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Type II Toxoplasma gondii Induction of CD40 on Infected
Macrophages Enhances Interleukin-12 Responses

Pedro Morgado,®P Dattanand M. Sudarshana,®® Lanny Gov,®P Katherine S. Harker,®P Tonika Lam,®":® Paolo Casali,®P°

Jon P. Boyle,? Melissa B. Lodoen®?

Department of Molecular Biology and Biochemistry,? Institute for Immunology,” and Department of Microbiology and Molecular Genetics,© University of California, Irvine,
Irvine, California, USA; Department of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA®

Toxoplasma gondii is an obligate intracellular parasite that can cause severe neurological disease in infected humans. CD40 is a
receptor on macrophages that plays a critical role in controlling 7. gondii infection. We examined the regulation of CD40 on the
surface of T. gondii-infected bone marrow-derived macrophages (BMdMs). T. gondii induced CD40 expression both at the tran-
script level and on the cell surface, and interestingly, the effect was parasite strain specific: CD40 levels were dramatically in-
creased in type II T. gondii-infected BMdMs compared to type I- or type III-infected cells. Type II induction of CD40 was specific
to cells harboring intracellular parasites and detectable as early as 6 h postinfection (hpi) at the transcript level. CD40 protein
expression peaked at 18 hpi. Using forward genetics with progeny from a type II X type III cross, we found that CD40 induction
mapped to a region of chromosome X that included the gene encoding the dense granule protein 15 (GRA15). Using type I para-

sites stably expressing the type II allele of GRA15 (GRA15y;), we found that type I GRA15; parasites induced the expression of
CD40 on infected cells in an NF-kB-dependent manner. In addition, stable expression of hemagglutinin-tagged GRA15, in
THP-1 cells resulted in CD40 upregulation in the absence of infection. Since CD40 signaling contributes to interleukin-12 (IL-
12) production, we examined IL-12 from infected macrophages and found that CD40L engagement of CD40 amplified the IL-12
response in type II-infected cells. These data indicate that GRA15;; induction of CD40 promotes parasite immunity through the

production of IL-12.

Toxoplasma gondii is an obligate intracellular parasite and the
causative agent of toxoplasmosis. An estimated 30% of the
world population is infected with this protozoan parasite (1).
Acute infection with T. gondii is characterized by proliferation and
dissemination of the fast-growing tachyzoite form of the parasite,
followed by encystment of the parasite as slow-growing brady-
zoites that establish a persistent chronic infection for the duration
of the host’s lifetime.

Arobust innate immune response is initiated rapidly following
T. gondii infection and is responsible for establishing a first line of
defense. Myeloid cells, such as monocytes, dendritic cells, and
macrophages, are among the first immune cells to migrate to the
site of infection and subsequently become activated (2). CD40is a
cell surface receptor that plays a pivotal role in macrophage acti-
vation and parasite immunity. The engagement between CD40
and CD40L (CD154), expressed by antigen-presenting cells
(APCs) and activated CD4™ T cells, respectively, results in the
establishment of antimicrobial programs that contribute to en-
hanced in vivo control against a number of pathogens (3, 4), in-
cluding T. gondii (5, 6). CD40 engagement on macrophages leads
to the production of nitric oxide (NO) (7) and the induction of
autophagy (8), both of which limit the survival of intracellular
pathogens. In the case of T. gondii infection, CD40 establishes an
antimicrobial program that contributes to parasite control inde-
pendently of other established gamma interferon (IFN-v)- and
p47 GTPase-dependent mechanisms of defense (6, 9).

CD40 engagement has long been known to result in interleu-
kin-12 (IL-12) production (10-12), which is critical for parasite
control. IL-12 is produced by activated APCs shortly after T. gon-
dii infection (13, 14) and is necessary for priming adaptive immu-
nity (15). CD40 induction of IL-12 leads to the release of IFN-vy
(16), a key mediator of host resistance during T. gondii infection
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(17). In addition, since T cells are crucial for controlling T. gondii
infection (18, 19), disruption of sustained IL-12 production di-
minishes Th1l immune responses and promotes parasite growth
and dissemination.

Although CD40 plays a critical role in host defense against T.
gondii and is induced during infection (5, 20), how this receptor is
regulated during parasite infection remains unknown. Lipopoly-
saccharide (LPS) stimulation of macrophages and microglia has
been shown to induce CD40 transcription via STAT-1 and NF-kB
p65 and p50 nuclear translocation and binding to the CD40 pro-
moter (21). In addition to NF-kB, binding of the transcription
factor specificity protein 1 (Sp1) to the CD40 promoter was nec-
essary for optimal CD40 induction in response to LPS (22).
STAT-1 signaling was found to be critical for CD40 expression
following IFN-v stimulation (23), whereas IL-4 inhibits CD40
expression through STAT6 signaling (24). We examined how
CD40 is regulated during T. gondii infection. We found that CD40
is induced in a strain-specific manner and that the type II parasite
dense granule protein 15 (GRA15) is sufficient for CD40 induc-
tion in macrophages through NF-kB signaling. Moreover, en-
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gagement of CD40 with CD40L resulted in enhanced IL-12 re-
sponses in macrophages infected with a type II strain of T. gondii.

MATERIALS AND METHODS

Mammalian and parasite cell culture. Human foreskin fibroblasts
(HFFs) and human embryonic kidney 293T (293T) Phoenix-E cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM; Thermo
Fisher Scientific, Logan, UT) supplemented with 10% heat-inactivated
fetal calf serum (FCS; HyClone, Logan, UT), 2 mM L-glutamine, 100 U/ml
penicillin, and 100 pg/ml streptomycin (D-10% medium). Bone marrow-
derived macrophages (BMdMs) from C57BL/6 mice were generated as
previously described (25) and cultured in D-10% medium supplemented
with 10% macrophage colony-stimulating factor for 5 days. Cells were
then seeded overnight before T. gondii infection assays. Splenocytes were
isolated from C57BL/6 mice as described previously (26). THP-1 cells
were cultured in R-10% medium, consisting of RPMI 1640 (Thermo
Fisher Scientific, Logan, UT) supplemented with 10% heat-inactivated
FBS, 2 mM L-glutamine, 100 U/ml penicillin, and 100 pg/ml streptomy-
cin. Where indicated, THP-1 cells were stimulated with 5 mM phorbol
myristate acetate (PMA) for 24 h, washed, and then cultured in fresh
R-10% medium for an additional 24 h.

T. gondii tachyzoites of type I (RHgfpluc [27]), type II (ME49fLuc;
generously provided by John Boothroyd), and type III (CALucl23 [28])
and transgenic type I tachyzoites stably expressing the type II allele of
GRAI5 (type I GRA15;;) (29) were used for infection of BMdMs. All
parasite strains constitutively expressed green fluorescent protein (GFP)
and were maintained by serial passage in confluent HFF monolayers as
previously described (30).

All mammalian and parasite cell cultures were maintained in incuba-
tors set at 37°C with 5% CO,. Cell lines and parasite strains were tested
monthly for Mycoplasma contamination and confirmed to be negative. All
research involving mice was carried out in compliance with the Institu-
tional Animal Care and Use Committee at the University of California,
Irvine (UCI).

Antibodies and flow cytometry. BMdMs, PMA-stimulated THP-1
cells, and THP-1 cells transduced with hemagglutinin (HA)-tagged
GRA15 (THP-1+GRA15;;-HA) were resuspended in fluorescence-acti-
vated cell sorting (FACS) wash (phosphate-buffered saline [PBS] with 2%
FCS) containing anti-Fc receptor antibody (for mouse, clone 2.4G2 [BD
Biosciences, San Jose, CAJ; for human, human Fc receptor binding inhib-
itor [eBioscience, San Diego, CA]) and incubated on ice for 10 min. For
cell surface marker staining, all antibodies were resuspended in FACS
wash. BMdMs were pelleted by centrifugation, stained with biotinylated
control Ig or biotinylated anti-mouse CD40 (clone 3/23; BioLegend, San
Diego, CA) on ice for 30 min, and then stained with streptavidin-phyco-
erythrin (PE) onice for 15 min. Splenocytes were stained with anti-mouse
CD19-PE-cyan 7 (Cy7) (clone 6D5; BioLegend), anti-mouse CD11c-PE-
Cy7 (clone N418; BioLegend), or anti-mouse CD40-allophycocyanin
(APC) (clone 3/23; BioLegend). Human THP-1 cells were stained with
anti-human CD40-PE (clone 5C3; BioLegend) or a mouse IgG1-PE con-
trol antibody. After the final wash, the cells were fixed with 4% parafor-
maldehyde (PFA) prior to analysis by flow cytometry.

All flow cytometry samples were examined using a FACSCalibur cy-
tometer with CellQuest software (BD Biosciences, San Jose, CA) for ac-
quisition and Flow]Jo software (Tree Star, Ashland, OR) for analysis. For
the mock-treated cells, the histograms depict the total cell population.
Since GFP-expressing T. gondii parasites were used for the infection and
flow cytometry experiments, the histograms for the infected cells depict
those cells that fell within the GFP-positive (GFP™) gate.

Gene expression analysis by gPCR. BMdM:s from C57BL/6 mice were
infected as described above. At 6 h postinfection (hpi), RNA was harvested
using an RNeasy kit (Qiagen, Germantown, MD) and treated with DNase
I (Invitrogen, Carlsbad, CA). cDNA was generated and used as the tem-
plate in real-time quantitative PCR (qPCR) with primers specific for
mouse CD40: forward primer 5'-GCTATGGGGCTGCTTGTTGA-3'
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and reverse primer 5'-ATGGGTGGCATTGGGTCTTC-3". Mouse glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH) was used for normal-
ization using the following primers: forward primer 5'-GCATGGCCTT
CCGTGTTC-3’ and reverse primer (5'-GATGTCATCATACTTGGCAG
GTTT-3'. qPCR was performed in triplicate using a Bio-Rad iCycler
apparatus and iTaq Universal SYBR green Supermix (Bio-Rad, Hercu-
les, CA).

The data from the qPCR were analyzed using the threshold cycle
(27 2ACT) method (31). The values obtained for CD40 expression were
normalized to those for GAPDH expression, and the data are expressed as
the ratio of mRNA levels. Error bars reflect the standard deviation from
triplicate samples. In all qPCR assays, cDNA generated in the absence of
reverse transcriptase was used as a negative control to detect contaminat-
ing genomic DNA. No amplification was observed in the samples tested in
the absence of reverse transcriptase or in samples containing water in the
place of DNA template.

QTL mapping. CD40 mean fluorescence intensity values generated
from BMdMs infected with 19 F1 progeny derived from crosses between a
type II strain and a type III strain (28, 32) were analyzed using R/qtl
software (33) and the existing T. gondii genetic map (34). Quantitative
trait locus (QTL) peaks were identified using the marker regression
method (mr). The overall significance level was determined using 1,000
permutations of the genotype data.

NF-kB inhibitor assay. BMdMs were cultured for 24 h in medium
treated with dimethyl sulfoxide (DMSO) as a vehicle control or with the
IkB kinase (IKK) inhibitor PS1145 (Sigma-Aldrich, St. Louis, MO) (35).
The concentration used was selected based on the findings of dose-re-
sponse experiments that we performed to select the lowest concentration
that showed specific effects on the target (data not shown). After 24 h, the
medium was replaced with untreated macrophage medium and the cells
were mock infected or infected with type I or type I GRA15,; T. gondii
parasites. At 1 hpi, the cells were washed and the medium was replaced
with fresh macrophage medium or macrophage medium supplemented
with DMSO or PS1145. The cells were harvested at 18 hpi for antibody
staining and flow cytometry analysis for CD40 expression.

Retroviral transduction. The open reading frame (ORF) for T. gondii
type II GRA15 (GRA15;;) with a C-terminal HA epitope tag was cloned
into the BamHI and EcoRI sites of the pMX-puro retroviral vector to
generate the vector IP9. This construct was generated by performing
nested primer PCR using the following primers: forward primer GRA15-
BamHI (5'-GCTTCAGGATCCATGATAATTCGGTGGCTTGGGTATC
TTACGG-3'), reverse primer 1 (primer GRA15-HA; 5'-TCTGGGACGTC
GTATGGGTATGGAGTTACCGCTGATTGTGTGTCCC-3'), and reverse
primer 2 (primer GRA15-HA-EcoR[; 5'-GTAATGGAATTCTCAAGCGTA
GTCTGGGACGTCGTATGGGTATGGAGTTA-3"). Phoenix-E packaging
cells were transfected with IP9 (GRA15;-HA-pMX-puro) or the parental
pMX-puro plasmid as a negative control using the Lipofectamine 2000 re-
agent (Life Technologies, Carlsbad, CA) according to the manufacturer’s pro-
tocol. Retroviral supernatants were harvested on days 2 and 3 posttransfec-
tion and centrifuged at 1,200 rpm for 10 min to clarify the supernatant and
remove cell debris. THP-1 cells were infected with the retrovirus by centrifu-
gation at 2,500 rpm for 2 h at 25°C in the presence of 8 ug/ml hexadimethrine
bromide (Sigma-Aldrich, St. Louis, MO). At 40 h postinfection, the
transduced cells were placed in selection medium containing 2 pg/ml
puromycin (Thermo Fisher Scientific, Logan, UT). Western blotting
was performed after 5 days in puromycin selection medium to confirm
the expression of GRA15,;-HA.

Western blotting. Transduced THP-1 cells were washed with ice-cold
1X PBS, and cell lysates were generated by the addition of 2X Laemmli
sample buffer containing 10% P-mercaptoethanol. The lysates were sep-
arated by SDS-PAGE and transferred to polyvinylidene difluoride
(PVDF) membranes for immunoblotting. The membranes were blotted
with a horseradish peroxidase (HRP)-conjugated antibody against the HA
epitope tag (Cell Signaling, Danvers, MA). The membranes were devel-
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oped with the Amersham ECL Prime reagent (GE Healthcare, Waukesha,
WI) and detected using a Nikon camera, as previously described (36).

Transient transfection. 293T cells were used to generate CD40L-ex-
pressing transfectants (293T-CD40L). 293T cells were transfected with
the CD40L-MIEG-hCD4 plasmid containing the complete coding se-
quence for the murine CD40L (plasmid 40355; Addgene, Cambridge,
MA) using Lipofectamine 2000 (Life Technologies, Carlsbad, CA) accord-
ing to the manufacturer’s protocol. To generate control cells, the parental
293T cells were treated with Lipofectamine 2000 in the absence of plas-
mid. The control 293T cells and CD40L-expressing 293T cells were cul-
tured for 48 h at 37°C before addition to the BMdM:s for the coculture
experiments.

CD40L stimulation assays. At day 6 of culture, the BMdMs were
mock infected or infected with type I, type IL, or type  GRA15, parasites,
as described above. At 18 hpi, 293T or CD40L-expressing 293T cells were
added to BMdMs at a ratio of 1:2 (293T cells/BMdMs) without changing
the medium. At 26 hpi, the cell culture supernatants were collected to
measure IL-12p70 by enzyme-linked immunosorbent assay (ELISA)
(BioLegend, San Diego, CA).

Statistical analysis. Unless otherwise indicated, an unpaired, two-
tailed Student’s ¢ test was used to determine statistical significance. Dif-
ferences were considered significant when P was <0.05.

RESULTS

Type II T. gondii induces high levels of CD40 on infected mac-
rophages. We evaluated the expression of the costimulatory mol-
ecule CD40 on macrophages following T. gondii infection. After
infecting primary mouse BMdM:s with types I, II, or III parasites,
we observed that CD40 transcript levels were increased in all in-
fected samples at 6 hpi. However, the increase in CD40 transcript
levels was significantly higher in BMdMs infected with type II
parasites than in mock-infected cells (10-fold change, P < 0.05) or
cells infected with either type I or III parasites (Fig. 1A). We then
investigated whether there was a strain-specific induction of CD40
on the surface of infected cells. Flow cytometry analysis of infected
BMdMs at 18 hpi revealed that the highest induction of CD40 was
observed in cells infected with the type II strain (Fig. 1B). More-
over, CD40 was specifically upregulated in the infected, GFP™
population, and the cells with the highest level of GFP had the
strongest CD40 upregulation. To examine whether infection in-
duces CD40 in other types of immune cells, cultures of splenocytes
harvested from C57BL/6 mice were infected with type II T. gondii
parasites and CD40 was modestly induced on the infected CD19™"
(Bcell) and CD11c* (dendritic cell) populations (see Fig. S1 in the
supplemental material). We next investigated the kinetics of
CD40 induction following infection with the type II strain of T.
gondii. CD40 cell surface protein levels were increased by 12 hpi
and peaked at 18 hpi in T. gondii-infected BMdMs compared to
their levels in mock-infected cells (Fig. 1C). These data indicate
that T. gondii induced CD40 expression on infected macrophages
and that a high level of CD40 induction occurred in a parasite
strain-specific manner.

The observation that the high level of CD40 induction was
strain specific suggested the possibility of a genetic basis for the
phenotype. In this case, the phenotype should segregate among
recombinant progeny generated by a cross between the type Il and
either the type I or type III parental strains. Indeed, by comparing
CD40 levels on macrophages infected with type II X type III re-
combinant progeny lines, we found that some strains induced
high CD40 levels, whereas other strains induced CD40 at a low
level (see Table SI in the supplemental material). We analyzed
CDA40 levels in BMdMs infected with 19 F1 recombinant progeny
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and used QTL mapping to identify the genetic locus responsible
for this effect. QTL mapping identified three peaks on chromo-
somes Ia, VIIb, and X (Fig. 2A). The presence of more than one
peak suggests that the CD40-inducing phenotype is a multilocus
trait. Although the peak observed on the right arm of chromo-
some X (logarithm of odds score = 2.87; P = 0.145) was not
statistically significant, we chose to further investigate this genetic
region since it showed the strongest association with the pheno-
type of high CD40 induction. To do this, we chose two strains
from the original 19 F1 recombinant progeny as well as two addi-
tional strains (S26 and S28 [28]) that had recombinations in the
right arm of chromosome X for more detailed analysis. Using the
annotated genotype maps for these four strains (28), we found
that strains with the type II genotype between marker AK157 and
the end of chromosome X induced high levels of CD40 expression,
whereas those with the type III genotype had low levels of CD40
induction (Fig. 2B). Specifically, CL13 and S30 did not induce
high levels of CD40 (Fig. 2B) and strain S28 also only weakly
upregulated CD40 expression; however, strain S26 induced the
high CD40 expression phenotype (Fig. 2B). The responsible 0.46-
megabase region of chromosome X contains 91 genes, 31 of which
encode putative secretory proteins, including GRA15 (29).
GRA15;; induces CD40 on infected macrophages. To test if
GRA15 mediates CD40 induction in macrophages infected with
the type II strain, we infected BMdMs with type I or type II para-
sites or type I parasites expressing the type II allele of GRAI5
(called type I GRA15})). As expected, type I parasites did not in-
duce robust CD40 cell surface expression on infected BMdMs. In
contrast, the expression of CD40 was increased on cells infected
with type I GRA15;; and type II parasites (Fig. 3A). To evaluate if
human macrophage-like cells upregulate CD40 following infec-
tion with type I, type I, or type I GRA15; parasites, THP-1 cells
differentiated with phorbol myristate acetate (PMA) were infected
with each of these three parasite strains. Similar to murine mac-
rophages, human THP-1 differentiated macrophages were found
to increase CD40 expression after infection with either type II or
type I GRA15,; parasites but not with type I parasites (Fig. 3B).
Recent work demonstrated that the protein encoded by the
type II allele of GRAI5 (GRA15;;) mediates sustained NF-kB nu-
clear translocation in T. gondii-infected cells (29) and induces the
production of IL-12 in mouse macrophages (29) and IL-1B in
human monocytes (30). Additionally, NF-kB signaling has been
found to play a role in LPS-induced CD40 expression in macro-
phages (21). To evaluate if GRA15;-induced CD40 expression
was NF-kB dependent, we analyzed CD40 levels on type I GRA15;;
parasite-infected BMdMs treated with the IkB kinase (IKK) inhib-
itor PS1145 (35). Infection with type I GRA15,; parasites resulted
in CD40 upregulation in untreated macrophages or DMSO-
treated macrophages, as expected. However, CD40 expression on
BMdMs treated with the NF-kB inhibitor was markedly reduced
compared to that on untreated or vehicle control-treated cells
(Fig. 4). These data indicate that GRA15;; mediates the induction
of CD40 in both infected human THP-1 cells and mouse macro-
phages and that NF-kB signaling contributes to this induction.
GRA15,; is sufficient for T. gondii-induced CD40 expression.
To evaluate if GRA15}; alone is sufficient to induce CD40 expres-
sion in the absence of parasite infection, we generated a retroviral
vector containing the cDNA of the GRAI5; allele fused to the
sequence for the HA epitope tag. THP-1 cells were stably trans-
duced with this vector (GRA15,;-HA) or the parental pMX-puro
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FIG 1 Expression of CD40 during T. gondii infection. (A) BMdMs were mock infected or infected with type I, II, or III T. gondii tachyzoites. RNA was harvested
at 6 hpi for cDNA synthesis and analysis by qPCR for CD40 transcript levels. The level of expression of CD40 relative to that of GAPDH is shown for each
condition. Error bars represent the standard deviations of technical triplicates. (B) BMdMs were mock infected or infected with GFP-expressing T. gondii, as
described in the legend to panel A, harvested at 18 hpi, and stained with a control Ig or monoclonal antibodies against CD40. (C) BMdMs were mock infected
or infected with type II T. gondii, harvested at 12, 18, or 24 hpi, and stained with control Ig or anti-CD40 monoclonal antibodies, and the mean fluorescence
intensity (MFI) values for each sample were plotted. ¥, P < 0.05: **, P < 0.01 (Student’s ¢ test). For all three panels, one representative set from at least three

independent experiments is shown.

vector (pMX-puro) as a control. We confirmed the expression of
the HA-tagged GRA15; by Western blotting (Fig. 5A). Expression
of GRA15;-HA in THP-1 cells was sufficient to induce the expres-
sion of CD40, even in the absence of parasite infection (Fig. 5B).
CD40 expression on infected macrophages enhances IL-12
production following CD40L stimulation. In addition to their
role as professional APCs, macrophages are capable of eliciting
cell-intrinsic effector functions through CD40 signaling. For ex-
ample, CD40 and CD40L engagement has been shown to induce
the transcription and secretion of IL-12p40 (37). Since CD40 lev-
els are upregulated on macrophages infected with type Il parasites,
we hypothesized that type II-infected cells may have enhanced
CD40-mediated effector functions. To investigate this possibility,
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we measured the production of the biologically active IL-12p70
heterodimer by BMdMs that were mock infected or infected with
type I, type II, or type I GRA15;; parasites for 18 h and then cul-
tured with 293T cells or with 293T cells expressing murine CD40L
for an additional 8 h. The level of production of IL-12p70 by
mock-infected and type I-infected BMdMs was below the level of
detection, regardless of whether the cells were cultured with con-
trol 293T cells or CD40L-expressing 293T cells (Fig. 6). In con-
trast, infection of BMdMs with the type II or type I GRA15/; par-
asites resulted in the production and secretion of IL-12p70 when
cultured alone or with 293T cells. Notably, culturing BMdMs in-
fected with the type II or type I GRA15,; parasites with CD40L-
expressing 293T cells resulted in a significant increase in the pro-
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FIG 2 QTL mapping of the CD40 induction phenotype. (A) QTL scan using raw data from BMdMs infected with 19 F1 progeny from a type II X type III cross.
A nonsignificant logarithm of odds (LOD) peak was identified near marker AK148 (P = 0.145). The LOD score cutoff for genome-wide significance (P =< 0.05)
was 4.50. chr X, chromosome X; pos, position (centiMorgan). (B) Genotypes and phenotypes of four F1 progeny used to further map the locus responsible for
the CD40 induction phenotype. *, fold change in expression of T. gondii-infected cells compared with mock-infected cells.

duction of IL-12p70. These data suggest that the engagement of
CD40 on macrophages infected with type II T. gondii contributes
to the elevated production of IL-12 in response to interaction with
CD40L.

DISCUSSION

The establishment of host defense against infection with T. gondii
is initiated by cells of the innate immune response, which help to
shape the course of the infection. Effective parasite control re-
quires a robust immune response without the induction of immu-
nopathology. This is achieved through coordinated communica-
tion between innate immune cells and the regulation of signaling
cascades triggered by cell surface immune receptors.

The modulation of immune receptors on macrophages during
the acute stage of infection can have profound implications for the
development of the ensuing immune response. This led us to in-
vestigate the mechanisms behind the observed induction of CD40
on infected macrophages following infection with T. gondii. It has
previously been shown that CD40 is upregulated on mouse mac-
rophages (5) and human monocytes (20) after T. gondii infection.
We found that there is a parasite strain specificity to this induc-
tion: the type II strain of T. gondii induced high levels of expres-
sion of CD40, whereas the types I and III strains induced only low
levels of CD40 expression. The protein encoded by the GRA15,
allele drove CD40 expression in a NF-kB-dependent manner.
Furthermore, we showed that the induction of CD40 in cells in-
fected with parasites expressing GRA15;; contributed to the estab-
lishment of a Thl-conducive microenvironment through the
production of IL-12p70 after stimulation with CD40L. By inves-
tigating the mechanism of CD40 induction by the type II strain of
T. gondii, we have identified a parasite factor that contributes to
CD40 induction and found a role for infected cells in the estab-
lishment of protective immunity during parasite infection.

CD40 and CD40L engagement contributes to enhanced para-
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site clearance through the activation of macrophages and other
APCs (38). CD40/CD40L interaction leads to the induction of an
antimicrobial program in macrophages (8, 39) and is also critical
for controlling T. gondii infection in mice (5). This results in a
reduction in the T. gondii burden in infected cells (9, 40). Despite
the elevated levels of CD40 on type II-infected macrophages, we
did not observe a strain-specific enhancement in parasite clear-
ance in these cells due to CD40 signaling (data not shown). CD40
engagement also leads to the production of IL-12, tumor necrosis
factor alpha, and nitric oxide, which have been shown to play key
roles in host defense (11, 12,41, 42). These cytokines and effectors
produced in response to CD40 engagement are important for es-
tablishing an immune response capable of controlling intracellu-
lar pathogens through Th1l-mediated immunity (3, 4).

CD40 signal strength can profoundly affect p38 and extracel-
lular signal-regulated kinase (ERK) mitogen-activated protein ki-
nase (MAPK) signaling and IL-12 production (12, 43, 44), as well
as T cell skewing through reciprocal regulation of IL-12 and IL-4
(15, 45). We demonstrate that macrophages infected with CD40-
inducing T. gondii parasite strains dramatically increase IL-12
production following CD40-CD40L stimulation: type II-infected
macrophages cultured with CD40L-expressing cells exhibited a
more than 12-fold increase in IL-12p70 production compared to
type II-infected cells that were cultured with the control cells. The
enhanced CD40 expression may amplify the strength of the signal
mediated by CD40L stimulation. Consistent with our findings, it
is known that strong CD40 engagement, achieved by increasing
the concentration of recombinant soluble CD40L, results in ro-
bust Thl-skewing conditions due to preferential p38 signaling
and subsequently more IL-12p40 and p70 production (44). In
contrast, weak CD40 engagement of T cells was found to enhance
Th2 immunity due to elevated ERK activation and subsequently
enhanced IL-10 expression (44). Our observation that type II T.
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FIG 3 Role of GRA15 in CD40 induction during T. gondii infection. BMdMs
(A) or THP-1 cells (B) differentiated with PMA were mock infected or infected
with type I, type II, or type I GRA15;; parasites. All of these parasite lines
express GFP. Cells were harvested at 18 hpi and stained with control Ig or
anti-CD40 monoclonal antibodies. One representative set of results from at
least three independent experiments is shown for both panels.

gondii-infected macrophages produce higher levels of IL-12p40
following CD40 engagement suggests that these infected cells con-
tribute to the promotion of Thl responses.

T. gondii proteins secreted into infected host cells have been
shown to alter host cell signaling and gene transcription (46—48)
as well as antimicrobial processes (49-51). Interestingly, however,
there are parasite strain-specific effects on the modulation of host
cell signaling pathways, including the JAK/STAT, NF-«kB, and
MAPK pathways. A growing body of work has demonstrated that
the differences in the modulation of these host cell signaling path-
ways are a result of strain-specific polymorphisms in the secreted
factors released into host cells during infection (48, 52-54). Con-
sequently, polymorphisms in secreted parasite proteins can differ-
entially influence macrophage polarization and effector func-
tions: type I parasites induce an alternative activation state,
whereas type II strains induce a classical activation state (55). Type
I T. gondii parasites actively dampen the responsiveness of in-
fected host cells by directly activating STAT3 signaling, rendering
cells refractory to IFN-vy stimulation (51). Lang et al. demon-
strated that the suppressed responsiveness to IFN- is the result of
chromatin remodeling following infection with the type I RH
strain of T. gondii (47). Our data showing CD40 upregulation by
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FIG 4 GRA15;-induced CD40 expression following NF-«kB inhibition.
BMdMs were cultured in macrophage medium (untreated) or medium sup-
plemented with DMSO or the IKK inhibitor PS1145 (10 wM). After 24 h, the
cells were mock infected or infected with type I GRA15;; T. gondii in untreated
macrophage medium. At 1 hpi, the cells were washed and the medium was
replaced with fresh macrophage medium or macrophage medium supple-
mented with DMSO or PS1145. The cells were harvested at 18 hpi and stained
with control Ig (A) or anti-CD40 monoclonal antibodies (B). The histograms
shown are representative of those from at least two independent experiments.
Max, maximum.

the type II strain of T. gondii are consistent with this paradigm,
and CD40 upregulation primes macrophages for a proinflamma-
tory program following receptor engagement (45, 55).

The pathways that mediate CD40 induction after T. gondii in-
fection were unknown. The fact that CD40 was induced in a
strain-specific manner enabled us to use QTL analysis to identify a
genomic region that associates with CD40 induction. QTL analy-
sis indicated that the genomic locus responsible for CD40 induc-
tion contained the gene GRAI5 (TGME49_275470), which en-
codes the dense granule protein GRA15. GRA15 was the first T.
gondii dense granule protein shown to modulate host cell NF-kB
signaling due to sustained nuclear translocation of p65 (29). The
GRAT15 allele of type I T. gondii encodes a protein consisting of
635 amino acids, while the GRA15 allele of type I parasites con-
tains a frameshift mutation that leads to a premature stop codon
and a final protein product of 312 amino acids. Additionally, the
type I and type III alleles of GRA15 contain an insertion/deletion
mutation near the C terminus of the protein, along with 5 other
amino acids that are polymorphic (29). We demonstrate that
GRA15y; is sufficient to induce CD40 expression even in the ab-
sence of parasite infection.

Surprisingly, we observed that not all type II strains induce
CD40 expression. Whereas infections with independently ob-
tained ME49 strains highly upregulated CD40, the Prugniaud
strain (56) did not (see Fig. S2 in the supplemental material). It has
previously been reported that there are phenotypic differences
between different type I lines (57) and between different type II
lines (58). Yang et al. demonstrated that phenotypic differences in
NE-kB activation and IL-12 production between type I parasites
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FIG 5 Characterizing GRA15-expressing THP-1 cells. A retroviral vector
containing the cDNA of the GRA15,; allele fused to the sequence for the HA
epitope tag was generated (GRA15,,-HA-pMX-puro). THP-1 cells were
stably transduced with this vector (GRA15;-HA) or the parental pMX-
puro vector (pMXpuro) as a control. (A) Lysates were generated from
stably transduced cells, and the expression of GRA15;;-HA was examined
by immunoblotting (IB) with an anti-HA monoclonal antibody or anti-
GAPDH as a loading control. (B) Stably transduced cells were collected and
stained with control Ig (gray) or anti-CD40 (white) monoclonal antibod-
ies. In each histogram plot, the numbers in the upper right corner represent
the mean fluorescence intensity of CD40 expression. One representative set
of results from four independent experiments from two independent
transductions is shown for both panels.

were partially explained by polymorphisms in GRA15 (57). Se-
quence analysis of the GRA15 coding sequence for the ME49 and
Prugniaud strains revealed that they were 100% identical (data not
shown), whereas analysis of the genomic region upstream of the
GRA15 transcription start site revealed the presence of a 2-nucle-
otide insertion in the Prugniaud strain. The significance of these
additional nucleotides has yet to be determined. One possible ex-
planation for the observed differences in CD40 induction between
type II parasite isolates is that CD40 expression is regulated by
additional parasite factors that differ in function or expression
level between the type II strains that we have evaluated. CD40
expression induced by the various recombinant progeny was not
strictly binary, suggesting that while CD40 induction is primarily
dependent on GRA15, it is likely to be influenced by additional
parasite factors. Indeed, QTL analysis revealed the presence of an
additional peak on chromosome Ia and on chromosome VIIb
(Fig. 2A). There is a precedent for the dual regulation of host
pathways by secreted proteins, such as ROP5 and ROP18. Strain
differences in the parasites’ susceptibility to killing by IFN-y-stim-
ulated mouse embryonic fibroblasts were dependent on the ex-
pression of both virulent polymorphic genes encoding ROP5 E. L.
and ROP18 J. A. (48). In addition, the protein encoded by the
virulent allele of ROP16 in type I parasites has been shown to
antagonize the activity of GRA15 (29). Further work characteriz-
ing additional parasite factors that enhance or inhibit GRA15 ac-
tivity may help to explain the differences in CD40 induction ob-
served in distinct type II isolates.
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FIG 6 CD40 stimulation of T. gondii-infected macrophages. BMdMs were
mock infected or infected with type I, type II, or type I GRA15,; parasites.
At 18 hpi, 293T cells or CD40L-expressing 293T cells were added to
BMdMs at a ratio of 1:2 (293T cells/BMdMs). At 26 hpi, the IL-12p70
released into the culture medium was analyzed by ELISA. The error bars
represent the standard deviations of biological triplicates. n.d., not de-
tected. **, P < 0.01 (Student’s t test).

Here we report a novel function for GRA15 in CD40 induction
and demonstrate that CD40 signaling amplifies the IL-12 response
in type II-infected macrophages and may contribute to the Thl
environment established during infection with type Il strains of T.
gondii.
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