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The nontuberculous mycobacteria are a large group of acid-fast bacteria that are very widely distributed in the environment.
While Mycobacterium avium was once regarded as innocuous, its high frequency as a cause of disseminated disease in HIV-posi-
tive individuals illustrated its potential as a pathogen. Much more recently, there is growing evidence that the incidence of M.
avium and related nontuberculous species is increasing in immunocompetent individuals. The same has been observed for M.
abscessus infections, which are very difficult to treat; accordingly, this review focuses primarily on these two important patho-
gens. Like the host response to M. tuberculosis infections, the host response to these infections is of the TH1 type but there are
some subtle and as-yet-unexplained differences.

Although nontuberculous mycobacteria have long been recog-
nized, there is far less information regarding their pathoge-

nicity than that of their more famous relatives Mycobacterium
tuberculosis and Mycobacterium leprae. It is becoming increasingly
clear, however, that the incidence of certain members of the non-
tuberculous mycobacterial family may be increasing, an observa-
tion not related simply to better recognition, typing, and diagno-
sis. Of this family, the host response to M. avium is perhaps the
best understood, but even here there are interesting differences in
the expression of immunity that have yet to be explained.

NOMENCLATURE

One cannot begin to address this issue without considering the
current nomenclature, a morass in itself. We are using here the
term “nontuberculous mycobacteria” (NTM) but could easily use
“atypical mycobacteria,” “environmental mycobacteria,” the sub-
set “rapidly growing mycobacteria” (RGM), “mycobacteria other
than M. tuberculosis,” or even the “quasi-too-complex” term that
can be applied to M. avium and M. abscessus. NTM is perhaps the
most widely used, but one has to realize that “tuberculous” refers
to “not tuberculosis” not “no tubercles.”

ECOLOGY AND EPIDEMIOLOGY

NTM were suspected as potential causes of human infections in
the sanatorium era, but it was not until the 1950s that direct evi-
dence became available. Even then, NTM were initially regarded
as simple saprophytes of limited, if any, virulence occurring only
in people with other predisposing lung conditions (as discussed
further below). This opinion, of course, changed dramatically
when M. avium complex (MAC) species emerged as major oppor-
tunistic infections in patients with HIV and more recently with
observations of increases in infections with other NTM such as M.
abscessus in elderly patients.

Because of extensive research, including seminal work by
Falkinham, we now know that NTM are widely distributed in the
environment and can cause opportunistic infections in multiple
mammals, fish, and birds (particularly poultry) (1). In fact, it
seems that NTM can grow essentially anywhere (2) and thrive
where competing microbes are destroyed, such as in chlorinated
water (3). In untreated water, NTM can even parasitize amoebae
(4, 5). Even when the water supply is treated, NTM persist, and a

very recent study in Holland (6) found NTM in samples of drink-
ing water from eight separate treatment plants.

The first methods for the identification of NTM were devel-
oped in the 1950s by Ernest Runyon and were based on pigmen-
tation and growth rates, but the development of 16S rRNA gene
sequencing replaced these classical methods, allowing the identi-
fication of over 150 species of NTM. Data generated through nu-
merical taxonomy studies that were conducted from the late 1960s
through the 1970s, as well as DNA-DNA hybridization analyses,
established relationships among NTM strains and provided an
important bridge between the purely phenotypic Runyon classifi-
cation approach and 16S rRNA gene sequencing. Moreover, tax-
onomic classifications based on DNA-DNA hybridizations were
almost always confirmed by 16S rRNA gene sequencing and later
by whole-genome sequencing. Accordingly, these applications of
molecular techniques allowing genetic analysis of NTM dramati-
cally facilitated classification and subsequent epidemiological
studies (7). For example, a recent study described seven examples
of identification of NTM in a plumbing system that had a DNA
fingerprint identical to that of an isolate from a patient living in
the same household (8). Furthermore, whole-genome sequencing
of M. abscessus in cystic fibrosis patients indicated human-to-hu-
man transmission of this infection (9), although it should be
stressed that this study has yet to be replicated.

The highly hydrophobic cell wall of NTM may facilitate aero-
solization (5), and indeed, such insights began to provide an ex-
planation as to why HIV-positive individuals were exposed to M.
avium as a primary opportunistic pathogen. NTM can adhere to
surfaces, and many NTM are resistant to both antibiotics and
disinfectants such as chlorine. Many are oligotrophic (10), requir-
ing low levels of two-carbon sources and limited access to metal
ions, permitting significant survival and persistence in the envi-
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ronment. (Interestingly, a similar picture may be emerging in the
context of M. tuberculosis persisting in necrotic tissue [11, 12].)

A key ability of NTM, becoming regarded as very important, is
the formation of biofilms in the environment and hypothetically
in vivo (13). Moreover, biofilm development and formation can
consist of several distinct types of structures. Survival in this state
may allow these bacilli to persist for very lengthy periods of time in
the environment.

CLINICAL ASPECTS

NTM infections in humans fall into three main categories (14).
Hypersensitivity pneumonitis is thought to be triggered by inha-
lation of NTM in water droplets from sources such as shower
water (aerosolized by the shower head), baths, and hot tubs (hot-
tub lung) (15). This may have been the primary source of MAC
infections in HIV patients in the United States (where people tend
to shower more often than they bathe).

Cavitary (tuberculosis-like) disease can be caused by multiple
NTM species, again predominantly MAC. There is a strong asso-
ciation with underlying lung disease, such as chronic obstructive
pulmonary disease (COPD), and with smoking or prior tubercu-
losis. Like patients with tuberculosis, these patients tend to have
upper lobe cavitary disease, as well as standard tuberculosis-like
symptoms (2).

Nodular bronchiectasis is associated mostly with MAC and can
sometimes occur in mixed infections with M. abscessus. It is often
seen in older nonsmoking females. These ladies are often thin,
hence the name “Lady Windermere syndrome.” (from Oscar Wil-
de’s famous play; the title lady is prim and proper, but at that
point, the connection to a thin lady coughing seems to completely
end).

Disease can also occur in the context of preexisting conditions.
NTM infections occur in patients with cystic fibrosis; in such
cases, 75% of the infections are caused by MAC (16, 17). NTM
(most of which were M. gordonae) were cultured from 22% of
patients showing signs of acute exacerbation of COPD (18). Nos-
ocomial NTM infections are sometimes associated with water
sources such as showers, Jacuzzis, swimming pools, saunas, and
hospitals (18).

Drug therapy of NTM infections can be very difficult (for an
outstanding review on this specific topic, see reference 19), with
therapy long and costly (14, 20). One important factor is antibiotic
inactivation, with resistance mechanisms that include beta-lacta-
mases, aminoglycoside phosphotransferases, and aminoglycoside
acetyltransferases. In addition, the p55 efflux pump confers resis-
tance to tetracyclines and aminoglycosides, and multiple other
efflux pumps likely cause antimicrobial resistance and persistence
(20). Lastly, the erythromycin ribosomal methylase (erm) gene
found in almost all M. abscessus subsp. abscessus and M. fortuitum
strains (but not in M. chelonae) results in methylation of the 23S
rRNA, rendering the bacteria resistant to macrolides, a mainstay
of many NTM treatment regimens. Induction of this gene is not
detected by conventional susceptibility testing, as this requires
extended incubation and observation for up to 2 weeks.

A further issue of concern is the fact that multiple cases of in
vitro susceptibility testing do not correlate with clinical outcomes
(19). One possibility here is that drug susceptibility testing per-
formed with single-cell suspensions in nutrient broth may not
actually reflect the resistance of bacteria forming biofilms in ne-
crotic lung tissue. Indeed, our laboratory has suggested this as a

basis for the prolonged period of chemotherapy needed in animal
models of tuberculosis, particularly the guinea pig model, where
bacilli persist in necrotic tissue by forming biofilm-like commu-
nities (necrosis-associated extracellular clusters) (11, 21).

MAC infections are usually treated with rifampin, ethambutol,
and a macrolide such as azithromycin (the finding that such mac-
rolides could kill MAC had a substantial impact on the treatment
of MAC in AIDS patients). M. kansasii tends to be susceptible to
standard isoniazid, rifampin, and pyrazinamide therapy, similar
to M. tuberculosis, and the addition of clarithromycin can also be
beneficial. For infections with M. abscessus, outcomes are much
worse; in fact, this organism seems to be essentially untreatable,
with only �50% sputum conversion seen in chemotherapy stud-
ies. If lung resection is not an option, then amikacin, cefoxitin, and
imipenem are tried, and in some cases, the isolate may respond to
macrolide therapy, as indicated by drug susceptibility testing. As
noted, M. abscessus has subspecies; as does M. massiliense, which
lacks a macrolide resistance gene and hence is fully susceptible
(22). In many cases, however, given the toxicity of these second-
line drugs, it may be hard for the patient to tolerate therapy.

In the mid-1990s in the United States, NTM, especially MAC,
caused an alarming number of serious opportunistic infections in
HIV-positive individuals, particularly those with low CD4 counts
(2, 23). In these patients, these infections tended to occur as a
disseminated disease involving multiple organs rather than only
the lungs. A major difficulty in treatment at the time arose when it
was noticed that rifampin, which often works well against MAC,
accelerated the clearance of the antiviral drugs being used to in-
hibit HIV. In addition, the latter drugs slowed the metabolism of
rifampin, letting it reach toxic levels. This problem was finally
overcome when the susceptibility of MAC to the new macrolides
was discovered.

INCREASING INCIDENCE OF NTM INFECTIONS

There is reason to believe that the incidence of NTM infections is
rising, and this may not reflect the possibility that this just repre-
sents better detection, which has significantly improved (24). Part
of the increase probably reflects better diagnostic methods and
increasing recognition of the importance of NTM, but on the basis
of tracking records by public health laboratories that have both-
ered to keep them, this increase is definitely real.

Evidence shows that the incidence of NTM is increasing world-
wide, with MAC the most frequent cause (14). Certain geographic
areas seem to be foci, such as Taiwan and eastern Canada (25, 26).
A recent report from Taiwan (27) noted increases in NTM cases,
including a surge in cases of M. abscessus infection. Although still
rare, mixed infections involving M. kansasii, MAC, and M. absces-
sus have been seen (28).

In a huge study (29), Hoefsloot and an army of colleagues
recently provided an analysis of the global distribution of NTM
infections by using data from the NTM-Network European Trials
framework program. These data revealed that 91 species of NTM
had been identified in over 20,000 patients from 30 countries.
MAC were the most prevalent, followed by M. gordonae and M.
xenopi.

There were obvious geographic differences revealed by this
study. MAC is prevalent in North America but much less so in
South America. Cases of M. xenopi infection tended to focus in
Europe and to some degree in eastern Canada. M. malmoense
tends to be found in northern Europe and the United Kingdom.
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Of the RGM subgroup members, M. abscessus and M. fortuitum
were found worldwide. Foci of M. abscessus were noted, particu-
larly in Asia. Why these geographic distributions exist is totally
unknown.

A further curiosity that has been increasingly observed is a
change in human demographics. This reflects evidence indicating
a gender shift from mostly males with predisposing conditions to
a current 80% incidence in middle-aged to elderly females (30,
31). A similar picture is emerging in Australia (32), where in-
creases in cases of NTM (M. intracellulare being the most preva-
lent) have shifted from middle-aged smoking men to older non-
smoking females. Further examination of this issue seemed to
suggest that a greater susceptibility was associated with the body
characteristics of these women; they tended to be taller and rather
thin, suggesting a genetic trait, and indeed, a third were shown to
express the cystic fibrosis-associated transmembrane conduc-
tance regulator gene CFTR (33). Leptin levels in these females may
also contribute (34).

HOST IMMUNE RESPONSE TO NTM

From an immunological point of view, there was little interest in
NTM until Stanford and his colleague Rook suggested in 1981
(65) that these bacteria could potentially influence the efficacy of
M. bovis BCG vaccine, resulting in reduced vaccine-derived pro-
tection. Soon after, a study appeared (35) showing that NTM be-
haves differently in terms of growth in activated murine macro-
phages; while M. tuberculosis was inhibited, M. kansasii and M.
avium were slowed but not killed and M. intracellulare seemed
unaffected. If mice were infected with these bacilli, the animals
were protected against a second infection with M. tuberculosis
(36).

BCG vaccination was then shown to be protective against in-
fection with M. kansasii or M. avium but was not effective against
M. simiae or M. intracellulare (37). Studies then showed that pro-
tection was mediated by T cells, as shown by passive cell transfer
(36).

At the time, resistance to mycobacterial infections was thought
to be associated with a gene, Bcg (now NRAMP1). NTM did, in-
deed, grow differently in Bcgs and Bcgr strains, but backcross and
mouse chimera studies showed this event to be multigenic (38).

The stomach was traditionally thought to be a barrier to my-
cobacteria, but it was shown that virulent M. avium strains could
infect mice orally and be found in gut lymphoid tissues. If the
beige mutant in the C57 mouse background was used, this was
amplified (39, 40). Subsequent studies showed that M. avium
crossed the gut epithelium via interactions with enterocytes (41).
Once M. avium was in, a CD4 response was important for host
immunity whereas a local CD8 or NK cell response was not.

In addition, as shown earlier, these strains of M. avium were
slowed but not killed when cultured in activated macrophages. At
this time, the role of TH1 cytokines began to be investigated, and
an early study suggested that tumor necrosis factor alpha (TNF-�)
was more effective than gamma interferon (IFN-�) in growth in-
hibition (42). Soon after, it was demonstrated that a virulent col-
ony morphotype smooth transparent (SmT) isolate induced a de-
layed, relatively small TNF-� response, whereas the smooth
domed (SmD) equivalent induced a rapid, large TNF-� response
(43). It was then found that while macrophage activation gener-
ated reactive oxygen species in response to M. avium, isolates ex-
pressing the virulent SmT form were unaffected (44). Further

studies showed that, in general, SmT isolates were virulent and
SmD isolates were much less so, with rough variants showing an
intermediate phenotype (45). As predicted, there were large dif-
ferences between the inflammatory and protective cytokine/
chemokine profiles of SmT and Smd/SmO infections (46, 47).

Nitric oxide (NO) was also produced by activated macro-
phages, but blocking of this event did not influence growth inhi-
bition, and subsequent studies raised the possibility that acidifica-
tion of the bacterial phagosome was, in fact, more important in
the control of the infection (46). In vivo, CD4 involvement was
crucial for both protection and granuloma formation, and it was
suggested at the time that the TH1 cytokines IFN-� and TNF-�
produced by these cells act in synergy (47). Consistent with the
TH1 pathway hypothesis, depletion of interleukin-12 (IL-12) also
reduced resistance to M. avium infection (48). In addition to CD4
cells, IL-12 was also implicated in TNF-� production by NK cells
in M. avium infections (49). An early role for IL-6 was suggested,
as was a late response involving IL-10 (50). More recently, a role
for TNF-� has been illustrated by infections occurring in patients
treated with anti-TNF-� biologic reagents for rheumatoid arthri-
tis (51, 52). M. haemophilum or M. avium was seen in 52 cases,
with a high rate of extrapulmonary disease.

Consistent with earlier studies, T cells harvested from mice
infected with M. avium transferred protection but only if live bac-
teria were used (53). This was, of course, consistent with observa-
tions at the time that only live M. tuberculosis was capable of gen-
erating protective T cells (54). While CD4 T cells were the primary
source of protection, some studies suggested a contribution by
CD8 cells (55), although the latter were eventually shown not to be
critical.

Further investigation of the beige-mouse model indicated a
neutrophil defect, and depletion studies with wild-type C57 mice
produced a similar effect (56). This was then shown to reflect poor
cellular accumulation due to a diminished chemokine response
that was subsequently shown to be directed via CXCR2 expression
(57).

A 1999 study (58) provided the unexpected result that mice
that lack the NOS2 gene and cannot make NO within their mac-
rophages were more resistant than wild-type controls to M. avium
(the opposite of the result obtained with M. tuberculosis), at least
partially explaining why virulent M. avium strains grow in mice
despite very strong TH1 responses (59), and subsequent studies
also demonstrated a superior fibrotic response in the lungs of gene
knockout mice and showed that the increased resistance was con-
sistent when multiple virulent M. avium strains were used (60). A
possible explanation was the observation that along with TNF-�,
NO controlled granuloma integrity rather than being directly an-
timicrobial (61). TNF-� seemed critical, since in TNF receptor-
deficient mice, M. avium generated severe, fatal necrosis (62), al-
though a later paper suggested otherwise (63).

Dormant for more than a decade, the idea that NTM could
interfere with BCG vaccination itself reactivated. Studies by
Brandt et al. showed that if mice were immunized with various
NTM prior to BCG vaccination, the vaccine could not proliferate
to any extent and efficacy was subsequently reduced (64). An ini-
tial explanation (65), put forward by Rook et al., was that the
mixture of infections unbalanced immunity and did not allow
activity by regulatory T cells. This is a rather elegant idea, and
recent unpublished studies in our laboratory indicate that expo-
sure in the gut to M. avium induces regulatory T cells that then
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counterbalance BCG-induced effector cells in the lungs after a
challenge. A subsequent review by Andersen and Doherty nicely
put all of this in perspective (66) by explaining that NTM can, in
some cases, block effector immunity, diminishing protection by
BCG, or can add to it. It is plausible that live NTM generating T
cell immunity cross-reactive to M. tuberculosis antigens can mask
the effects of BCG by itself. This idea was more recently confirmed
by studies showing that people exposed to NTM have IFN-�� T
cells that recognize multiple proteins from the DosR gene com-
plex (67).

In 1999, a paper appeared that indicated that when M. avium
grew in macrophages, some bacilli grew well but a second static
population was also present (68). One explanation that appeared 4
years later was the observation that M. avium can form biofilms
(69). It was then found that the capacity to form these biofilms
seemed to involve glycopeptidolipid (GPL) expression by the ba-
cillus and that mutants unable to do so were far less invasive. Our
recent unpublished studies showed that M. tuberculosis mutants
that cannot form biofilms also cannot form pellicles in vitro and
fail to persist in animals in vivo. A very recent paper (70) associated
disruption of the pks12 gene in M. avium with loss of biofilm
formation (preliminary [unpublished] data suggest the same for
M. tuberculosis).

TH1 immunity can be triggered through Toll-like receptors
(TLRs), and it was found that mice lacking TLR2 were more sus-
ceptible to M. avium infection (71, 72). Signaling via TLR2 oper-
ates via the mitogen-activated protein kinase pathway in a TNF-
and TRAIL-independent manner (72). TLR9 signaling may also
play a small role. Recent evidence (73) suggests that NTM initially
trigger immunity via the AIM2-inflammasome whereas M. tuber-
culosis does so via NLRP3.

Chronic infection of mice not only can result in severe necrosis
but also (unlike tuberculosis) can result in a gradual loss of T cells
(lymphopenia) (74). Such observations illustrate that the patho-
genesis of these diseases is still less well understood (75), with
elements of the disease process in response to certain NTM infec-
tions showing clear differences (76), lymphopenia being one such
example.

Although multiple virulence factors associated with the NTM
have been proposed, this picture is still not fully clear. At one
point, possession of a virulence plasmid was suggested but never
verified. The biological activity of various cell wall GPLs (77) has
also been suggested as a factor, but this also has not been verified.

IMMUNITY TO M. ABSCESSUS, AN EMERGING PATHOGEN

Although identified as a member of the 150-plus NTM organisms,
M. abscessus was barely noticed until it started to become evident
over the past decade or to be clinically important. Even now, how-
ever, we know little about the host response to it (34, 78).

Compared to M. avium (M. abscessus has the reverse pheno-
type), rough strains of M. abscessus tend to be virulent while
smooth strains are less so (79). Like M. avium, the organism ex-
presses GPL, but rough mutants have been found that do not (80).
Although much less virulent than M. avium, M. abscessus can per-
sist in vivo in recently developed animal models such as SCID,
nude, and granulocyte-macrophage colony-stimulating factor
gene disruption mice and cystic fibrosis models causing a progres-
sive pulmonary infection (unpublished results). Whereas wild-
type isolates generate strong TH1 responses and are easily cleared
in animal models (81), GPL-defective mutants can cause rapid
death (82). Given the very rapid death, within a week, this cannot
be explained in terms of bacterial growth and instead suggests
some sort of shock reaction (no autopsy data were provided in
that report). In addition, death resulting from infection with a
rough variant has been reported (83).

Induction of host immunity did not initially appear to be as-
sociated with TLR2 signaling, since both rough and smooth vari-
ants triggered a TLR2-mediated response equally (72). However, a
further study described a GPL� strain that could form a biofilm
but could not trigger a TLR2-mediated response, whereas a rough
variant of this was GPL� and could not form a biofilm but could
trigger a TLR2-mediated response (84). This led to the hypothesis
that GPL on the outer cell wall of M. abscessus allows the bacillus to
initially avoid inducing immunity by avoiding TLR2 triggering,
but when it is not present, this unmasks other materials, possibly
phosphatidylinositol mannosides or lipoarabinomannans, that

FIG 1 Hypothetical model explaining the persistence of M. abscessus and establishment of chronic disease. Mouse models clearly indicate that TH1 immunity
predominates in situations where this pathogen can be cleared, but there is little evidence as yet explaining its survival and chronic disease. One possibility
involves T cell plasticity in which a TH17 response becomes dominant, resulting in loss of a protective TH1 response and its replacement by cells that can
continually drive low-grade inflammation.
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are known to be TLR2 agonists. More recently, disruption of the
mmpL4b gene, which is involved in GPL biosynthesis, resulted in
bacilli that could trigger TLR2 in macrophage cultures (85, 86);
these mutants lack GPL but also seem to upregulate the produc-
tion of cell wall lipoproteins (87). What has yet to be explained,
however, is why mechanisms other than TLR2 signaling do not
compensate and prevent GPL� M. abscessus from so quickly kill-
ing mice.

Other recent studies using the aerosol route of infection pro-
vided similar results, with evidence of strong TH1 responses and
granuloma formation in both the mouse and guinea pig models
(78); however, it was noted that relatively high doses were needed
to establish any degree of infection by aerosol. Under these exper-
imental conditions, this seems to drive a TH1 response (predom-
inantly IFN-�-secreting CD4 T cells) that seems capable of con-
trolling this infection in immunocompetent mice and clearing it.
How this can progress to a chronic, uncontained infection is far
from clear, but it might involve mechanisms similar to those seen
in M. tuberculosis infections in which T cell plasticity shifts to a less
favorable TH17 type of response (as illustrated in Fig. 1). There is
little evidence to go on as yet.

KNOWLEDGE GAPS AND FUTURE DIRECTIONS

The current epidemiological data seem to indicate that the inci-
dence of the pathogens M. avium and M. abscessus is increasing,
and this information needs to be regarded with concern. The host
response to these pathogens involves the TH1 response, and while
this is unsurprising, there are still large gaps in our knowledge.
First, there are facets of the host response, particularly to MAC,
that remain enigmatic. These include the loss of reactive T cells
and the apparent resistance of MAC to reactive nitrogen. Second,
with regard to M. abscessus, animal models are currently very lim-
ited and host immunity and pathogenesis are difficult to measure
unless very large doses of bacilli are given intravenously. If small
doses are given, there is little evidence that a productive infection
is even fully established. As a result, better models are needed,
particularly in terms of elucidation of pathogenesis, enabling bet-
ter new drug regimens for M. abscessus infections, where current
therapeutic outcomes are very poor.
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