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Legionella pneumophila, an intracellular pathogen responsible for the severe pneumonia Legionnaires’ disease, uses its dot/icm-
encoded type IV secretion system (T4SS) to translocate effector proteins that promote its survival and replication into the host
cell cytosol. However, by introducing bacterial products into the host cytosol, L. pneumophila also activates cytosolic immuno-
surveillance pathways, thereby triggering robust proinflammatory responses that mediate the control of infection. Thus, the
pulmonary cell types that L. pneumophila infects not only may act as an intracellular niche that facilitates its pathogenesis but
also may contribute to the immune response against L. pneumophila. The identity of these host cells remains poorly understood.
Here, we developed a strain of L. pneumophila producing a fusion protein consisting of �-lactamase fused to the T4SS-translo-
cated effector RalF, which allowed us to track cells injected by the T4SS. Our data reveal that alveolar macrophages and neutro-
phils both are the primary recipients of T4SS-translocated effectors and harbor viable L. pneumophila during pulmonary infec-
tion of mice. Moreover, both alveolar macrophages and neutrophils from infected mice produced tumor necrosis factor and
interleukin-1� in response to T4SS-sufficient, but not T4SS-deficient, L. pneumophila. Collectively, our data suggest that alveo-
lar macrophages and neutrophils are both an intracellular reservoir for L. pneumophila and a source of proinflammatory cyto-
kines that contribute to the host immune response against L. pneumophila during pulmonary infection.

Legionella pneumophila is a Gram-negative bacterium found
ubiquitously in freshwater environments, where it is often

found in association with its natural host, protozoan amoebae (1).
L. pneumophila recently has become a human pathogen due to
modern technologies, such as cooling towers and air conditioners,
which can aerosolize freshwater contaminated with L. pneumo-
phila (2–4). Humans then can inhale these contaminated droplets,
allowing L. pneumophila to gain access to the pulmonary airway.
L. pneumophila infection can lead to a severe bacterial pneumonia
known as Legionnaires’ disease (2), with mortality rates ap-
proaching 30% (5).

Once in the lung, L. pneumophila encounters a specialized sub-
set of pulmonary phagocytes called alveolar macrophages (6). Fol-
lowing phagocytosis, the Legionella-containing phagosome avoids
endocytic maturation and bacterial degradation and is converted
into an endoplasmic reticulum (ER)-derived vacuole that sup-
ports bacterial replication (7). To establish infection, L. pneumo-
phila utilizes its type IV secretion system (T4SS), encoded by the
dot/icm genes, to translocate approximately 300 effector proteins
into the host cell cytosol (8–15). Many of these effector proteins
are thought to be involved in recruiting ER-derived vacuoles to
the Legionella-containing vacuole or prevent endocytic matura-
tion (15). Other effector proteins modulate host cell processes
such as autophagy or host protein synthesis (16–20). These viru-
lence activities ultimately prevent destruction of L. pneumophila
and allow for its replication within host cells. The T4SS is essential
for the ability of L. pneumophila to survive and replicate within
host cells, as L. pneumophila mutants lacking a functional T4SS do
not replicate and reside in phagosomes that mature along a canon-
ical endocytic pathway (10, 11).

While the Dot/Icm T4SS is essential for L. pneumophila to sur-
vive intracellularly and to cause disease, cytosolic immune surveil-

lance systems activate host defense responses to T4SS activity that
are critical for the control of L. pneumophila infection (21). For
example, the NAIP5/NLRC4 inflammasome detects T4SS-depen-
dent delivery of flagellin, leading to the caspase-1-dependent se-
cretion of interleukin-1 (IL-1) family cytokines and pyroptotic
cell death (22–24). Cytosolic detection of T4SS activity also is re-
quired for the robust secretion of inflammasome-independent cy-
tokines, such as tumor necrosis factor (TNF) (25–27). The IL-1
family cytokines and TNF are critical for host defense against L.
pneumophila (20, 28–30). Thus, the cells that interact with L.
pneumophila in the lung and receive T4SS-translocated effectors
may have a dual role during in vivo infection, in that they can
enable intracellular survival of the pathogen and also contribute
directly to the immune response by detecting T4SS-translocated
products. However, the identities of the pulmonary cell types that
interact with L. pneumophila and receive T4SS-translocated effec-
tors are poorly understood.

Alveolar macrophages are thought to be the primary cell type
infected by L. pneumophila and to support bacterial replication in
vivo (31). However, it is unknown whether other immune phago-
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cytes in the lung, such as neutrophils, inflammatory monocytes,
or dendritic cells, also receive T4SS-translocated effectors and
contribute to the immune response or support L. pneumophila
survival. Previous studies have demonstrated that in addition to
alveolar macrophages, L. pneumophila can be detected in neutro-
phils during pulmonary infection (30). Neutrophils are thought
to be highly bactericidal, and their presence in the lung and airway
space during pulmonary L. pneumophila infection correlates with
lower bacterial burden (20, 28, 32–34). Whether L. pneumophila
can survive within neutrophils and translocate T4SS effectors into
these cells during pulmonary infection is unknown. L. pneumo-
phila can be taken up by a wide variety of cell types in vitro, such as
neutrophils, bone marrow-derived dendritic cells, type I and type
II alveolar epithelial cells, endothelial cells, and plasmacytoid den-
dritic cells (35–39). However, the efficiency of L. pneumophila
replication within these cell types varies greatly, and whether these
cell types are injected by the T4SS or productively infected in vivo
is unknown. Thus, we decided to investigate which cell types re-
ceive T4SS-translocated effectors and, as a result, may support L.
pneumophila survival and contribute to cytosolic immunosurveil-
lance during pulmonary infection.

Using a fluorescence resonance energy transfer (FRET)-based
reporter of T4SS translocation, we were able to detect effector
translocation into macrophages, dendritic cells, and airway epi-
thelial cells in vitro. We also demonstrate that only T4SS-injected
cells contain viable L. pneumophila, whereas infected cells that
have not received T4SS effectors do not contain viable bacteria. In
vivo, alveolar macrophages and neutrophils in the airway space
and lung tissue were the primary recipients of T4SS-translocated
effectors and harbored viable bacteria. Consistent with the critical
role of immune sensing of T4SS activity in triggering host cytokine
production, alveolar macrophages and neutrophils from mice in-
fected with T4SS-competent L. pneumophila, but not T4SS-defi-
cient bacteria, secreted the cytokines TNF and IL-1�, which are
known to be important for immune-mediated clearance of infec-
tion (28–30). We did not observe T4SS-mediated injection into
other lung cell populations, including airway epithelial cells and
dendritic cells, suggesting that these cells are not a primary intra-
cellular niche for L. pneumophila and do not directly participate in
cytosolic immunosurveillance of T4SS activity during lung infec-
tion. Collectively, our data indicate that alveolar macrophages and
neutrophils play a dual role as both an intracellular niche and
immune mediator during pulmonary L. pneumophila infection.

MATERIALS AND METHODS
Ethics statement. All experiments performed in this study were done so in
accordance with the Animal Welfare Act (AWA) and the recommenda-
tions in the Guide for the Care and Use of Laboratory Animals of the Na-
tional Institutes of Health (40). The Institutional Animal Care and Use
Committee of the University of Pennsylvania approved all procedures
(protocols 803465, 803459, and 804928).

Bacterial strains and plasmids. All experiments used Legionella pneu-
mophila serogroup 1 strains. For in vitro studies, macrophages, dendritic
cells, and epithelial cells were infected with Lp02 (rpsL, hsdR, thyA), a
thymidine auxotroph derived from strain Lp01, or a �dotA or �flaA iso-
genic mutant strain (10). For in vivo studies, mice were infected with the
JR32-derived (rpsL, hsdR) �dotA or �flaA isogenic mutant strain (22, 41).
For in vivo experiments requiring cell sorting, the aforementioned Lp02
strains were used. For in vitro and in vivo studies, L. pneumophila was
cultured on charcoal yeast extract agar containing 6.25 �g/ml chloram-
phenicol for 48 h at 37°C prior to infection (42, 43). For studies requiring

motile L. pneumophila, 48-h cultures grown on CYE agar were grown
overnight in AYE broth containing chloramphenicol with shaking at 37°C
until �50% of the bacteria were observed to be motile by light micros-
copy. Plasmids encoding M45-tagged �-lactamase-RalF fusion protein or
M45-tagged �-lactamase were generated as follows. Briefly, the pJB1806
plasmid (RSF1010 ori, td�I, Ampr, Cmr) first was modified by cloning the
icmR promoter and M45 epitope tag into the EcoRI and BamHI sites (44).
The mature TEM-1 �-lactamase gene (BlaM) then was amplified from a
Yersinia pseudotuberculosis YopE-BlaM-encoding plasmid using primers
that introduced a 5= BglII site (5=-AATAAGATCTTGCACCCAGAAAC
GCTGGTG-3=) and 3= BamHI site (5=-GCCTCACTGATTAAGCATTGG
GGGATCCAATA-3=) (45). The resulting PCR product was digested with
BglII and BamHI and cloned into the BamHI site of the pJB1806 PicmR:
M45 plasmid to create a plasmid encoding M45-tagged �-lactamase. To
generate the plasmid encoding a translational fusion of M45-�-lacta-
mase-RalF, RalF was amplified from Lp01 genomic DNA using primers
that introduced BamHI sites at the 5= and 3= ends (5=-AATAGGATCCG
GCATCCAGAAATTGAAAAAGCCC-3=) and (5=-GAAAAAGGTAGAC
AATTAAAATTTTAAGGATCCAATA-3=). The resulting PCR product
was digested with BamHI and cloned into the BamHI site downstream of
the gene encoding M45-BlaM. The resulting plasmids then were electro-
porated into L. pneumophila, and transformed colonies were selected for
with chloramphenicol (8).

Mice. C57BL/6 mice were purchased from Jackson Laboratories. Mice
were maintained in accordance with the guidelines of the University of
Pennsylvania Institutional Animal Use and Care Committee. For infec-
tions, 8- to 12-week-old female mice were anesthetized by intraperitoneal
injection of a ketamine-xylazine-phosphate-buffered saline (PBS) solu-
tion at a dose of 100 mg ketamine/kg of body weight and 10 mg/kg xyla-
zine. Mice then were infected intranasally with 40 �l of a bacterial suspen-
sion containing 5 � 106 CFU L. pneumophila or PBS vehicle control. At
the indicated time points after infection, mice were sacrificed. To isolate
lung airway cells, bronchoalveolar lavage was performed 3 to 5 times with
1 ml of cold PBS each time. Lungs then were excised and digested for 30
min at 37°C with occasional shaking in 5 ml of PBS containing 5% fetal
bovine serum (FBS), 250 U/ml of collagenase IV (Worthington Biochem),
and 20 U/ml DNase I (Roche). Lungs then were mechanically homoge-
nized, and a single-cell suspension was obtained. To determine bacterial
burden, lungs were mechanically homogenized in sterile, distilled H2O,
and a portion of the lysate was spread onto CYE plates containing either
chloramphenicol or streptomycin.

Cell culture. For macrophages, C57BL/6 mouse bone marrow cells
were differentiated in RPMI containing 30% L929 cell supernatant and
20% FBS at 37°C, 5% CO2 in a humidified incubator. The macrophages
were replated in RPMI containing 15% L929 cell supernatant and 10%
FBS (28). For dendritic cells, bone marrow cells were differentiated in
RPMI containing 10% FBS, 50 �M �-mercaptoethanol, 2 mM L-glu-
tamine, and 20 ng/ml granulocyte-macrophage colony-stimulating factor
(GM-CSF; Peprotech) (46). Semiadherent dendritic cells then were iso-
lated and replated in medium lacking GM-CSF. A549 cells (ATCC) were
cultured in Dulbecco’s modified Eagle medium (DMEM) containing 10%
FBS (47). For infections, cells were treated with 10 ng/ml LPS from E. coli
strain 055:B5 (Sigma), 10 �l of bacterial suspension, or 10 �l of PBS
vehicle control.

Flow cytometry, fluorescence-based imaging flow cytometry, and
cell sorting. For in vitro experiments, infected cells were lifted and loaded
with CCF4-AM (Invitrogen) per the manufacturer’s instructions. Cells
then were washed and treated with Live/Dead fixable dead cell stain (In-
vitrogen). Bone marrow-derived dendritic cells were stained with anti-
bodies specific for CD11c and major histocompatibility complex class II
(MHC-II; eBioscience). To stain for intracellular L. pneumophila, cells
were fixed with BD Cytofix, permeabilized with BD Phosflow perm buffer
III (BD Biosciences), and then stained with a rabbit polyclonal antibody
against L. pneumophila followed by a rabbit-specific secondary antibody
tagged to a fluorophore (Invitrogen). For in vivo studies, lung and airway
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cells were loaded with CCF4-AM and treated with the Live/Dead stain.
Cells then were stained with antibodies specific for the cell surface anti-
gens CD45, CD11c, Ly6G, Ly6C, NK1.1 (BioLegend), MHCII, CD19,
CD3ε, CD31, CD326 (eBioscience), Siglec F, CD11b, and Ter119 (BD
Biosciences). Data were collected on an LSR II flow cytometer (BD Bio-
sciences), and postcollection data were analyzed using FlowJo (TreeStar).
For fluorescent imaging experiments, data and images were collected on
an Amnis ImageStreamX Mark II, and data were analyzed using IDEAS
software (EMD Millipore). Cells were gated on live singlets that had re-
tained the CCF4-AM dye. Cell sorting experiments were performed on a
FACSAria II flow cytometer (BD Biosciences).

Enzyme-linked immunosorbent assay (ELISA). Harvested superna-
tants from cultured cells or bronchoalveolar lavage specimens were as-
sayed using capture and detection antibodies specific for IL-1� and TNF
(BioLegend).

Immunoblot analysis. Legionella pneumophila cells expressing the
appropriate reporter plasmids were harvested from a 2-day heavy
patch and lysed. Lysates then were subjected to SDS-PAGE, transferred
to polyvinylidene difluoride (PVDF) membrane, and probed with an
anti-M45 epitope monoclonal antibody (48).

Statistical analysis. The plotting of data and statistical analysis were
performed using GraphPad Prism software. Statistical significance was
determined using the unpaired, two-tailed Student’s t test or one-way
analysis of variance (ANOVA) with Tukey’s posttest. Differences were
considered significant if the P value was �0.05.

RESULTS
A reporter system tracks translocation of type IV secretion sys-
tem effectors by Legionella pneumophila into mammalian cells.
L. pneumophila uses its T4SS to translocate effector proteins into
the cytosol of host cells. To track this translocation, we con-
structed a plasmid in which the well-characterized L. pneumophila
icmR promoter drives transcription of a gene encoding a transla-
tional fusion of the mature TEM-1 BlaM and the well-character-
ized T4SS effector protein RalF and introduced this plasmid into
L. pneumophila (see Fig. S1A and B in the supplemental material)
(49–51). We chose RalF because it is translocated into the cytosol
of infected cells immediately following the intimate interaction of
L. pneumophila with host cells (52, 53). Following infection of host
cells by bacterial strains expressing the BlaM-RalF fusion protein,
the enzymatic activity of translocated BlaM-RalF was detected in
host cells by means of the membrane-permeable BlaM substrate
CCF4-AM (51). CCF4-AM consists of coumarin joined to fluo-
rescein by a �-lactam ring. When excited at 409 nm, fluorescence
resonance energy transfer (FRET) between coumarin and fluores-
cein results in green fluorescence emission at 518 nm. T4SS-in-
jected BlaM will cleave the CCF4-AM substrate in the host cytosol
and eliminate FRET, resulting in blue fluorescence emission at
447 nm.

We generated L. pneumophila strains expressing either BlaM or
BlaM-RalF and infected C57BL/6 bone marrow-derived macro-
phages (BMDM) with these strains for 8 h. Following infection,
the cells were loaded with CCF4-AM and analyzed by flow cytom-
etry to determine whether blue fluorescence emitted by cleaved
CCF4-AM was detected (see Fig. S1C in the supplemental mate-
rial). Approximately 20 to 25% of macrophages infected with
BlaM-RalF-expressing wild-type (WT) L. pneumophila and L.
pneumophila lacking flagellin (�flaA mutant), which evade
NAIP5 inflammasome responses, were positive for blue fluores-
cence resulting from cleaved CCF4-AM, but this was not the case
following infection with strains lacking a functional T4SS (�dotA
mutants). This indicates that CCF4-AM is efficiently cleaved only

by BlaM-RalF translocated by T4SS-sufficient bacteria and that
BlaM-RalF remaining within bacteria does not generate a detect-
able signal in this assay. The frequencies of injected cells in WT
and �flaA mutant L. pneumophila infections were comparable,
although the frequency of injection was consistently lower in WT
infections (Fig. 1A and 2A; also see Fig. S1C). The robust detection
of injection by WT L. pneumophila is surprising considering that a
higher percentage of vacuoles containing WT L. pneumophila fail
to avoid rapid endocytic maturation and that flagellin induces
NAIP5-dependent cell death in C57BL/6 macrophages (22, 23,
54–56). Following infection with L. pneumophila strains express-
ing BlaM alone, we found that a much lower percentage of mac-
rophages became positive for blue CCF4-AM fluorescence com-
pared to macrophages infected with L. pneumophila expressing
BlaM-RalF (see Fig. S1C). Importantly, this small percentage of
CCF4-AM positive cells still was dependent on infection with
T4SS-sufficient bacteria, suggesting that BlaM lacking a canonical
T4SS signal sequence is inefficiently delivered into the host cytosol
by the T4SS.

T4SS-injected host cells contain viable Legionella pneumo-
phila. The T4SS is essential for the survival of L. pneumophila
within host cells. To determine whether cells injected with BlaM-
RalF contain L. pneumophila, we infected BMDMs with these re-
porter strains and loaded the cells with CCF4-AM. After loading,
the macrophages were fixed, permeabilized, and stained with an
antibody specific for L. pneumophila (Fig. 1A). Infection with all
three strains (the WT and �dotA and �flaA mutants) of L. pneu-
mophila resulted in macrophages staining positive for the pres-
ence of bacteria. Ninety to 100% of cells that were positive for
BlaM-RalF injection also were positive for L. pneumophila stain-
ing in both the WT and �flaA strains. With both strains, we de-
tected a subset of cells that was positive for L. pneumophila, but
translocation of BlaM-RalF was not within a detectible range, re-
vealing heterogeneity in BlaM-RalF translocation at the single-cell
level. The percentage of cells positive for L. pneumophila but neg-
ative for BlaM-RalF translocation could result from bacteria that
failed to successfully translocate T4SS effectors into the host cell,
either because they were nonviable, were not in the transmissive
phase, or failed to efficiently evade rapid endocytic maturation.

To determine whether the L. pneumophila organisms associ-
ated with injected or uninjected macrophages were intact or de-
graded, we analyzed these macrophages with fluorescence-based
imaging flow cytometry (Fig. 1B; also see Fig. S2A in the supple-
mental material). The majority of macrophages infected with the
�dotA strain showed dim L. pneumophila staining, with multiple
small puncta present per cell (Fig. 1C). Because the �dotA mu-
tants are unable to evade endocytic maturation due to their lack of
a functional T4SS, punctate staining could result from bacteria
that were degraded. Alternatively, punctate staining could repre-
sent uninfected cells that had phagocytosed bacterial debris.
When we infected macrophages with the L. pneumophila �flaA
mutant encoding a functional T4SS, again we could identify T4SS-
injected and uninjected cells. Many of the uninjected cells stained
positive for intracellular L. pneumophila (see Fig. S2B), but the
majority of these cells exhibited dim, punctate staining similar to
the staining seen for �dotA mutant-infected macrophages (Fig. 1B
and C). This may represent cells containing bacteria that had not
successfully evaded endocytic maturation or uninfected cells that
had phagocytosed bacterial debris. In contrast, the majority of
injected cells showed a single bright punctum of L. pneumophila
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staining, indicating the presence of an intact bacterium that had
not been transported to a hydrolytic compartment.

To test whether injected macrophages contain viable L. pneu-
mophila, we sorted infected macrophages that were either positive
or negative for the cleaved CCF4-AM signal, lysed the macro-
phages, and enumerated bacterial CFU in these distinct cell pop-
ulations (Fig. 1D). T4SS-injected cells recovered from an L. pneu-
mophila �flaA mutant infection contained the vast majority
(nearly 6 bacteria for every injected BMDM) of viable L. pneumo-
phila as determined by CFU count. Uninjected cells from the same
infection contained a minimal number of viable L. pneumophila
(less than 1 bacterium for each uninjected BMDM), comparable
to the number of viable bacteria recovered from a �dotA mutant
infection. Similar results were obtained with the JR32 strains of L.
pneumophila (see Fig. S1D and E in the supplemental material).
To exclude the possibility that the uninjected cells contained via-
ble L. pneumophila that lost the BlaM-RalF reporter plasmid en-
coding chloramphenicol resistance, we also plated cell lysates in
the presence or absence of chloramphenicol (see Fig. S3A). The
CFU obtained on plates with and without chloramphenicol were
indistinguishable, suggesting that the plasmid is stably maintained
during in vitro infection in the absence of antibiotics. Collectively,
our data indicate that viable bacteria are associated primarily with

cells that have received translocated BlaM-Ralf, whereas unin-
jected cells either are not infected or contain nonviable bacteria.

Translocation by the type IV secretion system can be de-
tected in dendritic cells and alveolar epithelial cells in vitro. L.
pneumophila can infect a variety of cell types in vitro, including
dendritic cells and airway epithelial cells (35–37). Thus, we exam-
ined whether T4SS-mediated translocation into these cell types
could be detected using the �-lactamase reporter system. At a
given MOI, compared to infected BMDMs, we detected a much
lower frequency of T4SS-mediated injection into bone marrow-
derived dendritic cells (BMDCs) infected with WT or �flaA mu-
tant L. pneumophila (Fig. 2A and B). We also infected A549 cells,
an alveolar epithelial cell line, and detected a low frequency of
injection into these cells (Fig. 2C).

Other researchers have noted an increase in bacterial uptake by
host cells when L. pneumophila is grown under conditions that
promote bacterial motility (22). Indeed, infection of macrophages
with motile L. pneumophila resulted in a large increase in the fre-
quency of injected macrophages, as the percentage of injected cells
increased from 10% to more than 80% (Fig. S4B). In contrast, in
A549 cells, we did not observe an increase in injection regardless of
bacterial motility, in that 1.3% of cells infected with nonmotile or
motile L. pneumophila were injected (see Fig. S4A). For all cell
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types, the percentage of cells injected by the T4SS of L. pneumo-
phila increased over time (Fig. 2). In all instances, cleaved
CCF4-AM signal required the expression of a functional T4SS,
suggesting that the �-lactamase reporter operates in a T4SS-de-
pendent manner in a variety of cell types. As we observed more
robust injection into macrophages and dendritic cells than into
nonphagocytic alveolar epithelial cells, these data suggest that
both increased cell contact and efficient uptake by professional
phagocytes contribute to the ability of L. pneumophila to effi-
ciently translocate effector proteins.

Legionella pneumophila translocates bacterial effectors into
alveolar macrophages and neutrophils during pulmonary infec-
tion. Our data suggest that the L. pneumophila T4SS can translo-
cate effectors into alveolar epithelial cells, dendritic cells, and mac-
rophages during in vitro infection. During pulmonary infection,
replicating L. pneumophila can be detected in alveolar macro-
phages (31), indicating that alveolar macrophages receive T4SS-
translocated effectors. However, whether alveolar epithelial cells,
dendritic cells, and other cell types receive T4SS-translocated ef-
fectors in vivo has not been investigated. To identify the cells that
receive translocated effectors during a permissive model of in vivo
infection, we intranasally infected C57BL/6 mice with the L. pneu-
mophila �flaA mutant expressing BlaM-RalF, as WT L. pneumo-
phila does not establish a productive infection in mice that encode
a functional NAIP5 allele (see Fig. S3D in the supplemental mate-
rial) (22, 23). In this model, similar to WT L. pneumophila infec-
tion of A/J mice expressing a hypomorphic NAIP5 allele, the lungs

of C57BL/6 mice exhibit an approximately 1-log increase in �flaA
mutant CFU by 24 to 48 h postinfection (hpi) (see Fig. S3C and D)
(57). The mice subsequently are able to control infection, with
minimal bacterial CFU detected in the lungs by 5 days postinfec-
tion (see Fig. S3C and D) (23). Expression of the plasmid contain-
ing BlaM-RalF did not affect the replication of the �flaA mutant in
vivo (see Fig. S3C). After intranasal inoculation with L. pneumo-
phila, we performed bronchoalveolar lavage to isolate cells from
the airway space at various time points and loaded them with
CCF4-AM to detect T4SS-mediated injection of BlaM-RalF. At 4 h
postinoculation, we detected T4SS-mediated translocation of
�-lactamase activity in nearly 50% of cells recovered from the
airway of mice infected with the �flaA mutant (Fig. 3A). Greater
than 95% of the T4SS-injected cells were alveolar macrophages, as
indicated by their expression of CD11c and Siglec F (58, 59). Sim-
ilar results were obtained with WT L. pneumophila at this time
point (data not shown). Consistent with our in vitro data, we did
not observe injection of BlaM-RalF in mice infected with the
�dotA strain, which is unable to translocate effectors into host
cells and cannot establish a productive infection in vivo.

At later times postinfection, we detected recruitment of a large
population of neutrophils to the airway space of �flaA mutant-
infected mice that did not occur in mice infected with the �dotA
mutant (see Fig. S5A and B in the supplemental material), consis-
tent with previous studies indicating that neutrophil recruitment
is T4SS dependent (20, 28, 30, 60). When we identified cells in-
jected by L. pneumophila in the airway space at 24 hpi, we again
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identified alveolar macrophages as being positive for T4SS-medi-
ated injection, but we also could identify injected cells that ex-
pressed high levels of Ly6G and were negative for MHC-II (Fig.
3B). We determined that these injected Ly6G� cells were neutro-
phils, as they expressed low levels of Ly6C, a cell surface marker
highly expressed on inflammatory monocytes (see Fig. S2C) (61,
62). The frequency of injected neutrophils was much lower than
that of injected alveolar macrophages (Fig. 3C). However, due to
the large influx of neutrophils, the total number of injected neu-
trophils was comparable to or greater than the total number of
injected alveolar macrophages at 24, 48, and 72 hpi (Fig. 3D).

As we could detect robust T4SS-mediated injection of BlaM-
RalF into cells of the airway space, we wanted to determine
whether cells within the lung interstitium were injected by L.
pneumophila as well. Notably, we again observed T4SS-mediated
injection into alveolar macrophages and neutrophils within lung
homogenates (Fig. 4A). As in the airway space, we detected a large
influx of neutrophils into the lung tissue of �flaA mutant-infected
mice but not in mice infected with the �dotA strain of L. pneumo-
phila (see Fig. S5C and D in the supplemental material). Although
in vitro we observed T4SS-mediated injection into bone marrow-

derived dendritic cells as well as A549 alveolar epithelial cells (Fig.
2B and C), we did not detect injection into lung dendritic cells or
CD326� airway epithelial cells, suggesting that L. pneumophila
does not efficiently infect or translocate effectors into these cell
types during a permissive mouse model of infection (Fig. 4A). We
also did not observe injection into inflammatory monocytes, plas-
macytoid dendritic cells, eosinophils, B cells, T cells, NK cells, or
endothelial cells within the lung tissue at any time assayed postin-
fection (see Fig. S2C and D in the supplemental material). The
frequency of T4SS-injected neutrophils in the lung tissue was
much lower than that seen in alveolar macrophages, similar to
what we observed in the airway space (Fig. 4B). At 4 hpi, the
majority of cells receiving T4SS-translocated effectors in the lung
tissue were alveolar macrophages, but at later times, many of the
T4SS-injected cells were neutrophils (Fig. 4C). Importantly, L.
pneumophila recovered at 48 and 72 hpi retained the reporter
plasmid, indicating that the plasmid is stably maintained during in
vivo infection even in the absence of antibiotic selection (see Fig.
S3B). A previous study examining a nonpermissive model of
C57BL/6 mice infected with WT L. pneumophila also found that
CD45-negative cells or lung epithelial cells did not appear to have
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taken up L. pneumophila, with alveolar macrophages appearing to
be the primary cells infected at early time points postinfection,
followed by infection of recruited neutrophils at 1 day postinfec-
tion (30), suggesting that in both permissive and nonpermissive
mouse models, similar lung cell types are infected.

Neutrophils and alveolar macrophages in the lungs of in-
fected mice harbor viable Legionella pneumophila bacteria and
produce cytokines. Alveolar macrophages are thought to be the
primary cell type that is infected by L. pneumophila and supports
bacterial replication (31). A previous study using a nonpermissive
model of C57BL/6 mice infected with WT L. pneumophila also
found that recruited neutrophils take up L. pneumophila in the
lung, but whether L. pneumophila could translocate effectors into
neutrophils or survive within these cells was not examined (30).
As we observed that both alveolar macrophages and neutrophils in
L. pneumophila-infected lungs were injected by the T4SS, we
sought to determine whether in addition to alveolar macrophages,
neutrophils also contained viable bacteria. Therefore, we sorted
total alveolar macrophages and neutrophils from the lungs of
mice infected intranasally with L. pneumophila and enumerated

bacteria from lysed cells. As a comparison, we also sorted total
inflammatory monocytes, a population of cells negative for T4SS
injection, from these infected mice as well. As expected, alveolar
macrophages isolated 24 h after infection contained viable bacte-
ria (Fig. 5A). In contrast, inflammatory monocytes contained very
few viable L. pneumophila organisms, consistent with the lack of
observed T4SS-dependent translocation into these cells (Fig. 5A).
Interestingly, neutrophils from �flaA mutant-infected mice con-
tained viable bacteria at a frequency consistent with the extent of
injection, suggesting that injected neutrophils harbor viable bac-
teria in the airway and lung tissue. Although the absolute fre-
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quency of viable L. pneumophila in alveolar macrophages was
greater than that within neutrophils (nearly 10 bacteria per 100
alveolar macrophages versus 1 bacterium per 100 neutrophils),
the higher absolute numbers of neutrophils present during infec-
tion results in the unexpected finding that neutrophils actually
contain nearly twice as many viable bacteria as alveolar macro-
phages (Fig. 5B). To examine whether this also was the case at the
peak of pulmonary bacterial load, we sorted alveolar macrophages
and neutrophils from mice 48 hpi (Fig. 5C and D). As with sam-
ples from 24 hpi, although a higher frequency of alveolar macro-
phages contained viable L. pneumophila, in total there were more
L. pneumophila organisms in neutrophils than alveolar macro-
phages.

The presence of neutrophils in the airway space during infec-
tion correlates with lower bacterial burden thought to be due in
part to their potent bactericidal activity (20, 28, 30). However, as
our data suggest that L. pneumophila cells inject and survive within
neutrophils, potentially activating cytosolic immunosurveillance
pathways within these cells, we next examined whether or not
infected neutrophils also contribute to the T4SS-dependent
production of proinflammatory cytokines important for bac-
terial clearance. To test this, following intranasal infection with
either the L. pneumophila �dotA or �flaA mutant, we measured
cytokines secreted by alveolar macrophages isolated at 4 h postin-
fection or neutrophils isolated at 24 h postinfection. Alveolar mac-
rophages from �flaA mutant-infected mice secreted TNF and IL-
1�, whereas macrophages from �dotA mutant-infected mice did
not. Interestingly, neutrophils from mice infected with the �flaA
mutant also secreted substantial amounts of TNF and IL-1�,
whereas neutrophils from mice infected with the �dotA mutant
did not secrete detectable levels of IL-1� and secreted significantly
less TNF, which correlates with the lack of detectable cytokine
production observed during pulmonary infection with the �dotA
mutant (Fig. 5E and F). Intriguingly, these data demonstrate that
in addition to alveolar macrophages, neutrophils also produce
proinflammatory cytokines in the context of T4SS-competent L.
pneumophila infection. This indicates that in addition to their po-
tent bactericidal activity, neutrophils contribute to the control of
infection by other immune effector mechanisms, such as cytokine
production.

DISCUSSION

Legionella pneumophila uses its T4SS to inject a large number of
effector proteins into the cytosol of host phagocytes (63). The
T4SS is necessary for intracellular replication and pathogenesis, as
L. pneumophila mutants lacking a functional T4SS fail to establish
a replicative niche and do not cause pathology in mice (8, 11, 20,
30). In addition to being required for L. pneumophila pathogene-
sis, T4SS activity potently activates multiple cytosolic immuno-
surveillance pathways (25, 64–66). Thus, cells that interact with L.
pneumophila and receive T4SS-translocated effectors serve as a
potential replicative niche but also may contribute to the immune
response against L. pneumophila. However, the precise identity of
such cells is unknown. Therefore, we set out to identify host cells
that receive T4SS-translocated effectors during infection with L.
pneumophila. BlaM reporter systems have been used during in
vivo infection with Yersinia pseudotuberculosis (67, 68), Yersinia
pestis (69, 70), Yersinia enterocolitica (71), Salmonella enterica se-
rovar Typhimurium (72, 73), and Pseudomonas aeruginosa (74,
75) to detect the translocation of effectors into host cells by the

type III and type IV secretion systems. We demonstrate in this
study that by using �-lactamase (BlaM) translationally fused to
the T4SS-translocated effector protein RalF, we can successfully
track injection by the T4SS into host cells during both in vitro and
in vivo infection, and we describe the first use of this BlaM reporter
during in vivo pulmonary infection with L. pneumophila.

We observed robust T4SS-mediated injection into alveolar
macrophages at 4 h postinfection, consistent with previous obser-
vations that these cells are the primary cell type infected by L.
pneumophila during pulmonary infection in human patients (31).
At later time points postinfection, we find that in addition to al-
veolar macrophages, a large number of the cells injected by L.
pneumophila in vivo are neutrophils. Most likely this is due to the
large influx of neutrophils into the lungs and airway space during
infection (60, 76–80). Other researchers have shown that neutro-
phils contain intracellular L. pneumophila in a nonpermissive
mouse model of pulmonary infection, but they did not examine
whether L. pneumophila could survive within neutrophils or
whether neutrophils are capable of receiving T4SS-translocated
effectors (30). In vitro studies have suggested that Legionella spe-
cies are resistant to the highly bactericidal activity of neutrophils
but cannot replicate within these cells (39, 81). Thus, we initially
presumed that although neutrophils might be injected during in
vivo infection, the majority of bacteria eventually would be cleared
due to a failure to replicate in these cells, and we would not be able
to detect large numbers of viable bacteria within these cells. To our
surprise, we obtained viable L. pneumophila cells in numbers that
roughly corresponded to the frequency of injection seen with our
reporter system, suggesting that L. pneumophila can survive
within neutrophils during in vivo infection. Unexpectedly, given
the large number of neutrophils that enter the lung, the total num-
ber of L. pneumophila CFU harbored by neutrophils is greater
than the total number of L. pneumophila CFU found within the
alveolar macrophage population 24 and 48 hpi. Given the large
numbers of infected neutrophils that we observed, it would be of
interest to determine whether L. pneumophila could establish an
ER-derived vacuole and successfully replicate within neutrophils,
as this could represent another intracellular niche for L. pneumo-
phila. Most bacteria are thought not to survive or replicate within
neutrophils, but there are a few exceptions, including Neisseria
gonorrhoeae (82), Anaplasma phagocytophilum (83, 84), and
pathogenic Escherichia coli (85).

As we were able to detect robust T4SS-dependent injection
only into alveolar macrophages and neutrophils, we conclude that
phagocytic cells in the airway space are the primary recipients of
T4SS-translocated effectors during pulmonary L. pneumophila in-
fection. Whether or not T4SS-injected cells survive infection and
traffic to other organs, including lymph nodes, also is unknown.
However, previous studies have reported that alveolar macro-
phages do traffic to lymph nodes when given allergic stimuli (86).
Thus, it would be of interest to investigate whether T4SS-injected
alveolar macrophages either induce adaptive immunity or partic-
ipate in the dissemination of infection to other organs (86). Sur-
prisingly, we were unable to detect T4SS-injected conventional
dendritic cells during in vivo infection. Dendritic cells undergo
rapid apoptosis in response to L. pneumophila T4SS activity (87),
which could account for why we do not detect injection in den-
dritic cells that is as robust as that of macrophages in vitro and in
vivo. It would be interesting to determine whether more robust
injection could be detected in DCs lacking apoptotic regulators,
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such as BAX and BAK, that are resistant to L. pneumophila-in-
duced apoptosis. However, C57BL/6-derived macrophages un-
dergo rapid pyroptosis in response to WT L. pneumophila infec-
tion, yet we still detect robust levels of injection in this cell type,
suggesting that L. pneumophila-induced cell death is an insuffi-
cient explanation to account for the lack of detectable injection in
DCs (57). Given that phagocytosis is required for T4SS-mediated
translocation, another possibility is that dendritic cells in the lung
do not efficiently phagocytose L. pneumophila (88). Alternatively,
pulmonary dendritic cells and L. pneumophila may be spatially
separated during in vivo infection.

Using the A549 alveolar epithelial cell line during in vitro in-
fection, we detected a low percentage of T4SS-injected cells under
conditions using both nonmotile and motile bacteria. Many re-
searchers utilize A549 cells as a model for L. pneumophila infection
and can detect productive bacterial replication within these cells
(37). However, these studies either use higher MOIs than those
used in this study or opsonize the bacteria prior to infection. These
discrepancies in technique may explain why we are unable to de-
tect higher percentages of injected alveolar epithelial cells during
in vitro infection. We also were unable to detect robust T4SS-
dependent translocation into airway epithelial cells or other
nonphagocytic cells during in vivo infection. Utilizing a nonper-
missive model of C57BL/6 mice infected with WT L. pneumophila,
other researchers also found that lung epithelial cells did not ap-
pear to contain L. pneumophila (30). Our data argue against a
direct role for airway epithelial cells in the cytosolic sensing of L.
pneumophila T4SS activity during pulmonary infection. Airway
epithelial cells have been shown to indirectly respond to L. pneu-
mophila infection by producing the chemokine CXCL1 in re-
sponse to IL-1 produced by macrophages (30).

We found that alveolar macrophages secreted TNF and IL-1� 4
h postinfection in vivo. Both TNF and IL-1� are important for
controlling L. pneumophila infection. The inflammasome-regu-
lated cytokines IL-1� and IL-1� are critical for neutrophil recruit-
ment to the lung airway during L. pneumophila infection through
a mechanism involving the IL-1R-dependent induction of CXCL1
from alveolar epithelial cells (20, 28, 30). It is unclear whether
other cells in the lung also produce cytokines so early during in-
fection. However, as IL-1� production in vivo is T4SS dependent
and we could detect T4SS injection only into alveolar macro-
phages at 4 h postinfection, our data suggest that during the first
few hours of infection, alveolar macrophages are the primary
source of IL-1�, consistent with another study indicating that he-
matopoietic cells are an early source of IL-1� (20).

At 24 h postinfection, we found that neutrophils recruited to
the lungs of mice infected with the �flaA mutant also secrete the
proinflammatory cytokines TNF and IL-1�, but not mice infected
with the �dotA mutant. Therefore, these data indicate that, like
alveolar macrophages, neutrophils also secrete cytokines in re-
sponse to cytosolic sensing of T4SS-translocated bacterial prod-
ucts. It has been reported previously that neutrophils can secrete
cytokines, but the signaling pathways that control cytokine pro-
duction and secretion in neutrophils are poorly understood. Neu-
trophils are known to release TNF-containing granules in re-
sponse to a variety of stimuli, including various bacterial
infections (89, 90). Previous research has demonstrated that neu-
trophils can release IL-1� in a model of sterile inflammation or
IL-1� independently of caspase-1 and caspase-11 in a mouse
model of arthritis and during bacterial infection (91–93). In an

intravenous infection model of L. pneumophila infection, splenic
neutrophils were shown to produce IL-18, an IL-1 family cyto-
kine, which induces IFN- production from NK cells (94). Previ-
ous studies demonstrated that IL-1� secretion is regulated by both
inflammasome-dependent and -independent pathways during in
vivo WT L. pneumophila infection (20, 28), but it is unknown
which of these pathways are used by macrophages and neutrophils
to secrete IL-1� in vivo. It would be of interest to determine the
host and bacterial components required for release of IL-1 and
other cytokines from macrophages and neutrophils in response to
in vivo infection with L. pneumophila.

Overall, our study is the first to define the cell types that receive
T4SS-translocated effectors during pulmonary L. pneumophila in-
fection. We reveal that both alveolar macrophages and neutro-
phils receive translocated effector proteins, harbor viable bacteria,
and respond to infection by producing inflammatory cytokines.
Collectively, our data indicate that alveolar macrophages and neu-
trophils provide not only an intracellular reservoir for L. pneumo-
phila but also an important source of proinflammatory cytokines
that contribute to a successful host immune response during pul-
monary L. pneumophila infection.
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