that
protects the host against microbial pathogens by generating a
diversified arsenal of antimicrobial molecules, including reac-
tive oxygen species, antimicrobial peptides, myeloperoxidase, hy-
drolytic enzymes, proteases, cationic phospholipase, and metal
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chelators, and by forming cell extensions known as neutrophil
extracellular traps (NETs) (455). PMNL infiltration resulting
from recruitment by chemokines produced by macrophages or
epithelial cells at the site of insult is a hallmark of the host inflam-
matory response to infection with various different enteric bacte-
rial pathogens. The effects of Afa/Dr DAEC strains on the trans-
epithelial migration of PMNLs have been demonstrated in
polarized monolayers of human colonic T84 cells cocultured with
freshly isolated PMNLs (341). The transepithelial migration of
PMNLs induced by Afa/Dr DAEC follows F1845 and Dr adhesin-
induced hDAF-dependent basolateral production of IL-8 after ac-
tivation of Erk1/2, p38, and JNK MAPKs. Afa/Dr DAEC-induced
PMNL transmigration triggers cell synthesis of TNF-�, and IL-1�,
in turn inducing the up-expression of hDAF at the brush border of
the cells and increasing the adhesion of Afa/Dr DAEC bacteria
(342). In addition, there was an abnormal appearance of hDAF at
the basolateral domain of cells (342). The Afa/Dr DAEC-induced
transmigration of PMNLs leading to a cytokine-triggered up-ex-
pression of hDAF was consistent with previously observed IL-1�-
induced up-expression of hDAF (456–459). The up-expression of
hDAF at the brush border is probably a cell defense response, since
it has been demonstrated that hDAF functions as an antiadhesive
molecule accelerating the release from the luminal surface of
PMNLs that have undergone transepithelial migration (460, 461).
It remains to be determined whether the abnormal basolateral
expression of hDAF in infected colonic T84 cells is also a cell

defense response that in turn can block the basolateral recruit-
ment and transmigration of PMNLs.

The major histocompatibility complex (MHC) class I-related
molecules A and B (MICA and MICB) are distant homologues of
MHC class I molecules (462). Below the epithelium, resident lym-
phocytes can be activated by these nonclassical MHC class I mol-
ecules to display a diverse array of immune responses (463). To-
gether with UL-16-binding proteins, MICA and MICB are ligands
of human NKG2D (464), an activating natural killer (NK) recep-
tor expressed on both tumor-infiltrating lymphocytes and tumors
cells. NKG2D exerts cytolytic destruction of cells through recog-
nition of its cognate ligands. NK cells circulate through the blood,
lymphatics, and tissues, patrolling for the presence of pathogen-
infected cells (465). MICA and MICB are more highly expressed at
the surface of epithelial cells in colonic biopsy specimens from
Crohn’s disease (CD)-affected patients than in those from con-
trols (466). Tieng et al. (467) have observed that the upregulation
of MICA in enterocyte-like Caco-2 cells infected by AfaE-III ad-
hesin subunit-positive E. coli is mediated by the specific interac-
tion between the adhesin subunit and hDAF.

Pathogenic bacteria use quorum sensing (QS) to regulate sev-
eral traits that allow them to establish and maintain infection in
their host; these include motility, biofilm formation, and viru-
lence-specific genes (468). In E. coli, QS involves autoinducers
AI-2 and AI-3, depending on the function encoded by the luxS
gene. It has been observed that the Dr adhesin-positive IH11128

FIG 8 Structural and functional injuries at the tight junction caused by Afa/Dr DAEC in enterocyte-like cells. The drawing on the left summarizes the observed
cellular events. The secreted and internalized Sat toxin induces the reorganization of the TJ-associated proteins ZO-1 and occludin without affecting E-cadherin
expression (1). Sat induces an increase in transcellular and paracellular passages (2). (A) Low- and high-magnification micrographs show the immunofluores-
cence labeling of structural TJ-associated ZO-1 protein observed by CLMS in control and AAEC185psat-infected cells. Note the Sat-induced disappearance of the
protein from the cell-to-cell contacts. (Reprinted from reference 137 with permission.) (B) Fluid domes observed by phase-contrast CLSM in control and
AAEC185psat-infected cells. Note the Sat-induced increase of the fluid dome height and surface.
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strain produces high levels of AI-2 at the end of the exponential
phase of growth (unpublished result). Sperandio et al. (469), ob-
serving that an EHEC luxS mutant responds to a eukaryotic cell
signal activating the expression of its virulence genes, have iden-
tified epinephrine as promoting a “language” by which bacteria
and host cells communicate. Diard et al. (343, 470) have demon-
strated that norepinephrine is involved in Afa/Dr DAEC patho-
genesis. In the wild-type strain IH11128, the thermoregulated
production of Dr adhesin, which is optimal during the logarith-
mic phase of anaerobic growth, has been found to be accompanied
by a release of Dr fimbriae without cell lysis (470). Norepineph-
rine increases the Dr adhesin release by affecting the production of
the fimbrial subunits. Indeed, norepinephrine promotes the dif-
ferential induction of genes draC and draE by a regulatory mech-
anism; i.e., the level of the draE transcript is highly increased, while
expression of draC transcript is increased to a lesser extent, relative
to basal expression (343). Like with the wild-type IH11128 (341),
the released Dr adhesin induces the phosphorylation of Erk1/2, in
turn promoting the production of IL-8 in enterocyte-like Caco-2/
TC7 cells (343).

Proinflammatory effects of Afa/Dr DAEC after direct contact
with PMNL-like PLB-985 cells have been described by Sylvie
Chollet-Martin and coworkers (346, 347, 471). A rapid and mas-
sive release of reactive oxygen species and preformed intragranu-
lar mediators (myeloperoxidase and IL-8) develops in PMNL-like
PLB-985 cells infected with the wild-type IH11128 and C1845
strains (347). The phenomenon is triggered not by Afa/Dr ad-
hesins but by the type 1 pili (347) expressed by wild-type Afa/Dr
DAEC strains (155).

Adherence to hDAF expressed at the membrane of freshly iso-
lated PMNLs mediated by Dr adhesin did not lead to a significant
increase of bacterial killing, indicating that the Afa/Dr DAEC
could overcome the microbicidal activity of PMNLs (472). In con-
trast with the fact that PMNLs that have transmigrated display
greater phagocytic activity against E. coli (473), PMNLs that have
not transmigrated or transmigrated across T84 cell monolayers
after Afa/Dr DAEC infection display low phagocytic activity, sug-
gesting that Afa/Dr DAEC can block this activity (453).

Interaction of the wild-type Afa/Dr DAEC C1845 and IH11128
strains or recombinant Dr adhesin-positive E. coli with freshly
isolated human PMNLs results in an increased rate of cell apop-
tosis evidenced by morphological nuclear changes, DNA frag-
mentation, cleavage of pro-caspase 3 and stimulation of the
caspase activity, and up-expression of annexin V (453, 472). Since
this phenomenon is not blocked by anti-hDAF and -hCEA anti-
bodies, it seems to be linked to a leukocyte agglutination process
rather than to the recognition of these signaling receptors. Intrigu-
ingly, phosphatidylserine appears at the cell membrane of PMNL-
like PLB-985 cells, resulting from an Afa/Dr adhesin-triggered,
hDAF-dependent activation of tyrosine kinase, and protein kinase
C signaling occurs, but without apoptosis (346). Low levels of
phagocytosis of Afa/Dr DAEC bacteria were observed in both
nontransmigrated and transmigrated PMNLs, suggesting a bacte-
rium-triggered diminished leukocyte phagocytic capacity to es-
cape host defenses (453).

Angiogenesis. Angiogenesis is a new component of IBD patho-
genesis. Cane et al. (345) have reported that infection of cultured
human colonic T84 cells by the diarrhea-associated E. coli strain
C1845 is followed by an increase in vascular endothelial growth
factor (VEGF) mRNA expression and production of VEGF pro-

tein. Members of the VEGF family are secreted, dimeric glycopro-
teins of �40 kDa consisting of five members, VEGF-A, -B, -C, and
-D and a placenta growth factor, which function as regulators of
vasculogenesis, i.e., the vascular development that occurs during
embryogenesis, and the angiogenesis process that forms blood
vessels (474). Importantly, the VEGF secreted during C1845-in-
fection of T84 cells is bioactive, since the cell-free spent culture
medium is able to induce tubulogenesis. This phenomenon results
from the recognition of hDAF by F1845 adhesin followed by acti-
vation of a Src protein kinase upstream of the activation of the
Ras/Raf/MAPK and PI3K/Akt signaling pathways (345). Upregu-
lation of VEGF has also been observed in epithelial cells infected
with an Afa-I adhesin-positive E. coli strain (140). Moreover, the
F1845 adhesin-triggered, DAF-dependent up-production of
VEGF and also IL-8 in T84 cells has been found to be controlled by
an MAPK- and PI3K-dependent induction of the hypoxia-in-
duced factor 1-� (HIF-1�), revealing a connection between
hDAF-associated signaling and a translational mechanism(s)
(344). It is noteworthy that HIF-1 consists of two subunits,
HIF-1� and HIF-1�, and that HIF-1�, which is degraded via an
oxygen-dependent process involving prolyl hydroxylases, func-
tions as an oxygen sensor (475). It is interesting to note that the
CD-associated AIEC strain LF82 also induces, by an unknown
factor, the production of HIF-1 � protein and the activation of
VEGF/VEGR receptor (VEGFR) signaling in T84 cells (476). All
the above-reported cell responses to Afa/Dr DAEC infection are
related mainly to recognition of intestinal epithelial cell-expressed
hDAF by Afa/Dr adhesins. Considering that hCEACAM1, hCEA,
and hCEACAM6 are known to be involved in immune responses
(477), it remains to be shown whether these hCEACAMs also
trigger host cell immune responses after recognition by Afa/Dr
adhesins.

EMT events. Under physiological conditions, the intestinal ep-
ithelium undergoes controlled constant cell shedding. In epithe-
lia, a programmed cell death process known as “anoikis,” a Greek
word meaning “homelessness,” occurs when polarized epithelial
cells forming an epithelial barrier are detached from the appropri-
ate lateral domain and extracellular matrix (406). The control of
anoikis in differentiated epithelial intestinal cells is a differentia-
tion-dependent process involving the engagement of �1 and �4
integrins and activation of FAK, Src kinase, and the Erk1/2 and
Pi3K/Akt signaling pathways (406). The diarrhea-associated
C1845 affects the AJs of intestinal epithelial polarized colonic T84
cells. Indeed, an F1845 adhesin-triggered, hDAF-dependent loss
of AJ-associated E-cadherin protein and cytokeratin 18 (CK18)
has been observed, resulting from activation of HIF-1� (344).
Moreover, CK18 plays a cytoskeletal function as a component of
the intermediate filaments and acts as a target for caspase-medi-
ated cleavage during cell apoptosis (478). In parallel, C1845 infec-
tion promotes a rise in fibronectin expression, accompanied by
the up-expression of Twist1 mRNA (344), a helix-loop-helix tran-
scriptional factor belonging to a small group of core transcription
factors that also includes Snail, Slug, and Sip1 and which are in-
volved in controlling the epithelial-mesenchymal transition
(EMT) (479). The EMT is a transcriptional and morphological
program observed during the progression of diseases, including
cancers (480, 481). Three distinct subtypes of epithelial cells that
transition into mesenchymal cells have been defined, depending
on the physiological tissue context (481). Type 1 occurs in em-
bryogenesis and organ development, type 2 develops in tissue re-
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generation and organ fibrosis, and type 3 is associated with cancer
progression. However, partial EMT can develop as a function of
the tissue and signaling contexts, resulting in a loss of only some of
the polarized characteristics such as cell contact dissolution and
actin cytoskeleton reorganization. The two major hallmarks of
EMT are the dissolution of epithelial cell-cell adhesion contacts
and the massive actin cytoskeleton reorganization followed by the
loss of cell polarization. Transcription factors drive EMT by
downregulating genes, including those encoding proteins main-
taining epithelial cell-cell adhesion domains. After a long time of
infection, C1845 infection promotes depolarization of the entero-
cyte-like Caco-2 cells, which is characterized by the complete dis-
organization of the apical domain and the loss of cell-to-cell con-
tacts accompanied by the appearance of undifferentiated cells that
become detached from the cell monolayers (Fig. 9A) (unpub-
lished results). The C1845-induced cell shedding resembles the
cascapase-1-dependent cell shedding observed in T84 cells (482)
and the TNF-�-induced cell shedding observed in mouse intesti-
nal and Madin-Darby canine kidney cells (482, 483). It has been
mentioned above that in C1845-infected T84 cells, the induced

transepithelial migration of PMNLs is followed by the production
of TNF-� (342). Collectively, these results show that diarrhea-
associated Afa/Dr DAEC promotes cell depolarization and inju-
ries at the two major sites of the junctional domain of polarized
epithelial cells forming the intestinal epithelial cell barrier, i.e., TJs
and AJs, and in turn induces EMT-like behavior.

pks-related cell injuries. The presence of the pks genomic island
coding for the genotoxin colibactin in the prototype wild-type
Afa/Dr DAEC strains leads to the appearance of known pks-re-
lated cell changes (240). Indeed, in C1845-infected undifferenti-
ated Caco-2/TC7 cells there was an enlargement of the cell body
and nucleus and an increase of the nuclear phosphorylation of
histone H2A variant H2AX (Fig. 9B) (Nougayrede and Oswald,
unpublished result). These cell injuries were abrogated when the
cells were infected with a mutant colibactin strain (clbA::frt) de-
leted for the clbA gene, encoding the phosphopantetheinyl trans-
ferase ClbA within the pks island (484), and were restored by the
complementation of the mutant strain with p-clbA (Nougayrede
and Oswald, unpublished result). It is noteworthy that the pks-
triggered enlarged cells cell have been recently characterized as

FIG 9 Diarrheagenic Afa/Dr DAEC strain C1845 promotes epithelial-mesenchymal transition (EMT)-like behavior, cell extrusion, and pks-dependent damage
in human intestinal cells. The drawing on the left summarizes the observed EMT-related cellular events. An F1845-triggered hDAF-, MAPKs-, PI3K-, and
HIF-1�-dependent production of VEGF develops in colonic-like T84 cells (1 and 2). An F1845-triggered hDAF-, MAPKs-, PI3K-, and HIF-1�-dependent
EMT-like behavior develops, characterized by the typical changes in expression of mesenchymal markers, such as the upregulation of fibronectin, the down-
regulation of CK18, and the disappearance of AJ-associated E-cadherin (1 and 3). Finally, depolarized intestinal cells lose the lateral cell-to-cell and basal contacts
and become detached from the cell monolayer. (A) Low-magnification transmission electron micrographs show the dedifferentiation of Caco-2/TC7 cells
infected with the diarrhea-associated strain C1845, characterized by a disorganization of the apical domain and by the appearance of nucleus fragmentation and
loss of nucleus dense electron material, indicating cell death (left micrograph). The boxed area indicates a cell with a funnel form engaging in shedding from the
cell monolayer as the result of the wide opening of the lateral cell-to-cell junctional domain and detachment at the basal domain. The micrograph on the right
shows a high magnification of the cell engaging in detachment and containing a high number of vesicles in the cytoplasm. (B) Low- and high-magnification
micrographs show the morphological changes in Giemsa-stained C1845-infected undifferentiated Caco-2/TC7, cells characterized by an enlargement of the cell
body and nucleus. Low-magnification micrographs show the increase of the phosphorylation of nuclear H2AX, the most sensitive marker of DNA damage.
(Courtesy of J. P. Nougayrede and E. Oswald, reproduced with permission.)
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senescent cells bearing massive and irreparable damage and se-
creting protumorigenic factors that damage adjacent cells (485,
486).

Host cell defense responses. Infection of enterocyte-like
Caco-2 cells by wild-type strain C1845 or recombinant E. coli ex-
pressing F1845 adhesin is followed by a strong antibacterial cell
response at the brush border, since at a late time of infection the
adhering bacteria are dramatically damaged (487) (Fig. 10A and
B). This defense response seems to be correlated with the fact that
Caco-2 cells express intestinal antimicrobial peptides in a differ-
entiation-dependent manner (487, 488).

As described above, the intestinal cells after infection by Afa/Dr
DAEC seem to react so as to resolve brush border colonization by
releasing the tips of microvilli that were in close contact with the
infecting bacteria (410) (Fig. 10C and D). Bacteria detached from
the brush border express vesicles formed of microvillus mem-

branes, indicating extrusion of brush border-colonizing bacteria.
An increase in the microvillar vesicles shed after tEPEC infection
of Caco-2BBe clone cells has been reported (489). Interestingly, the
interaction of these vesicles with the luminal pathogen blocks the
tEPEC intimate attachment onto the microvilli of enterocyte-like
HT-29 cells (489). Collectively these results indicate that the ac-
celerated formation and shedding of microvillar vesicles consti-
tute an efficient host intestinal cell defense response. Ham-
marstrom and Baranov (281) have interestingly postulated that
the vesiculation of the microvillus membrane to form vesicles is an
effective host defense mechanism intended to extrude adhering
enterovirulent bacteria from the luminal surface of the intestinal
epithelium and/or to limit the deleterious impact of enteroviru-
lent bacteria.

NETs are formed by a nuclear DNA skeleton and transport
antibacterial molecules, including antimicrobial peptides, his-

FIG 10 Proinflammatory and defense responses in enterocyte- and colonic-like cells and PMNLs after infection with the diarrhea-associated strain C1845. The
drawing on the left summarizes the observed cellular events. An hDAF-dependent MAPK-, PI3K/Akt-, and HIF-1�-triggered signaling (1) leads to the produc-
tion of the proinflammatory cytokine IL-8, which promotes the transepithelial migration of PMNLs (2), which in turn promotes the production of proinflam-
matory cytokines TNF-� and IL-1� (3) and leads to the up-expression of brush border-associated hDAF (4) and basolateral MICA (5) and the abnormal
expression of hDAF at the basolateral domain (5). Afa/Dr DAEC interacting with transmigrated PMNLs induces cytotoxic proinflammatory responses and a
defense response involving NET-triggered bacterial killing (6). As the result of a host intestinal cell defense response, bacteria attached at the brush border are
entrapped by microvilli and killed (7). In addition, bacteria attached at the brush border are extruded from the intestinal cells when the tips of microvilli are shed
(7). (A) A high-magnification scanning electron micrograph shows an altered bacterium entrapped by numerous microvilli in Caco-2 cells. (Reprinted from
reference 487 with permission of Elsevier.) (B) A high-magnification scanning electron micrograph shows a highly damaged adhering bacterium at a late time of
infection. (Reprinted from reference 487 with permission of Elsevier.) (C) A high-magnification scanning electron micrograph shows a bulbous membrane
protrusion at the tip of elongated microvilli in close contact with an adhering bacterium. (Reprinted from reference 410.) (D) A high-magnification transmission
electron micrograph shows a high number of cell membrane vesicles in close contact with a bacterium that is detached from the brush border. (Reprinted from
reference 410.) (E and F) Low- and high-magnification field emission scanning electron micrographs show the NETs expressed by phorbol myristate acetate
(PMA)-stimulated PMNL-like PLB-985 cells. (Reprinted from reference 471.) (G and H) Low- and high-magnification field emission scanning electron
micrographs show NETs expressed by infected PMNL-like PLB-985 cells and in contact with diarrhea-associated C1845 bacteria. (Reprinted from reference 471.)
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tones, and proteases (490, 491). In the human myeloid cell line
PLB-985, which has the capability to differentiate into fully ma-
ture neutrophil-like cells, wild-type strain C1845 infection is fol-
lowed by the projection of NETs, which by entrapment of bacte-
rial cells trigger the killing of bacteria (471) (Fig. 10E to H).
However, this defense response has an unexpected cell cytotoxic
consequence, since the induced NETs promote a profound disor-
ganization of the F-actin cytoskeleton by contact with the Caco-
2/TC7 cells (471). It is worth mentioning that NETs induce cell
death in endothelial cells (492, 493).

CLINICAL CONSIDERATIONS

Reservoir and Transmission

There has been no report of the isolation of E. coli expressing the
major human AfaE-I to -III, Dr, or F1845 adhesins in a large
variety of animal species. In contrast, the afimbrial Afa-VII and
Afa-VIII adhesins are present in diarrhea- or septicemia-associ-
ated E. coli strains in calves (26, 44). Moreover, the AfaE-VIII
adhesin is expressed in ExPEC infecting calves (43, 54, 494). The
gene afa-8 and afa/dr-related genes have been also been found in
porcine, poultry, and cattle E. coli isolates (45, 173, 494–496).
Examination of E. coli isolates from dogs with UTIs has revealed
the presence of P- and S-positive isolates and the absence of Afa-
positive isolates (497). There is an absence of evidence of direct
animal-to-human transmission.

Treatments

Historically, antibiotics have provided a very effective way of
resolving UTIs. The current routine treatment for UTIs is anti-
biotic therapy, most commonly trimethoprim-sulfamethoxazole
(TMP-SMX) or ciprofloxacin. However, patients with chronic or
recurrent cystitis require long-term treatment with antibiotics,
and as UPEC strains have an unusual intracellular lifestyle, con-
ventional antibiotics are not very effective when the bacteria reside
within intracellular vacuoles or are present in biofilm-like struc-
tures (498–505).

Afa/Dr DAEC-associated diarrhea in children has been de-
scribed as being generally limited in duration. Diarrhea, as defined
by the World Health Organization (WHO), is characterized by the
presence of three or more stools or watery stools within a 1-day
period. Diarrhea is defined as being acute when it lasts less than 14
days and as persistent when the episode has lasted 14 days or more.
In general, to prevent dehydration and nutritional default in chil-
dren with infectious acute diarrhea, it has been recommended to
provide an oral rehydration solution (ORS) and to continue feed-
ing (506). Since ORS administration has no effect on the duration,
severity, or frequency of infectious diarrheal episodes, ORS ad-
ministration has been associated with adjuvant therapies such as
luminally acting antisecretory drugs and antibiotics (507). How-
ever, these treatments can cause adverse effects outside or inside
the gastrointestinal tract; one such effect that occurs if broad-
spectrum antibiotics are used is the emergence of Clostridium dif-
ficile-associated diarrhea resulting from an antibiotic-induced im-
balance of the intestinal microbiota (508, 509). It should be noted
that cost and availability are limiting factors for the use of antise-
cretory drugs and antibiotics, particularly in developing countries.
Another therapeutic strategy used to accompany ORS (which is
low cost but for which availability may be a problem, particularly
in developing countries) is the use of human intestinal microbiota

probiotic Lactobacillus strains secreting antibiotic-like molecules
that have demonstrated experimental in vitro and in vivo effects
against the major diarrhea-associated bacterial pathogens (510).

Antibiotic Resistance

The increasing prevalence of antibiotic resistance of bacterial
pathogens is a major health problem (511, 512). There has been a
steady and rapid increase of UPEC resistance to antibiotics ac-
companied by the problematic occurrence of multidrug-resistant
UPEC strains over the last decade (199, 349, 498). For examples, a
recent international study revealed that more than 10% of E. coli
cystitis isolates are resistant to at least three classes of antibiotics
(513). Moreover, a recent survey of more than 12 million clinical
isolates across the United States from 2000 to 2011 revealed an
increase of resistance to 9 antibiotics, including TMP-SMX, cip-
rofloxacin, nitrofurantoin, and ceftriaxone (514). Not surpris-
ingly, resistance to antibiotics has been reported for Afa/Dr
DAEC, including resistance to ampicillin (90, 124, 515, 516),
TMP-SMX (515–518), fosfomycin (517), piperacillin (515), tetra-
cycline (124, 515), ciprofloxacin (518), co-trimoxazole (124),
nitrofurantoin (518), fosfomycin (517), tetracycline (519), peni-
cillin (516), oxacillin (516), bactericin (516), cloxacillin (516),
chloramphenicol (519), and nalidixic acid (124, 516). In addition,
the fact that Dr adhesin-positive E. coli has the capability to form
biofilm (190, 233) suggested that like FimH-positive UPEC (199,
232), uropathogenic Afa/Dr DAEC strains have developed strate-
gies to escape antimicrobial host defense systems and to reduce
their sensitivity to antibiotics.

Vaccines and Pilicides

A therapeutic strategy has been developed to disarm pathogens in
the host by the use of substances that mimic bacterial virulence
factors such as adhesive factors, bacterial effectors, and toxins or
that display antagonistic activities against the bacterial production
of these factors (520, 521). Touchon et al. (522) underlined that
this could make it difficult to develop a vaccine against ExPEC
infections. It is noteworthy that an emerging therapeutic strategy
consists of developing antagonists of QS systems in order to in-
hibit the bacterium-bacterium and bacterium-host cell commu-
nications involved in virulence (523). Brumbaugh and Mobley
(520) have recently summarized the advances in vaccine strategy
against UPEC and enteric virulent E. coli. These include com-
pounds targeting surface polysaccharides and formulations com-
posed of several virulence factors such as hemolysin, type 1, P, Dr,
and S fimbrial adhesins, CNF-1, siderophores, and markers of
PAIsCFT073 and which display serotypes O1, -4, -6, -17, -75, and
-77, K1, -3, -5, -13, and -95, and flagellar H:1, H:5, H:7, and H:33.
Other strategies are the targeting of membrane proteins from
UPEC strains or the use of mixtures of inactivated UPEC strains or
genetically engineered vaccines. Although promising, the use of
antagonists of adhesive factors to combat bacterial colonization of
epithelia is complicated by the fact that a single pathogenic E. coli
strain expresses a multiplicity of adhesive factors, each of which
displays specific host cell receptor recognition. Consequently, it
appears evident that it may be necessary to target more than one
virulence factor for successful vaccine or pilicide therapies. An-
other subunit vaccine strategy against ExPEC has been designed to
target immunodominant epitopes of the virulence-associated
ExPEC proteins FyuA, IroN, ChuA, IreA, Iha, and Usp (524). For
Afa/Dr DAEC infection, a vaccine strategy has been experimen-
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tally tested using the Dr adhesin in the mouse pyelonephritis
model (385). High titers of serum anti-Dr antibodies develop after
vaccinating mice with purified Dr adhesin, and this is accompa-
nied by a significant reduction in mortality but, surprisingly, with-
out affecting the levels of bladder or kidney colonization by Dr
adhesin-positive E. coli. Ex vivo, preincubating Dr adhesin-posi-
tive E. coli with Dr adhesin-immunized mouse serum reduces the
bacterial adherence to mouse bladders and kidneys, whereas pre-
incubating urine from Dr adhesin-immunized mice fails to pro-
duce this inhibitory activity.

Therapeutic-strategy-based pilicides have been developed in
order to inhibit the completion of fimbrial and nonfimbrial ad-
hesins at the cell surface of bacterial pathogens, including UPEC
and enteric pathogenic E. coli (525, 526). Pilicides are a class of
low-molecular-weight compounds which, by blocking chaperone
and usher functions, inhibit pilus/fimbria completion without
killing or affecting the growth of bacteria. Consequently, pilicides
can prevent the first critical adhesion step required for the success-
ful urinary tract colonization by UPEC strains involved in cystitis
and pyelonephritis. On the bases that AfaC/DraC/DaaC ushers are
pivotal for Afa/Dr adhesins biogenesis to occur and that the draC
and afaC-III genes encoding the Afa/Dr ushers display 100% iden-
tity, it has been postulated that 2-pyridone pilicide compounds
could inhibit the biogenesis of Afa/Dr adhesins (83, 176, 177).
This pilicide strategy has been found to be effective against Dr
adhesin biogenesis, where it produces a marked reduction of the
expression of Dr adhesin and the disappearance of its properties of
adherence to hDAF (175, 527).

CONCLUDING REMARKS AND FUTURE DIRECTIONS

The importance of human Afa/Dr DAEC in UTIs and pregnancy
complications has been convincingly demonstrated both experi-
mentally and clinically. Moreover, increasing epidemiological ev-
idences has been reported during the last decade on the role of
human intestinal Afa/Dr DAEC in triggering established acute
diarrhea in infants �5 years. In contrast, epidemiological studies
indicate that human intestinal Afa/Dr DAEC strains are probably
not responsible for established acute diarrhea in adults. A robust
PCR method for detecting and identifying diarrhea-associated
Afa/Dr DAEC strains remains to be developed, as the PCR meth-
ods currently used in a clinical setting are problematic with regard
to the recently observed cross-reaction between the most com-
monly used Afa/Dr DAEC daaC primer and EAEC primers.

In spite of the remarkable results obtained over the past de-
cade, the cellular and molecular mechanisms of Afa/Dr DAEC
pathogenesis remain incompletely elucidated. Several aspects de-
serve particular attention in the future. Whole-genome sequenc-
ing is called for to identify more potential virulence factors in the
wild-type Afa/Dr DAEC prototype strains in order to complete
our understanding of the pathogenesis of these pathogenic E. coli
strains. Much of our current knowledge about Afa/Dr DAEC in-
testinal pathogenesis has been obtained from in vitro observations
using cultured human epithelial colon cancer cells, which, despite
mimicking the situation in vivo, do not entirely reflect the healthy
human situation and have several drawbacks (421). The high
specificity of Afa/Dr adhesins for human epithelium-associated
molecules acting as receptors and triggering cell signalization and
cellular effects complicates the experimental examination of the
cellular and molecular mechanisms of Afa/Dr DAEC pathogene-
sis. In comparison with the in vitro situation, the use of transgenic

mouse models constructed for the epithelial expression of hDAF
and hCEACAMs has not given convincing results in terms of cel-
lular lesions even in the presence of Afa/Dr DAEC intestinal col-
onization (unpublished results). This is probably due to the en-
dogenous presence of mouse DAF and CEACAMs and to the
observation of a less-than-optimal expression of the membrane-
bound human receptors (unpublished results) in the mouse epi-
thelial tissue and/or defective connection to the mouse endoge-
nous signaling pathways that have been observed in vitro to be
involved in Afa/Dr DAEC pathogenesis. To overcome these prob-
lems, human intestinal in vitro organ culture (IVOC) models
(528) can offer valuable tools for the experimental investigation of
the mechanisms of virulence of intestinal Afa/Dr DAEC. Various
IVOC systems corresponding to an ex vivo human situation have
been described, including those constituting polarized IVOCs es-
tablished from pediatric duodenum biopsy specimens or speci-
mens of human colon taken at the vicinity of tumors. These IVOC
systems have been used mainly to study the mechanisms of viru-
lence of enterovirulent E. coli, including ETEC, EPEC, EHEC,
EAEC, and AIEC (528).

Repeated observations in epidemiological studies of the intes-
tinal presence of daaC-positive DAEC strains in adults in the ab-
sence of acute diarrhea are intriguing. This asymptomatic carriage
deserves further exploration. Indeed, the Afa/Dr DAEC strains are
clearly pathogenic with regard to the deleterious effects observed
in vitro in human intestinal cell models, some of which resemble
the pathogenic effects of EPEC and EHEC even though they result
from different cellular and molecular pathogenic mechanisms.
This reinforces our previous hypothesis that intestinal Afa/Dr
DAEC strains act as “silent pathogens” that are well controlled
under healthy conditions by the intestinal antimicrobial mole-
cules generated by dedicated cells of the host intestinal barrier and
by the barrier effect exerted by the intestinal microbiota (11). The
above-described deleterious cellular effects of intestinal Afa/Dr
DAEC make us think that these microbiota-resident E. coli in
healthy humans could be good candidates for belonging to the
recently defined class of “pathobionts” (529). Indeed, recent evi-
dence suggests that the observed deleterious cellular effects may be
caused by specific bacterial species with pathogenic potential that
were present as symbionts in the healthy host intestinal microbi-
ota. Although the pathophysiological mechanisms of pathobionts
remain largely unknown, it appears that genetic factors, environ-
mental factors, and/or changes in host defense systems may ex-
pose the host to developing diseases triggered by these potentially
pathogenic microbiotal bacteria. Observations that some strong
cell defense responses, including the extrusion of infecting bacte-
ria from the brush border, cell detachment of intoxicated cells,
and killing by NETs of activated PMNLs developed after Afa/Dr
DAEC infection, all support the existence of efficient control by
the host of these pathogenic E. coli strains in healthy situations.
This leads to the question of how a resident intestinal microbiota
Afa/Dr DAEC strain can emerge as an enterovirulent pathogen.
Several circumstances allow the occurrence of diseases triggered
by pathobionts. For example, dysbiosis, a shift in the makeup of
the intestinal microbiota community and/or its abundance, leads
to a change in the equilibrium between putative protective species
and harmful pathogens (530). Another E. coli pathobiont candi-
date is the E. coli strain C25, isolated from the feces of a healthy
human (531, 532). This strain expresses the SPATE toxin Pic
(533), translocates across colonic T84 cell monolayers, promotes
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alterations in localization of claudin-1, activates NF-
B signaling,
and induces the production of IL-6, IL-8, and TNF-� (533–535),
all effects that are exacerbated in a proinflammatory situation
(536).

The causes of IBD have not been entirely identified but are
known to be related to a susceptible human genome (537), a dys-
function of the immune system (537), a massive and/or selective
modification in the composition of the intestinal microbiota
(538), and the intervention of opportunistic enterovirulent bacte-
ria (529, 539). With regard to the observed asymptomatic carriage
of intestinal daaC-positive E. coli strains, some of the above-re-
ported deleterious cellular effects of intestinal Afa/DrDAEC, in-
cluding marked proinflammatory responses, indicated that these
strains could play a role in intestinal inflammation. Afa/Dr DAEC
belongs to phylogenic group B2, which has been observed to be
prevalently associated with IBD (138, 217). It is difficult to address
this question experimentally because of the lack of experimental
animal models mimicking the human situation. Furthermore, ep-
idemiological clinical studies are difficult to conduct because this
would require isolating the mucosa-associated intestinal Afa/Dr
DAEC in patients with chronic inflammatory diseases. Indeed, the
in vitro results show that these strains are very effectively excluded
from the brush border by the host defenses. Moreover, the sam-
pling techniques used to isolate the mucosa-associated bacteria,
which are localized exclusively on the luminal surface of the intes-
tinal barrier, are also problematic, since these bacteria can be easily
lost during the technical process. It has been found to be easier to
isolate AIEC from patients with chronic inflammatory diseases
simply because it is intracellularly localized in cells lining the epi-
thelial barrier. Future progress can be expected to provide answers
to these questions.

There are emerging links between microbial and parasite infec-
tions and oncogenesis (540). Moreover, the relationships and
mechanisms through which disturbance of intestinal microbiota,
infection, and inflammation increase cancer risks and promote
tumor development were recently reviewed (541, 542). A small
number of microbial pathogens have been identified as critical
causes of specific chronic inflammatory conditions or malignan-
cies. The best-characterized example of a bacterial contribution to
cancer is H. pylori infection, which is well established as a major
risk factor for gastritis leading to gastric cancer as the result of the
deleterious activity of its cytotoxin-associated gene A protein
(543). However, the simple observation that some bacteria are
present at the site of cancerous intestinal tumors does not consti-
tute a proof of causality. A link of causality is difficult to demon-
strate here because there is a long time lag between initiation of a
cellular process of carcinogenesis and the onset of overt disease.
Indeed, the bacterium-triggered event can occur long before any
sign of a cancer tumor manifests itself, and indeed the pathogen
may no longer be present. It is becoming clear that some proin-
flammatory bacterial pathogens can contribute to initiating, pro-
moting, and/or progressing cancer by their virulence factors, in-
cluding toxins, which directly disrupt cellular signaling pathways
that control inflammatory processes and damage DNA. Some
demonstrated aspects of the mechanisms of pathogenicity of in-
testinal and uropathogenic Afa/Dr DAEC strains suggest a possi-
ble connection with the initiation or development of intestinal
and urinary tract cancers. Some of the deleterious cellular re-
sponses triggered by Afa/Dr DAEC described above suggest that
they can be connected to the initiation of cellular events in relation

to intestinal cancer. The pks island (238, 540) is present in Afa/Dr
DAEC, and it has been found that pks-positive E. coli strains be-
longing to the phylogenic B2 group are prevalently present in
biopsy specimens of patients with intestinal cancers and induce
DNA double-strand breaks in intestinal cells as well as trigger
chromosomal instability, gene mutations, and cell transformation
(22, 240, 246, 544). Afa/Dr DAEC infection is accompanied by the
transepithelial migration of PMNLs, and in the intestinal tract
migration of PMNLs across the epithelial lining is a hallmark of
IBD and can create a deleterious inflammatory situation (455) and
preneoplastic conditions, since transmigrated PMNLs exert a di-
rect cytotoxic effect by releasing products such as oxidative re-
agents and elastase (545). Moreover, after Afa/Dr DAEC-induced
transmigration of PMNLs across a monolayer of intestinal cells,
the epithelial cells displayed deregulated expression of mem-
brane-associated hDAF with altered functions, some of which are
implicated in carcinogenesis (546). On the other hand, it should
be noted that hCEACAMs, the receptors of Afa/Dr adhesins, are
known to be implicated in carcinogenesis (275). In addition, the
EMT and angiogenesis observed to be triggered by intestinal
Afa/Dr DAEC are indicative that these bacteria play a role in car-
cinogenesis (480). An important function of autophagy in cancer
is the limitation of inflammation, tissue damage, and genome in-
stability, and when the autophagy process is blocked at the degra-
dative autophagosome step, cells accumulate cytotoxic material,
thus promoting DNA mutation and carcinogenesis (547, 548).
Consequently, the observed blockade of autophagosome matura-
tion triggered by the Afa/Dr DAEC Sat toxin may play a role in
carcinogenesis. It is noteworthy that this deleterious effect of au-
tophagy has been observed for H. pylori in relation to its role in the
development of gastric cancer (549), since the vacuolating cyto-
toxin VacA induces autophagy and disrupts autophagosome mat-
uration after prolonged exposure (550). UPEC-induced cell exfo-
liation in turn induces the upregulation of urothelial turnover,
and it has been postulated that it may play a role in patients’
predisposition to bladder cancer (504, 551, 552). It is tempting to
hypothesize that Afa/Dr DAEC is involved in the development of
bladder cancer, given the observed cell exfoliation effect triggered
by the Afa/Dr DAEC Sat toxin. Collectively, these results provide a
group of facts but do not amount to evidence of a possible link
between Afa/Dr DAEC infection and intestinal or bladder carci-
nogenesis.
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