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The balance between transcription factor p73 and its functionally opposing N-terminally truncated �Np73 isoform is critical for
cell survival, but the precise mechanism that regulates their levels is not clear. In our study, we identified WWP2, an E3 ligase, as
a novel p73-associated protein that ubiquitinates and degrades p73. In contrast, WWP2 heterodimerizes with another E3 ligase,
WWP1, which specifically ubiquitinates and degrades �Np73. Further, we identified phosphatase PPM1G as a functional switch
that controls the balance between monomeric WWP2 and a WWP2/WWP1 heterodimeric state in the cell. During cellular stress,
WWP2 is inactivated, leading to upregulation of p73, whereas WWP2-WWP1 complex is intact to degrade �Np73, thus playing
an important role in shifting the balance between p73 and �Np73. Collectively, our results reveal a new functional E3 ligase com-
plex controlled by PPM1G that differentially regulates cellular p73 and �Np73.

The p73 protein, also known as tumor protein 73 (TP73), be-
longs to the p53 family of transcription factors and has been

classified as an important tumor suppressor (1). p73 is able to bind
canonical p53 DNA binding sites and transactivate p53 target
genes that participate in cell cycle arrest and apoptosis (2–4). p73
shares a similar domain organization as p53, including an N-ter-
minal transactivation domain, a central DNA binding domain,
and a C-terminal oligomerization domain (5). Similar to p53,
several lines of evidence suggest that p73 plays an important role
in human cancers. For instance, the p73 gene has been mapped to
chromosome region 1p36.2-3, a locus that is frequently lost in
several human cancers (6–9). Altered expression of p73 has been
reported in different cancers such as neuroblastoma, breast can-
cers, and renal cell carcinoma (1, 10, 11). In addition, isoform-
specific p73 null mice exhibit genomic instability associated with
enhanced aneuploidy, which accounts for increased incidence of
spontaneous tumors and carcinogen-induced tumors (12).

p73 exists in several N-terminal and C-terminal isoforms (13).
The p73 gene expresses at least seven alternatively spliced C-terminal
isoforms (�, �, �, �, ε, �, and �) and three alternatively spliced N-ter-
minal isoforms. Importantly, the p73 gene can be transcribed from an
alternative promoter located in intron 3 that leads to the expression of
�Np73, an N-terminally truncated isoform. �Np73 lacks a transac-
tivation domain in its structure and thereby exerts a dominant nega-
tive effect on p73 functions (14, 15). The dominant negative function
of �Np73 may be attributed to either its ability to compete for p73
target DNA binding sites or inhibition of p73 transcriptional activity
via hetero-oligomerization.

Since expression of p73 induces cell death whereas �Np73 pro-
tects cells from p73 induced apoptosis (16), the degree of expres-
sion of transcriptionally active p73 and inactive �Np73 variants
determines cell fate. Thus, the fine balance between the two iso-
forms needs to be tightly regulated in cells. Under normal condi-
tions, p73 and �Np73 levels are kept in balance (17), but upon
genotoxic stress the ratio of p73 and �Np73 is altered in favor of
p73 (2, 18). However, the precise mechanism that regulates the
p73/�Np73 ratio under normal conditions and upon stress is not
clearly understood.

WWP2 is an E3 ubiquitin ligase that plays an important role in
different cellular functions such as transcription, embryonic stem cell

fate, cellular transport, T-cell activation, and apoptosis (19–22). Re-
cently, we identified WWP2 as an E3 ubiquitin ligase for PTEN (23).
Although WWP2 has been identified as a potential oncogene that
requires its E3 ligase activity, so far only limited substrates such as
PTEN and SMADs have been implicated as functional substrates of
WWP2 oncogenic function (23, 24). In addition, our previous study
has shown that WWP2 negatively regulates cell death that is partially
dependent on PTEN; thus, we speculated that there might be addi-
tional substrates of WWP2 in cells. In this study, we identified p73 as
a novel substrate of WWP2 that might be functionally important in
WWP2 prooncogenic function.

MATERIALS AND METHODS
Plasmids. Full-length p73, �Np73, WWP1, WWP2, HACE1, E6AP, and
PPM1G were cloned into a mammalian destination vector expressing an
S-protein/Flag/streptavidin binding protein (SBP) triple-epitope tag
(SFB) and a Myc-tagged destination vector using a Gateway cloning sys-
tem (Invitrogen). Hemagglutinin (HA)-p73 and HA-�Np73 were also
generated. p73 domain deletions were cloned into a destination vector
with an S-protein/Flag/SBP triple-epitope tag. Bacterially expressing glu-
tathione S-transferase (GST)–p73, GST-�Np73, GST-PPM1G, and malt-
ose binding protein (MBP)-WWP2 vectors were generated by transfer-
ring their coding sequences into destination vectors. Catalytically inactive
mutants of WWP1 (C890S), WWP2 (C838A), and PPM1G (D496A) were
generated using a site-directed mutagenesis kit (Stratagene) according to
the manufacturer’s protocol. Flag-p73 and Flag-�Np73 were a kind gift
from Alex Zaika (Vanderbilt University).

Antibodies. Anti-WWP2, anti-PPM1G, anti-HA (all from Bethyl
Laboratories), anti-WWP1 (Abnova), antiubiquitin (anti-Ub) (Milli-
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pore), anti-MBP (New England Bio Labs), anti-Myc clone 9E10 (Santa
Cruz Biotechnology), anti-Flag, anti-GST, antiactin, and antitubulin
(Sigma) antibodies were used in this study.

Tandem affinity purification. WWP2-associated proteins were iso-
lated by using tandem affinity purification as described previously (25).
Briefly, 293T cells were transfected with WWP2 triple tagged with S-pro-
tein/Flag/SBP, and then 3 weeks later puromycin-resistant colonies were
selected and screened for WWP2 expression. The WWP2-positive stable
cells were then maintained in RPMI medium supplemented with fetal
bovine serum (FBS) and 2 	g/ml puromycin. The SFB-WWP2 stable cells
were lysed with NETN buffer (20 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1
mM EDTA, 0.5% Nonidet P-40) containing 50 mM �-glycerophosphate,
10 mM NaF, and 1 	g/ml each of pepstatin A and aprotinin on ice for 30
min. After removal of cell debris by centrifugation, crude cell lysates were
incubated with streptavidin-Sepharose beads (Amersham Biosciences)
for 1 h at 4°C. The bound proteins were washed three times with NETN
buffer and then eluted twice with 2 mg/ml biotin (Sigma) for 60 min at
4°C. The eluates were incubated with S-protein–agarose beads (Novagen)
for 1 h at 4°C and then washed three times with NETN buffer. The pro-
teins bound to S-protein–agarose beads were resolved by SDS-PAGE and
visualized by Coomassie blue staining. The identities of eluted proteins
were revealed by mass spectrometry analysis performed by the Taplin
Biological Mass Spectrometry Facility at Harvard.

Cell transfections, immunoprecipitation, and immunoblotting.
HEK293T and HeLa cells were transfected with various plasmids using
Lipofectamine (Invitrogen) according to the manufacturer’s protocol and
treated accordingly. For immunoprecipitation assays, cells were lysed
with NETN buffer containing 1 	g/ml each of pepstatin A, aprotinin, and
phenylmethylsulfonyl fluoride (PMSF) on ice for 30 min. The whole-cell
lysates obtained by centrifugation were incubated with Flag-agarose or
streptavidin-Sepharose beads (Amersham Biosciences) for 1 h at 4°C. The
immunocomplexes were then washed with NETN buffer four times and
applied to SDS-PAGE. Immunoblotting was performed according to
standard protocols.

In vitro binding assays. Bacterially expressed GST-p73, GST-�Np73,
or control GST bound to glutathione-Sepharose beads (Amersham) was
incubated with bacterially purified MBP-WWP2 or MBP-WWP1 for 1 h
at 4°C, and the washed complexes were eluted by boiling in SDS sample
buffer and separated by SDS-PAGE, and the interactions were analyzed by
Western blotting. A similar binding assay was performed to analyze
PPM1G interaction with cellular WWP2.

Cycloheximide chase assay. HEK293T cells were transfected with var-
ious combinations of plasmids, and at 24 h posttransfection cyclohexi-
mide (50 	g/ml) was added. Cells were harvested at different time points,
and protein levels were determined by immunoblotting.

In vivo ubiquitination assay. Cells were transfected with various
combinations of plasmids. At 24 h posttransfection, cells were treated
with MG132 (10 	M) for 6 h, and whole-cell extracts were prepared by
NETN lysis were subjected to immunoprecipitation of the substrate pro-
tein. The analysis of ubiquitination was carried out by immunoblotting
with antiubiquitin antibodies.

In vitro ubiquitination assay. The reactions were carried out at 30°C for
15 min in 25 	l of ubiquitylation reaction buffer (40 mM Tris-HCl at pH 7.6,
2 mM dithiothreitol [DTT], 5 mM MgCl2, 0.1 M NaCl, 2 mM ATP) contain-
ing the following components: 100 	M ubiquitin, 20 nM E1 (UBE1), and 100
nM UbcH5b (all from Boston Biochem); bacterially purified MBP-WWP2
and MBP-WWP1 E3 ligases were added to the reaction mixture. Bacterially
purified GST, GST-p73, and GST-�Np73 bound to glutathione-Sepharose
beads (Amersham) were used as substrates in the reaction mixture. After the
reaction, beads were washed three times with NETN buffer and boiled with
SDS-PAGE loading buffer; ubiquitination of substrates was detected by West-
ern blotting with anti-GST antibody.

Gel filtration. 293T cell lysates (0.8 ml) were fractionated using a
Sephacryl S-100 column (GE Healthcare). Fraction sizes of 500 	l were

collected using a Bio-Rad 2110 fraction collector. Samples were analyzed
by immunoblotting after SDS-PAGE separation.

Pulse-chase analysis. 293T cells transfected with various combina-
tions of plasmids/small interfering RNAs (siRNAs) were starved for 1 h in
Dulbecco’s modified Eagle’s medium (DMEM) with dialyzed serum and
then labeled with 200 	Ci/ml of [35S]Met-Cys. Unlabeled Met and Cys (2
mM) were added, and cells were collected at the indicated time points (see
Fig. 2g, 4f, and 7e). Cells were lysed with NETN buffer containing 1 	g/ml
each of pepstatin A, aprotinin, and PMSF on ice for 30 min. The whole-
cell lysates obtained by centrifugation were incubated with Flag-agarose
for 1 h at 4°C. Immunoprecipitates were washed three times in NETN
buffer and run on an SDS gel, followed by detection with autoradiogra-
phy.

RNA interference. Vectors containing a control short hairpin RNA
(shRNA) and WWP2 shRNA (shRNA1, 5=-CAGGAUGGGAGAUGAAA
UAUU-3=; shRNA2, 5=-ACAUGGAGAUACUGGGCAAUU-3=), WWP1
shRNA (shRNA1, 5=-ATTGCTTATGAACGCGGCT-3=; shRNA 2,
ACAACACACCTTCATCTCC-3=) were purchased from Open Biosys-
tems and were transfected into cells with Lipofectamine using standard
protocols. WWP2 siRNA described earlier (23) and prevalidated siRNAs
for PPM1G (catalog numbers S102658684 and S102658691) were pur-
chased from Qiagen and transfected using Oligofectamine using standard
protocols.

Apoptosis assays. Cells were washed with phosphate-buffered saline
(PBS) and then treated with propidium iodide hypotonic lysis buffer
(0.1% sodium citrate, 0.1% Triton X, 100 	g/ml RNase, 50 	g/ml pro-
pidium iodide). After 30 min of incubation, the samples were analyzed by
flow cytometry, and the percentage of apoptotic cells was calculated based
on the sub-G1 peak.

RESULTS
p73 is a novel WWP2-associated protein. In order to identify
additional substrates and/or regulators of WWP2, we established a
293T cell line stably expressing WWP2 with a triple-epitope tag
(S-protein, Flag, and streptavidin-binding peptide). Tandem af-
finity purification of WWP2 followed by mass spectrometry anal-
ysis gave us a list of several WWP2-associated proteins. p73 was
found as one of the potential interacting proteins in WWP2
complex (see List S1 in the supplemental material). By per-
forming coimmunoprecipitation experiments using cells ex-
pressing p73 and WWP2, we confirmed that WWP2 specifically
interacts with p73 but not with its closely related protein p53
(Fig. 1a). As p73 exists in several isoforms, we then tested if
WWP2 interaction with p73 is specific to its isoforms. Coim-
munoprecipitation experiments revealed that WWP2 interacts
with both p73� and p73�. Interestingly, WWP2 also interacts
with �Np73�, an alternate isoform and a known negative reg-
ulator of full-length p73 (Fig. 1b). Since p73� and �Np73� are
functionally antagonistic, all of our further experiments are
focused on understanding the significance of interaction be-
tween WWP2 and these two p73 isoforms. Our in vitro binding
experiments show that a bacterially purified WWP2 interacts
with bacterially expressed GST-p73 and GST-�Np73 but not
GST alone, thus suggesting a direct interaction between WWP2
and p73 isoforms (Fig. 1c). Previous studies have shown that
p73 associates with its E3 ligases through its PPXY motifs (17).
As WWP2 contains WW domains, which have high affinity
toward PPXY motifs, we further tested if they interact through
these regions. By using various deletion mutants of p73 (see
Fig. S1a in the supplemental material), we showed that it inter-
acts with WWP2 through its oligomerization domain (see Fig.
S1b) but not the region spanning PPXY motifs, suggesting that
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these motifs are dispensable for their interaction. In fact, mu-
tations in either or both PPXY motifs of p73 have no effect on
the interaction of PPXY with WWP2, but deletion of the oli-
gomerization domain in p73 (p73�OD) abolishes their inter-
action (Fig. 1d). On the other hand, deletion analysis of WWP2
revealed that the WW3 domain is required for its interaction
with p73 (see Fig. S1c and d). Thus, WWP2 interacts with p73
in a PPXY-independent manner via its WW domain.

WWP2 differentially regulates stability of p73 and �Np73.
Since WWP2 is a known HECT-type E3 ligase that regulates the func-
tions of its substrates by ubiquitination, we further tested whether
p73 is a functional substrate of WWP2. Our in vivo ubiquitination
assays revealed that the wild-type but not a catalytically inactive
C838A mutant of WWP2 promotes ubiquitination of p73 in cells
(Fig. 2a; see also Fig. S2a in the supplemental material). Further, by
using an in vitro ubiquitin conjugation assay, we showed that a bac-
terially purified WWP2 actively ubiquitinated recombinant p73 (Fig.
2b). On the other hand, knockdown of WWP2 dramatically reduced
the levels of p73 ubiquitination, clearly suggesting that WWP2 acts as
an E3 ligase for p73 (Fig. 2c; see also Fig. S2b). Full-length p73, but not
its oligomerization domain deletion mutant (p73�OD) that is defec-
tive in interaction with WWP2, is readily ubiquitinated by WWP2
(Fig. 2d). Conversely, deletion of the N-terminal region of WWP2
that is required for its interaction with p73 severely abolished its abil-
ity to ubiquitinate p73 (Fig. 2e), thus suggesting that the interaction of
WWP2 is critical for p73 ubiquitination. WWP2 mediates p73 ubiq-
uitination via K48 linkage as a mutant ubiquitin with all lysines except

lysine 48 replaced with arginine is sufficient to form polyubiquitin
chains on p73 (see Fig. S2c). To further characterize the functional
significance of WWP2-mediated p73 ubiquitination, we checked p73
levels in cells expressing WWP2. As shown in Fig. 2f, expression of
wild-type WWP2 but not its catalytically inactive mutant downregu-
lated cellular p73 levels. Indeed, our pulse-chase experiments sug-
gested that depletion of WWP2 significantly increased the protein
half-life of p73 (Fig. 2g). In addition, WWP2-mediated degradation
of p73 is dependent on proteasome activity as its inhibition with
MG132 rescued the p73 levels (Fig. 2h).

WWP1 heterodimerizes with WWP2. As we found that
�Np73 also interacts with WWP2, we further tested if WWP2 acts
as an E3 ligase for this isoform as well. Interestingly, both the wild
type and a C838A mutant enhanced �Np73 ubiquitination (see
Fig. S3a and b in the supplemental material) followed by its deg-
radation (Fig. 3a). These results suggest that WWP2 might be
regulating p73 and �Np73 by two distinct mechanisms. Since
WWP2 degrades �Np73 independent of its catalytic function, we
hypothesized that WWP2 might be recruiting another E3 ligase
for degradation of �Np73 specifically. To test this hypothesis, we
analyzed the list of WWP2-associated proteins generated by tan-
dem affinity purification. In fact, we found that WWP1, another
HECT-type E3 ligase (26), is associated with the purified WWP2
complex (see List S1 in the supplemental material). By using
coimmunoprecipitation experiments, we confirmed the het-
erodimerization of WWP2 and WWP1 in cells (Fig. 3b). Further,
we tested whether WWP1 interacts with p73 and �Np73. We
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found that WWP1 along with WWP2 but not a control E3 ligase,
HACE1, associates with �Np73 (Fig. 3c). Our in vitro binding
experiments using bacterially purified recombinant proteins sug-
gested that WWP1 specifically interacts with �Np73 but requires
WWP2 for their association (Fig. 3d).

WWP1 in complex with WWP2 specifically regulates
�Np73. Since WWP1 is also a bona fide E3 ligase, we then tested if it
is required for �Np73 ubiquitination. Knockdown of WWP1 by
shRNA significantly reduced the polyubiquitinated species of �Np73
in cells (Fig. 4a). On the other hand, WWP1 has no effect on full-
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length p73 ubiquitination but is able to readily promote ubiquitina-
tion of �Np73 (Fig. 4b). WWP1-mediated ubiquitination of �Np73
is dependent on its catalytic activity as a C890S mutant was inefficient
in promoting �Np73 ubiquitination, thus confirming the role of
WWP1 as a specific E3 ligase for �Np73. Interestingly, depletion of
WWP2 reduced the ability of WWP1 to polyubiquitinate �Np73
(Fig. 4c); thus, assembly of a heterodimeric complex of WWP2-
WWP1 is essential for efficient �Np73 polyubiquitination. Further,
by using an in vitro ubiquitin conjugation assay, we confirmed that
�Np73 is specifically ubiquitinated by WWP1-WWP2 E3 ligase com-
plex (Fig. 4d). Since we observed that �Np73 is ubiquitinated by K48
linkages (see Fig. S3c in the supplemental material), we next tested if
polyubiquitination of �Np73 by WWP1 leads to its degradation. Ex-
pression of wild-type WWP1 but not the C890S mutant reduced the
levels of �Np73 (Fig. 4e). Of note, WWP1 expression has no effect on
full-length p73 levels, again supporting the distinct role of WWP2-
WWP1 complex in controlling �Np73 specifically. Our pulse-chase
experiments further confirmed that depletion of either WWP2 or
WWP1 significantly increased the half-life of �Np73 (Fig. 4f). Thus,
we found that WWP1 was a WWP2-associated E3 ligase for �Np73.

Further, to understand the functional significance of the interaction
of p73 isoforms with WWP2 and WWP1, we tested the effect of these
E3 ligases on the apoptosis-controlling ability of p73 and �Np73.
Expression of p73 readily induces apoptosis, which is rescued by
cotransfection with wild-type WWP2 but not a catalytically inactive
mutant (Fig. 5a). On the other hand, �Np73 suppresses p73-medi-
ated apoptosis, which is relieved by coexpression of its E3 ligase
WWP1 (Fig. 5b). The relieving effect of WWP1 on �Np73-mediated
inhibition of p73 is again dependent on its catalytic activity as the
C890S mutant could not relieve the inhibition. These results suggest
that WWP2 might exist in two functionally distinct forms, wherein
WWP2 in monomeric form ubiquitinates and degrades full-length
p73 but in a heterodimeric complex with WWP1 regulates �Np73,
thus maintaining a fine balance between these two isoforms in cells.

PPM1G inactivates monomeric WWP2 and promotes the as-
sembly of WWP2-WWP1 heterodimeric complex. As our results
suggested that the interplay between the monomeric and het-
erodimeric WWP2 state is critical in regulating p73 and �Np73
levels, we hypothesized that a molecular switch might exist in the
cells that may alter WWP2 in these two states under different
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cellular conditions. To test this hypothesis, we again analyzed the
list of WWP2-associated proteins generated by tandem affinity
purification. After testing various listed WWP2-associated pro-
teins, we found that a phosphatase, PPM1G, specifically interacts
with WWP2 (Fig. 6a; see also Fig. S4a in the supplemental mate-
rial). PPM1G, also known as PP2C�, is a Mg2
/Mn2
-dependent
nuclear serine/threonine phosphatase that plays an important role
in different functions, such as nucleosome assembly, cell survival
control, mRNA splicing, and DNA damage response (27–29).

First, we ruled out the possibility of PPM1G as a substrate of
WWP2 since we did not observe any changes in the levels of
PPM1G with increasing concentrations of WWP2 (see Fig. S4b in

the supplemental material). Next, to test the possibility of PPM1G
as a molecular switch for monomeric versus heterodimeric
WWP2, we depleted PPM1G in cells and tested for a WWP2-
WWP1 interaction. As shown in Fig. 6b, depletion of PPM1G
severely affected the association of WWP1 and WWP2. PPM1G
activity is required for the assembly of WWP2-WWP1 complex as
inhibition of PPM1G activity by cadmium chloride led to the loss
of WWP2-WWP1 interaction in cells (Fig. 6c). Since PPM1G is
important for the assembly of WWP2-WWP1 complex, we fur-
ther tested its effect on p73 and �Np73. We observed that p73
ubiquitination is enhanced (Fig. 6d), whereas �Np73 ubiquitina-
tion is significantly reduced upon inhibition of PPM1G activity
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(Fig. 6e). The altered ubiquitination of p73 and �Np73 by PPM1G
is important in regulating their protein stability as inhibition of
PPM1G reduced the protein half-life of p73, whereas �Np73 was
strongly stabilized (Fig. 6f). Our further experiments revealed that
the presence of active PPM1G inhibits the E3 ligase activity of
WWP2 as cadmium chloride treatment of cells led to enhanced
autoubiquitination of WWP2 (Fig. 6g). On the other hand,
PPM1G has no significant effect on WWP1 activity (Fig. 6h). Fur-
ther, to test if PPM1G negatively regulates WWP2 function, we
analyzed its effect on WWP2-controlled p73-mediated apoptosis.
As expected, WWP2 reduced p73-induced cellular apoptosis,
which is rescued by coexpression of PPM1G (Fig. 6i). The rescue
effect of PPM1G is dependent on its catalytic activity as cadmium
chloride treatment or transfection of a catalytically inactive
PPM1G mutant reversed the apoptotic phenotype. In addition,
depletion of PPM1G by siRNA reduced the ability of p73 to induce
apoptosis (see Fig. S4c in the supplemental material). Together,
these results suggest that PPM1G acts as functional molecular
switch that promotes the assembly of a WWP2-WWP1 heterodi-
meric complex and at the same time specifically inhibits the E3
ligase activity of WWP2 and thus controls the balance between
their substrates, p73 and �Np73.

WWP2-WWP1 complex alters the balance between p73 and
�Np73 during cellular stress. It is well known that during cellular
stress such as DNA damage, the balance between p73 and �Np73
is altered whereby the proapoptotic p73 is upregulated, and the
levels of antiapoptotic �Np73 are downregulated (14, 18). Previ-
ous studies have shown that accumulation of p73 during cellular
stress might be due to increased transcription of p73 (30). But,
nonetheless other investigators have reported the role of post-
translational mechanisms such as ubiquitination to alter the ratio
of p73 and �Np73 during cellular stress (17, 31). As we clearly
observed that WWP2 and WWP1 participate in ubiquitination of
p73 and �Np73, we further tested if there exists a mechanism that
involves these E3 ligases and that can alter the balance between the
two isoforms. As expected, we found that p73 was upregulated
while �Np73 was downregulated following treatment of cells with
cisplatin (Fig. 7a). We next tested whether the changes in the pro-
tein levels of p73 and �Np73 were due to changes in their ubiq-

uitination levels. As shown in Fig. 7b, ubiquitination of p73 is
reduced, whereas �Np73 ubiquitination is enhanced upon DNA
damage. In contrast, we did not observe any significant changes in
the protein level of WWP2, WWP1, or PPM1G upon cell stress
(see Fig. S5a in the supplemental material). We then tested
whether changes in p73 and �Np73 ubiquitination upon cellular
stress are due to altered activity of the E3 ligases. In fact our auto-
ubiquitination assays revealed that activity of WWP2 is dramati-
cally reduced, whereas WWP1 activity is modestly enhanced upon
cisplatin treatment (Fig. 7c). We next tested whether the balance
between monomeric and heterodimeric WWP2-WWP1 changes
upon cellular stress. Our gel filtration analysis revealed that under
normal conditions, both WWP2 and WWP1 exist in monomeric
and dimeric states. But, interestingly, upon cellular stress the
balance is significantly shifted toward the heterodimeric WWP2-
WWP1 state from the monomeric state. Further, the accumula-
tion of WWP2-WWP1 complex is necessary for efficient degrada-
tion of �Np73 during cellular stress as depletion of either WWP2
or WWP1 significantly stabilized �Np73 protein levels that were
degraded upon cisplatin treatment alone (Fig. 7e). As PPM1G
inhibits WWP2 activity, we further tested whether PPM1G is re-
quired for stress-induced cell death. In fact, cells became severely
resistant to cisplatin-induced apoptosis with either pretreatment
with the PPM1G inhibitor cadmium chloride (see Fig. S5b in the
supplemental material) or siRNA-mediated depletion of PPM1G
(Fig. 7f). Taken together, these results indicate that inactivation of
WWP2 by PPM1G during cellular stress leads to specific accumu-
lation of p73, whereas inactivated WWP2, again with the help of
PPM1G, could still heterodimerize with WWP1 to destabilize
�Np73.

DISCUSSION

p73 is a p53-related transcription factor that exists in full-length
and N-terminally truncated �Np73 isoforms. The full-length p73
isoform is expressed from an upstream promoter and has a strong
ability to induce cell cycle arrest/apoptosis and protect against
genomic instability and is thus regarded as bona fide tumor sup-
pressor. On the other hand, the �Np73 isoform lacks the N ter-
minus transactivation domain; hence, it cannot induce apoptosis
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but can still oligomerize with full-length p73 to block its transcrip-
tional activity. Due to the opposing functions of these proteins in
controlling cell survival, the ratio of the p73 isoform to the �Np73
isoform is critical in determining cell fate under normal and geno-
toxic stress conditions and thus needs to be tightly regulated at
both transcriptional and posttranslational levels. At the posttrans-
lational level, ubiquitination has been shown to play a very impor-
tant role in regulating the protein stability of p73 and its isoforms.
Itch, a HECT domain-containing protein, was identified as the
first E3 ligase to mediate p73 ubiquitination (17). Subsequently,
other E3 ligases such as PIR2 (31), UFD2a (32), and FBXO45 (33)
have been reported to control the stability of p73 and �Np73, but
most of these studies were insufficient to define a precise mecha-
nism that regulates the p73/�Np73 ratio both under normal con-
ditions and upon genotoxic stress. In addition, with p73 being a
very critical tumor suppressor, multiple E3 ligases may function in
different cellular contexts to maintain its optimal levels in cells, as
has been reported with other important players such as p53 (34).

In this work, we identified a complex of WWP2-WWP1 E3
ubiquitin ligases that function together to regulate the balance
between p73 and �Np73. We propose that under normal condi-
tions, WWP2 exists in two different states, where E3 ligase in a
monomeric form degrades p73 but in a heterodimeric complex
with WWP1 regulates �Np73 and thus maintains a fine balance
between these two isoforms in cells. On the other hand, during
genotoxic stress, monomeric WWP2 is inactivated and prevents
the degradation of p73, whereas inactive WWP2 can promote
�Np73 degradation via WWP1 complex, thus shifting the balance
toward accumulation of p73. PPM1G coordinates the interplay
between monomeric and heterodimeric states of WWP2 and thus
controls the balance between two functionally opposing isoforms
of p73 (a hypothetical model is shown in Fig. 7g). Thus, our study
highlights a novel mechanism of regulation of relative levels of p73
and �Np73 under normal conditions and during DNA damage,
and the alteration of these levels might lead to carcinogenesis.

Previously, we demonstrated that WWP2 acts as a potential
oncogene by negatively regulating PTEN protein stability (23),
but downregulation of PTEN alone may not fully explain the on-
cogenic potential of WWP2. Although subsequent studies have
reiterated the oncogenic role of WWP2 (35), very few functional
substrates have been identified thereafter. Hence, our current
study revealing tumor suppressor p73 as an additional functional
downstream substrate of WWP2 E3 ligase activity certainly pro-
vided important evidence in understanding the role of this E3
ligase as a potential oncogene. It would be interesting to further
analyze if a negative correlation exists between WWP2 and p73
expression in human cancers, which would further strengthen
their functional link in tumorigenesis.

On the other hand, we identified phosphatase PPM1G as a
novel regulator of WWP2 E3 ligase activity. Although earlier stud-
ies have implicated this phosphatase in several important cellular
functions such as nucleosome assembly, cell survival control,
mRNA splicing, and DNA damage response (27–29), its role in
tumorigenesis has not been reported so far. Since we determined
that PPM1G positively regulates p73 levels and negatively regu-
lates its counterpart �Np73 by controlling WWP2, it is tempting
to speculate that PPM1G might act as a potential tumor suppres-
sor. Our current studies are focused on unraveling the new func-
tional substrates of PPM1G and further understanding its possible
role as a tumor suppressor in human cancers.
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