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Fifteen bacterial isolates from spotted fever group rickettsiosis in Brazil were genetically identified as Rickettsia rickettsii. In a
phylogenetic analysis with other R. rickettsii isolates from GenBank, the Central/South American isolates showed low polymor-
phism and formed a clade distinct from two North American clades, with the North American clades having greater in-branch
polymorphism.

The tick-borne bacterium Rickettsia rickettsii is the etiologic
agent of Rocky Mountain spotted fever (RMSF), the most se-

vere rickettsiosis affecting humans in the Western Hemisphere
(1). In Brazil, the disease has been referred to as Brazilian spotted
fever (BSF). While RMSF fatality rates are usually 5% to 10% in
the United States, general rates of 20% to 40% have been reported
in Brazil (1).

In the state of São Paulo in southeastern Brazil, where BSF is a
disease for which notification is compulsory, various spotted fever
group (SFG) rickettsial isolates have been obtained from human
clinical cases during the past few years (2, 3). Although all these
isolates were confirmed to be SFG rickettsiae through indirect
immunofluorescence assays using anti-R. rickettsii human sera
(4), they were not genetically identified through molecular analy-
sis. Herein, we performed genetic identification and molecular
characterization of these rickettsial isolates and compared their
genetic profiles with those of isolates from ticks in Brazil and with
those of R. rickettsii isolates from other American countries.

Blood clot or skin lesion biopsy specimens from BSF-suspected
cases were processed by the shell vial technique, as described pre-
viously (5). Once rickettsiae were visualized within Vero cells
through an immunofluorescence assay using anti-R. rickettsii hu-
man polyclonal serum (4, 6), 1st-passage-infected cells were har-
vested, and one aliquot was used for DNA extraction through the
PureLink genomic DNA kit (Invitrogen, Carlsbad, CA). Extracted
DNA was assayed according to PCR protocols using primers tar-
geting the rickettsial genes gltA, ompA, and ompB and the RR0155-
rpmB, RR1240-tlc5b, and cspA-ksgA intergenic regions, as shown
in Table 1. In addition, DNA extracted from 3rd-passage-infected
cells of three R. rickettsii isolates, previously isolated from Ambly-
omma sculptum (reported as Amblyomma cajennense), Ambly-
omma aureolatum, and Rhipicephalus sanguineus ticks in Brazil
(12–14), was tested according to intergenic region PCR protocols.
PCR products were sequenced in an ABI automated sequencer
(model ABI 3500 Genetic Analyzer; Applied Biosystems/Thermo
Fisher Scientific, Foster City, CA) with the same primers used for
PCR. The generated sequences were compared with each other
and submitted to BLAST analyses (www.ncbi.nlm.nih.gov/blast)
to infer the closest similarities available in GenBank.

Phylogenetic analyses were performed using PAUP version

4.0b10 (15) to maximum parsimony (MP); the confidence values
for individual branches of the resulting tree were determined by
bootstrap analysis with 1,000 replicates. Bayesian analysis (BA)
was performed with MrBayes version 3.1.2 (16) software with
1,000,000 generations using the GTR�I�G substitution model.
Partial DNA sequences obtained from the amplified PCR prod-
ucts (gltA, RR0155-rpmB, RR1240-tlc5b, cspA-ksgA, and ompB)
were concatenated and aligned with corresponding sequences of
different strains of R. rickettsii available in GenBank using
CLUSTAL X (17) and adjusted manually using GeneDoc (18).
Partial sequences of the ompA gene were not included because the
region of the gene that was amplified in the present study showed
no polymorphism among the R. rickettsii isolates. Corresponding
sequences of R. rickettsii strain Hlp#2 (CP003311) and Rickettsia
philipii strain 364D (CP003308) were used as outgroups.

Fifteen rickettsial isolates (designated IAL 1 to 15) from BSF
patients (13 fatal cases) in the state of São Paulo, southeastern
Brazil, were identified as R. rickettsii, since their gltA (737 nt),
ompA (491 nt), and ompB (787 nt) DNA sequences were 100%
identical to each other and to corresponding sequences on the
genome of the R. rickettsii strain Brazil (GenBank accession no.
CP003305). While the ompA partial sequences were also 100%
identical to corresponding sequences of R. rickettsii strains from
North America (e.g., CP000848 and CP000766), the ompB partial
sequences were 100% identical to that of the North American
Sheila Smith strain (CP000848) and, at the same time, differed
from those of other North American strains (e.g., CP000766 and
CP003307) by one single nucleotide polymorphism. The gltA se-
quences of the 15 Brazilian human isolates differed by an extra codon
(CGG) compared to those of several North American strains, such as
Sheila Smith (CP000848) and Bitterroot (U59729). This extra
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codon was also present in the R. rickettsii tick isolates (Taiaçu, Itu,
and Rs1) from Brazil (12–14). The sequences of three intergenic
regions (249 nucleotides [nt] for RR0155-rpmB, 315 nt for
RR1240-tlc5b, and 362 nt for cspA-ksgA) were determined for the
15 human isolates and for the three tick isolates (Taiaçu, Itu, and
Rs1) from Brazil. For each intergenic region, the sequences were
100% identical to each other (no polymorphisms were detected),
and when subjected to BLAST analysis, they were 100% identical
to the corresponding sequences of the R. rickettsii strain Brazil
(CP003305).

For the concatenated phylogenetic analysis, which included a
total of 2,392 nt, the sequences of the 15 human isolates (IAL 1 to
15) and 3 tick isolates (Taiaçu, Itu, and Rs1) from Brazil were

aligned with the corresponding sequences from 10 other R. rick-
ettsii isolates available in GenBank (6 from the United States, 1
from Costa Rica, 2 from Colombia, and 1 from Brazil) (Table 2).
The 15 human and 3 tick isolates of R. rickettsii from Brazil formed
a clade under high bootstrap support (99% to 100%), with all
three South American isolates available in GenBank (1 from Brazil
and 2 from Colombia) and with the Central American isolate from
Costa Rica (Fig. 1). This Central/South American clade, ecologi-
cally associated with 4 different tick species (namely, A. aureola-
tum, Amblyomma patinoi, A. sculptum, and R. sanguineus) (Table
2), had a sister group formed by the North American Sheila Smith
and Bitterroot strains that were ecologically associated with the
tick vector Dermacentor andersoni. A more divergent clade was

TABLE 1 Primer pairs used for amplification of rickettsial genes (gltA, ompA, and ompB) or intergenic regions (RR0155-rpmB, RR1240-tlc5b, and
cspA-ksgA)

Primer pair Target Primer Primer sequence (5= to 3=) Amplicon size (bp) Reference

1 gltA CS-239 GCTCTTCTCATCCTATGGCTATTAT 834 7
CS-1069 CAGGGTCTTCGTGCATTTCTT 7

2 ompA Rr190.70p ATGGCGAATATTTCTCCAAAA 530 8
Rr190.602n AGTGCAGCATTCGCTCCCCCT 8

3 ompB 120-M59 CCGCAGGGTTGGTAACTGC 862 9
120–807 CCTTTTAGATTACCGCCTAA 9

4 RR0155-rpmB Forward TTTCTAGCAGCGGTTGTTTTATCC 290 10
Reverse TTAGCCCATGTTGACAGGTTTACT 10

5 RR1240-tlc5b Forward CGGGATAACGCCGAGTAATA 357 11
Reverse ATGCCGCTCTGAATTTGTTT 11

6 cspA-ksgA Forward CATCACTGCTTCGCTTATTTT 405 10
Reverse ATTTCTTTTCTTCCTCTTCATCAA 10

TABLE 2 Isolates of Rickettsia rickettsii used in the phylogenetic analysis of the present study

Isolate
Isolation
source

Clinical
outcome

Source of DNA sequences for rickettsial genes (GenBank accession no.
or reference no.) for:

Haplotypea TickbgltA RR0155-rpmB RR1240-tlc5b cspA-ksgA ompB

Iowa Tick CP000766 CP000766 CP000766 CP000766 CP000766 A Dermacentor variabilis
Hino Human Fatal CP003309 CP003309 CP003309 CP003309 CP003309 A D. variabilis
Hauke Human Fatal CP003318 CP003318 CP003318 CP003318 CP003318 A D. variabilis
Arizona Human Fatal CP003307 CP003307 CP003307 CP003307 CP003307 B Rhipicephalus sanguineus

sensu lato
Sheila Smith Human Fatal CP000848 CP000848 CP000848 CP000848 CP000848 C Dermacentor andersoni
Bitterroot Tick RRU59729 EF216032 EF215983 EF215860 X16353 C D. andersoni
Costa Rica Human Fatal 19, 27 EF216038 EF215987 EF215872 27 D ?
I12B (Villeta) Tick KJ735644 KJ735647 KJ735648 KJ735649 KJ735646 D Amblyomma patinoi
Rs1 Tick 13 This study This study This study 13 D Amblyomma sculptum
Itu Tick KF742602 This study This study This study KF742604 D A. sculptum
Taiaçu Tick DQ115890 This study This study This study 12 D Amblyomma aureolatum
IAL 1–2c Human Fatal This study This study This study This study This study D A. aureolatum
IAL 4, 9d Human Cure This study This study This study This study This study D A. sculptum
IAL 3, 5–8, 10–15e Human Fatal This study This study This study This study This study D A. sculptum
Brazil Human Unknown CP003305 CP003305 CP003305 CP003305 CP003305 D A. sculptum
Colombia Human Fatal CP003306 CP003306 CP003306 CP003306 CP003306 E A. patinoi
a Refers to the concatenated haplotypes shown in the phylogenetic tree (Fig. 1).
b For tick isolates, refers to the tick species from which the isolate was obtained; for human isolates, refers to the incriminated vector of R. rickettsii to humans in the area of origin of
the isolate, according to Ogrzewalska et al. (32) for Amblyomma aureolatum; A. A. Faccini-Martínez, F. B. Costa, T. E. Hayama-Ueno, A. Ramírez-Hernández, J. Cortés-Vecino,
M. B. Labruna, and M. Hidalgo (submitted for publication), Nava et al. (33), and Pacheco et al. (13) for Amblyomma patinoi and Amblyomma sculptum; and Karpathy et al. (10) for
Dermacentor variabilis, Dermacentor andersoni, and Rhipicephalus sanguineus sensu lato. The question mark represents an unknown vector, according to Hun et al. (27).
c Geographic origins (municipalities in the state of São Paulo, Brazil) of these isolates: São Paulo, IAL 1; São Bernardo do Campo, IAL 2.
d Geographic origins (municipalities in the state of São Paulo) of these isolates: Piracicaba, IAL 4; Valinhos, IAL 9.
e Geographic origins (municipalities in the state of São Paulo) of these isolates: Valinhos, IAL 3, 5, 8, 11, 12, and 15; Campinas, IAL 6 and 13; Jaguariúna, IAL 7; Piracicaba, IAL 10;
Limeira, IAL 14.
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composed of North American isolates that have been ecologically
associated with the ticks Dermacentor variabilis and R. sanguineus.

As reported in previous studies (10, 19–21), the North Amer-
ican isolates of R. rickettsii presented relatively high polymor-
phism compared to that of the Central/South American isolates.
Our concatenated analysis showed the formation of 3 North
American haplotypes (A, B, and C), each associated with a differ-
ent tick species (Fig. 1, Table 2). Conversely, excluding the Colom-
bia strain (haplotype E), there was a single haplotype (D) in Cen-
tral/South America, although it was associated with 4 different tick
species. Geographic distances cannot be inferred from this dis-
crepancy because the distance between Costa Rica and southeast-
ern Brazil is much higher than the distances between distinct
North American isolates (Fig. 1). Interestingly, while low-, mild-,
and high-virulent strains of R. rickettsii have been reported in the
eastern and western parts of the United States (20, 22), only high-
virulent strains, responsible for high fatality rates, have been re-
ported in Central/South America, regardless of the tick vector (2,
23–29). While our results of no polymorphisms among Central/
South American isolates was biased because most of these isolates
were derived from fatal cases, a recent study reported the same
clade distribution as shown in our Fig. 1 when analyzing the in-

tergenic regions of R. rickettsii derived from fatal cases from the
United States, Mexico, and Central/South America (21).

The relatively high level of polymorphism among North Amer-
ican isolates of R. rickettsii and the contrasting low level of poly-
morphism in Central/South America suggest that R. rickettsii ra-
diated in North America and was introduced into South America
during more recent periods. This scenario may also explain why
there is a mixture of highly and less virulent R. rickettsii strains in
North America (due to longer coevolving periods with verte-
brates), while only highly virulent strains have been found in
South America.

It has been suggested that the higher fatality rates of BSF, com-
pared to those of RMSF in the United States, are related to delayed
treatment, the use of less effective antibiotics, and more virulent R.
rickettsii strains occurring in Brazil (2, 30, 31). The present study
corroborates previous studies (10, 19–21) that provided genetic
evidence for a very low level of polymorphism occurring among R.
rickettsii isolates from South America. This fact should be a signif-
icant reason for the much higher fatality rates of BSF, although the
others discussed above may also be contributing factors.

Nucleotide sequence accession numbers. The GenBank nu-
cleotide sequence accession numbers of the partial sequences of R.

FIG 1 Molecular phylogenetic analysis of Rickettsia rickettsii isolates from the United States, Costa Rica, Colombia, and Brazil. A total of 2,392 unambiguously
aligned nucleotide sites of two rickettsial genes (gltA and ompB) and three intergenic regions (RR0155-rpmB, RR1240-tlc5b, and cspA-ksgA) were concatenated
and subjected to analysis by maximum-parsimony and Bayesian methods. Corresponding sequences of Rickettsia philipii strain 364D and R. rickettsii strain Hlp#2
were used as an outgroup. Numbers at nodes are support values derived from bootstrap and posterior probability for MP and BA analyses (MP/BA). Sequence
codes A to E, each with a different color, represent the five haplotypes generated from the 28 isolates of R. rickettsii described in Table 2. Gray braces or arrows
at the clades indicate the tick species that has been ecologically associated with the R. rickettsii isolates. The geographical region of origin of the 28 isolates and their
corresponding haplotypes (A to E) are indicated on the map of the American continents. (The map is reprinted from http://www.usgs.gov/.)
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rickettsii generated in this study are KJ994337, KJ994338, and
KJ994339 for the gltA, ompA, and ompB genes, respectively, and
KJ994340, KJ994341, and KJ994342 for the RR0155-rpmB,
RR1240-tlc5b, and cspA-ksgA intergenic regions, respectively.
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