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The pathogenesis of malaria is complex, generating a broad spectrum of clinical manifestations. One of the major complications
and concerns in malaria is anemia, which is responsible for considerable morbidity in the developing world, especially in chil-
dren and pregnant women. Despite its enormous health importance, the immunological mechanisms involved in malaria-in-
duced anemia remain incompletely understood. Plasmodium vivax, one of the causative agents of human malaria, is known to
induce a strong inflammatory response with a robust production of immune effectors, including cytokines and antibodies.
Therefore, it is possible that the extent of the immune response not only may facilitate the parasite killing but also may provoke
severe illness, including anemia. In this review, we consider potential immune effectors and their possible involvement in gener-
ating this clinical outcome during P. vivax infections.

Malaria remains one of the most important public health
problems in the world, with about 3 billion people at risk of

contracting the disease and 781,000 deaths estimated annually (1).
The global burden of human malaria is caused almost exclusively
by two species of parasites: Plasmodium falciparum and Plasmo-
dium vivax. Existing research efforts have largely focused on P.
falciparum because of the higher mortality it causes, especially in
Africa (2, 3). However, P. vivax remains more widely distributed
than P. falciparum and is a major public health threat affecting
populous regions in Asia, the horn of Africa, and Central and
South America (4). The spectrum of vivax malaria ranges from
presentation as a relatively benign disease to severe and sometimes
fatal illness, mainly in children (5, 6) and pregnant women (7).
The mortality rates among patients presenting P. vivax malaria are
comparable to those attributable to P. falciparum malaria, as evi-
denced by hospital-based studies (6, 8, 9). It has been demon-
strated that chloroquine resistance parallels severe disease (espe-
cially severe anemia) in some areas (10). In addition to the
concerns imposed by increasingly drug-resistant parasites, it
should not be forgotten that transmission of P. vivax is harder to
control and eliminate than P. falciparum transmission because the
former species may cause a relapse after resolution of the primary
infection and also due to its early gametocytogenesis. In areas of
endemicity, relapse of vivax malaria is an important source of
parasite transmission to susceptible vectors and a major cause
of malaria in young children (11).

BURDEN OF ANEMIA RELATED TO VIVAX MALARIA

In times of renewed efforts to eradicate malaria, the attention on
P. vivax increases in consideration of the fact that infections re-
lated to this species are also able to cause severe disease, including
anemia as one of the major complications (5, 12, 13). Despite the
striking statistics, there are few studies focusing on anemia trig-
gered by P. vivax (5, 6, 14) and most of what is known about that
refers to evidence obtained from studies conducted with P. falcip-
arum, leading to the use of proxy pathophysiological processes to
explain vivax anemia.

Estimates of rates of severe anemia in vivax malaria range from
1.4% to 32% (15–18). In terms of frequency and severity, the

literature points particularly to a greater burden of anemia in
young children (9, 15, 19–24) and during pregnancy (7, 25).
Cross-sectional studies carried out in the Brazilian Amazon,
where P. vivax predominates, showed frequencies of anemia of as
high as 80% in children and adolescents (15, 16, 18, 19). P. vivax
disease affects only 25% of children from newborns to those 14
years old. Moreover, severe anemia was reported in hospitalized
children and adults in need of red blood cell (RBC) transfusions
(26).

Severe anemia in pregnancy is an obstetric emergency in re-
gions of falciparum and vivax malaria endemicity (26–28). In ar-
eas of concomitant circulation of the two species, the relative fre-
quency of vivax malaria in pregnant women ranges from 30% in
Southeast Asia (18, 25, 29) to nearly 80% in Latin America (30–
32), pointing to an increasing risk of anemia in the latter region.
Severe neonatal anemia was also reported in a study conducted in
Colombia (33). Indeed, an extensive evaluation of data from hos-
pitalized newborns in the Indonesian Papua revealed that severe
anemia has an important clinical impact on young infants with
congenital malaria (18).

OVERVIEW OF THE MAJOR DETERMINANTS OF VIVAX
ANEMIA

Malaria is an intravascular infection that results essentially from
the presence of blood-stage parasites inside RBCs during its intra-
erythrocytic cycle. Hematological disturbances, therefore, may be
caused by the destruction of RBCs, by the release of parasites and
RBC debris into the circulation, and finally, by a host reaction to
these events (34). Although several mechanisms are likely to par-
ticipate in the generation of anemia in individuals infected with
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malarial parasites, they may be grouped into two main categories:
(i) destruction of RBCs in the peripheral circulation, spleen, and
bone marrow and (ii) dyserythropoiesis (Fig. 1).

Since P. vivax merozoites prefer reticulocytes as host cells (35),
as opposed to P. falciparum, which targets all types of RBCs, the
density of peripheral parasitemia in vivax malaria is often lower
than that detected in falciparum infections (36). Despite this,
studies on antimalarial therapy have demonstrated that P. vivax is
responsible for a comparable decrease in the RBC mass because P.
vivax infection results in a 4-fold-higher removal of noninfected
RBCs compared to P. falciparum (37, 38) and, in part, because the
invasion of reticulocytes interferes with the supply of mature
RBCs (37, 39–41). In P. falciparum infection, 8.5 uninfected RBCs
are destroyed per infected RBC (38, 42), while in P. vivax infec-
tion, the number of uninfected RBCs that are destroyed is esti-
mated to be around 34 (37). A P. vivax-infected reticulocyte is up
to two times larger than a noninfected RBC, and Schüffner’s dots
associated with caveola-vesicle complexes are seen along the in-
fected RBC plasmalemma (43, 44). In contrast to P. falciparum
deformability, RBC deformability seems to be increased in P.
vivax infection (45, 46). As a consequence, P. vivax-infected RBCs
decrease their clearance during their passage through the spleen
sinusoids, making sequestration and obstruction to blood flow
unlikely in vivax malaria (47).

Another important contributor to anemia is the reduced de-
formability of nonparasitized RBCs, as experimentally demon-
strated in falciparum malaria. At high shear stresses, erythrocytes
increased their rigidity and were removed in the spleen (48). In
relation to vivax malaria, it has been demonstrated that after pas-
sage under microfluidic conditions simulating splenic filter and
fine capillary beds, about 15% of nonparasitized RBCs were lost
(46). This observation suggests another possible mechanism for
RBC destruction, although how it occurs is still unknown.

Other features of P. vivax parasites that could be associated
with the pathogenesis of severe anemia are rosetting (49, 50) and
cytoadherence, a phenomenon that has been recently described in
vivax malaria (51–54). In vitro studies showed that P. vivax-in-
fected RBCs are able to cytoadhere to endothelial cells from the
human lung (54) and also to human placental microvasculature
(51, 53). It has also been suggested that in the human spleen, P.
vivax attaches to barrier cells to avoid its clearance from circula-
tion, allowing the release of merozoites in a reticulocyte-rich en-
vironment (55, 56). Nevertheless, how cytoadherence influences
anemia associated with vivax malaria remains to be investigated.
In relation to rosetting, this phenomenon was verified in vitro for
cells containing parasites with visible malaria pigment (49), and it
has been considered a potential contributor to the hypothesized
but uncharacterized microvascular obstruction and end-organ
pathology described in vivax malaria (57). Recently, another route
of normal RBC removal was proposed in a study conducted with
Kenyan children presenting with natural P. falciparum infection.
According to this work, 4-hydroxynonenal, a biomembrane lipid
peroxidation product, is prone to diffuse from P. falciparum-par-
asitized RBCs to the nonparasitized ones, leading to their clear-
ance by macrophages (58). Notwithstanding, it is unknown
whether this process also occurs in P. vivax infection.

It is noteworthy that the overall inflammatory response seems
to be stronger in vivax than in falciparum malaria (59, 60), and it
is possible that the modifications in the surface of noninfected

RBCs may be a direct consequence of cytokine imbalance (61) and
oxidative damage (62).

P. vivax infection is accompanied by changes in the host anti-
oxidant defense system which reverse after chloroquine treatment
(63). The increase in the level of reactive oxygen species (ROSs)
may deplete RBC defense mechanisms, comprising in particular
intracellular enzymes, e.g., superoxide dismutase, catalase, and
the glutathione system (64, 65). In this manner, alterations in the
redox status would play an important role in the pathogenesis of
disease, including anemia, as has been proposed for P. falciparum
(66).

As host genetic factors may exert some influence on malaria
susceptibility, these parameters should be considered important
determinants of the anemia onset. However, few studies have fo-
cused on investigations of human genetic variants that confer
some degree of protection against or resistance to P. vivax and
anemia, limiting our understanding of the associations between
these polymorphisms and infection (67). It is well established that
P. vivax endemicity and estimates of populations at risk are
strongly influenced by the proportion of Duffy antigen-negative
individuals relatively refractory to the P. vivax infection (4, 68).
FY*B/FY*X and FY*A/FY*X genotypes are associated with low
parasite density, which may favorably impact hemoglobin levels
(69). Observational studies have shown protection against P. vivax
infections conferred by a RBC enzyme (glucose-6-phosphate de-
hydrogenase) deficiency (70–72) and an erythrocyte membrane
disorder (Southeast Asian ovalocytosis) by a mechanism that is
independent of the Duffy antigen (73). On the other hand, thala-
ssemias, which are disorders of globin synthesis, appear to in-
crease the susceptibility to vivax malaria in carrier populations
from different geographic regions (74–77). The reasons why indi-
viduals with thalassemias may be more prone to malaria are re-
lated to their ineffective erythropoiesis as well as to the shortened
survival of their RBCs, which leads to a high cell turnover, increas-
ing their reticulocyte counts and favoring the infection of these
cells by P. vivax (76–78). Interestingly, a different association, in
which thalassemia would decrease the susceptibility to P. falcipa-
rum, conferring protection against severe diseases such as anemia,
was observed in falciparum malaria (79). This protection appears
to be related to the higher levels of antibodies (Abs) that bind to
parasitized erythrocytes (80), allowing their phagocytosis by
blood monocytes (81).

DYSERYTHROPOIESIS AND IMMUNE-MEDIATED ANEMIA

During a plasmodial infection, the normal erythropoiesis is dis-
turbed in patients with malaria, reflecting erythropoietic suppres-
sion and subsequent dyserythropoiesis. In the acute phase of ma-
laria, the ineffectiveness of erythropoiesis may be evidenced by the
presence of normal or reduced cellularity associated with a re-
duced percentage of erythroblasts. On the other hand, in the
chronic phase, it may be deduced by an increase in marrow cellu-
larity and also in erythroblast percentages (82).

A series of studies performed with both P. falciparum and P.
vivax infections have shown that a common feature in anemic
patients with malaria is the presence of defective erythroblasts
exhibiting various abnormalities such as cytoplasmatic vacuo-
lation, nuclei with irregular shape or multinuclearity, intercy-
toplasmatic bridges, and loss or myelination of parts of nuclear
membrane, among others (82–85). These studies have also dem-
onstrated the presence of erythroblasts in different stages of deg-
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FIG 1 Anemia in Plasmodium vivax malaria and possible immune mechanisms associated with destruction of infected and noninfected red cells. (A) During its
intraerythrocytic cycle, P. vivax promotes extensive changes in the host reticulocyte, leading to its rupture. Parasites, antigens, and debris are released into the
circulation. In response to these molecules, the host induces a strong immune response which may damage red blood cell (RBC) membranes or still lead to
hemolysis or phagocytosis of both noninfected and infected erythrocytes. P. vivax has developed resistance to chloroquine, which may delay parasite clearance,
therefore contributing to anemia. (B) Immune mediators may also act in the bone marrow and spleen, causing a toxic effect on erythroid lineages and leading to
dyserythropoiesis. Moreover, P. vivax-infected RBCs seem to be able to cytoadhere to endothelial cells from these organs and also to the placental microvascu-
lature. Another possible route of RBC loss is via rosetting. It has been suggested that these RBC aggregates may interfere negatively in erythropoiesis or that the
noninfected RBCs attached to the infected one are destroyed in some way. However, the mechanisms that link cytoadherence/rosetting to anemia remain
unknown. CSA, chondroitin sulfate A; HA, hyaluronic acid.
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radation inside the cytoplasm of macrophages from bone marrow,
suggesting that erythrophagocytosis was an important mecha-
nism involved in the degradation of injured erythroblasts (86).

Data obtained by transmission electron microscopy revealed
two cases of vivax malaria in which parasites were detected in
erythroblasts, suggesting that the destruction of these cells by P.
vivax could be an underlying mechanism contributing to P. vivax-
related anemia (87). Moreover, bone marrow aspirate from a Bra-
zilian Amazon patient with chronic P. vivax infection presenting
with splenomegaly and thrombocytopenia showed schizonts in-
side RBCs, without parallel detection of parasites in the peripheral
blood (88).

Recently, an in vitro study conducted with hematopoietic
CD34� cells derived from umbilical cord blood showed that P.
vivax could directly inhibit erythroid development. The authors
also showed that the presence of the parasite inhibited the growth
as well as the differentiation of the erythroid progenitors (41).
However, despite the fact that the parasite has perturbed cell divi-
sion and differentiation, the presence of the parasite did not lead
to cell death. Therefore, the importance of erythroblast parasitism
in severe P. vivax anemia is still unknown and it is unlikely that the
situation occurs in P. falciparum infection, in which there is ob-
struction of the bone marrow microvasculature by parasitized red
blood cells (86).

Besides the direct effects of parasites, the defective erythropoi-
esis in malaria may also be linked to parasite-derived molecules
that cause a toxic effect in erythroblasts or in other erythroid pro-
genitor cells. A second possible factor that may also exert an influ-
ence in erythropoiesis is the production of immune mediators, by
host cells, as a response to parasite products; when released, these
mediators would damage surrounding haematopoietic cells, alter-
ing their morphology and function (82). In this regard, it has been
demonstrated that the presence of hemozoin, a metabolic product
generated during the digestion of hemoglobin, in plasma, leuko-
cytes, or erytroid precursors, was able to inhibit erythropoiesis
(89). Studies conducted with bone marrow sections obtained
from children who died as a result of severe malaria showed an
association between the amount of hemozoin and the proportion
of abnormal erythroid cells (90). The negative effects of hemozoin
in the erythroid expansion seem to be related to its ability to stim-
ulate the release of cytokines, chemokines, or lipoperoxidases,
molecules that inhibit erythropoiesis by bone marrow macro-
phages (90). Although hemozoin has been considered an impor-
tant mediator of apoptosis leading to impairment in RBC produc-
tion during falciparum anemia (90), it remains unknown whether
a similar phenomenon also occurs during P. vivax infections.

An imbalance in the production of host immune mediators
could be another important factor contributing to anemia, espe-
cially in P. vivax malaria, in which the inflammatory response
seems to be more intense than that observed in P. falciparum in-
fections with a similar parasite biomass (59, 60, 91, 92). It has been
shown that P. vivax patients presenting with moderate to severe
anemia exhibited higher concentrations of monocyte chemoat-
tractant protein-1 (MCP-1) (17) It was shown that patients with
mild anemia associated with vivax malaria presented higher levels
of gamma interferon (IFN-�) and interleukin-10 (IL-10) (93), as
well as tumor necrosis factor (TNF) (61), than the nonanemic
ones. IFN-�, TNF, and IL-10 are some mediators released as a
result of T cell activation (82). Elevated levels of TNF alone, or in
combination with other cytokines or chemokines, have been as-

sociated with the inhibition of the erythroid progenitor cells such
as burst-forming unit-erythroid (BFU-E) and CFU-erythroid
(CFU-E) cells (94). IFN-� is another potent inhibitor of erythro-
poiesis (95). It has been proposed that the negative effects of
IFN-� and TNF in erythropoiesis are related to their ability to
induce accelerated apoptosis in the nucleated erythrocyte precur-
sors (96, 97), to their ability to interfere in the expression and
regulation of specific transcription factors that control erythroid
differentiation (95), and also to their ability to interfere in the
production of erythropoietin (98), a hormone which promotes
erythropoiesis by stimulating the proliferation, differentiation,
and maturation of erythroid progenitors (99). In contrast to
IFN-� and TNF, IL-10 is an anti-inflammatory cytokine that reg-
ulates the expression of surface and soluble TNF receptors (100).
Since elevated levels of IL-10 seem to limit the TNF effects in
neighboring cells, it has been suggested that high IL-10/TNF ratios
in plasma from patients with malaria may be associated with pro-
tection, while an inverse relation may be indicative of severe ane-
mia (101, 102). Other cytokines that may also be produced during
malaria are IL-12, IL-18, and migratory inhibitory factor (MIF).
The first two are secreted from macrophages and stimulate natural
killer cells as well as B and T cells to produce IFN-� (34, 103, 104).
In B cells, IL-12 also seems to stimulate antibody production.
Since it has been believed that IL-12 modulates macrophage ac-
tivity, which is associated with increased erythrocyte destruction,
some studies have demonstrated that higher levels of this cytokine
are associated with a better outcome (105–107). MIF is a potent
inhibitor of erythroid differentiation, and it may suppress eryth-
ropoietin-dependent erythroid colony formation and hemoglo-
bin production (108). The role of MIF in plasma from uncompli-
cated P. vivax malaria patients has been investigated, and its levels
have been positively associated with parasite density but not with
hematological parameters (109).

The role of these cytokines in dyserythropoiesis has been most
studied in P. falciparum infections, so it is still obscure in vivax
malaria and remains to be properly investigated. Recently, a net-
work analysis was attempted to identify the mediators that drive
vivax malaria pathogenesis. Levels of a panel composed of differ-
ent biomarkers of inflammation, tissue damage, and oxidative
stress were measured in a large number of individuals, whose data
were stratified into different groups according to disease severity
and clinical outcome. The results showed that lethality was asso-
ciated with interactions among markers related to hemolysis-in-
duced damage such as tumor necrosis factor (TNF), hemoxyge-
nase-1 (HO-1), and superoxide dismutase-1 (SOD-1) (110). Since
anemia was not included in their analysis, further studies consid-
ering this hematological feature will be required to dissect the
interactions that lead to RBC loss. Understanding these intricate
interactions might be the key that would lead to better and pre-
ventive management of P. vivax-associated anemia.

THE COMPLEMENT SYSTEM AND MALARIA

It is known that an important component of the innate immunity
is the complement system, which consists of more than 30 fluid-
phase or membrane-bound proteins that play an important role in
the rapid destruction of invading microorganisms and also of
damaged or altered self-tissues (111). The involvement of com-
plement in Plasmodium infections has been widely reported in
malaria literature (10, 112, 113) and extensively reviewed else-
where (114). Different reports have demonstrated that during ma-
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laria, complement activation is increased (115, 116). Thus, it is
necessary that the host complement regulatory proteins, mole-
cules that protect normal cells from autologous complement-me-
diated lysis, are expressed in sufficient levels to control comple-
ment activation on the cell surface and thereby maintain
physiological homeostasis (117). Along these lines, several works
have suggested that the erythrocyte complement regulatory pro-
teins may play an important role in the pathogenesis of anemia,
protecting nonparasitized RBCs from destruction. This hypothe-
sis was tested by different researchers, who reported that changes
in the expression patterns of some complement regulatory pro-
teins such as complement receptor 1 (CR1) (118), decay-acceler-
ating factor (CD55), and membrane inhibitor of reactive lysis
(CD59) may render RBCs more susceptible to lysis, increasing
their destruction and resulting in anemia (119–124). Studies con-
ducted in areas of P. falciparum endemicity have documented that
higher levels of CR1 and CD55 are exhibited in RBCs from chil-
dren with uncomplicated malaria or who are uninfected than in
RBCs from those with severe anemia (119–121). Furthermore, a
study conducted on susceptible children in western Kenya dem-
onstrated an association between low levels of complement regu-
latory proteins on RBC surfaces and increased risk of C3 deposi-
tion on their membranes (125). These data suggest that lower
expression levels of such biomarkers would contribute to an in-
creased clearance of erythrocytes, leading to anemia in falciparum
malaria. It has also been hypothesized that there is age-dependent
regulation of the expression pattern of RBC regulatory comple-
ment proteins (121). As there is no available information in the
literature concerning these aspects of P. vivax infection, it would
be a breakthrough to understand if these processes involving the
complement system also participate in pathophysiological mech-
anisms related to this species.

ANTIBODIES AND MALARIA: PROTECTIVE OR PATHOGENIC?

In terms of adaptive immune responses, it is important to empha-
size that antibodies are the principal effector molecules that par-
ticipate in the specific host-parasite interactions. Furthermore,
these molecules may act in concert with other factors and it has
been known that their protective or pathogenic role is related not
only to the magnitude at which they are produced but also to their
effector functions.

In malaria, the protective role of antibodies has been well doc-
umented by several groups, who demonstrated that the passive
transfer of immunoglobulins purified from immune adults to ma-
larial patients can control the infection by reducing parasitemia
and protecting individuals against severe disease (126, 127). On
the other hand, experiments conducted with P. falciparum have
shown that the tagging of the surface of noninfected RBCs by
parasite proteins, as well as the tagging of the erythroid precursor
cells in bone marrow, may elicit a specific antibody response, trig-
gering phagocytosis and complement activation and inducing the
clearance of these cells (128–131). These data suggest that specific
immune responses induced by some parasite antigens may con-
tribute to malaria pathogenesis, playing a role in the development
of malarial anemia. Data from the past show P. vivax antigens on
the surface of infected human RBCs (132). Regarding P. vivax
infection, an association between specific antibodies and anemia
has also been observed (133). In this scenario, we cannot exclude
the possibility of a dual role for specific antibodies against P. vivax.
They may participate in both immunity and the pathogenesis of

malaria. Taking all these observations into account, further stud-
ies are necessary to better elucidate the functional activity of P.
vivax-specific antibodies, a vital concern in vivax malaria studies.

AUTOANTIBODIES: A NEGLECTED BUT PROMISING
RESEARCH ISSUE

Another element of the adaptive immunity that may also take part
in the destruction of noninfected RBCs that occurs in Plasmodium
infections is the presence of autoantibodies, molecules induced
with regard to autologous components of RBCs. The presence of
these circulating immunoglobulins has been well documented
both in falciparum and in vivax infection (134–136), and it has
been speculated that they are produced in response to cross-reac-
tive antigenicity between parasite and host as well as to normal or
altered host proteins. Nevertheless, the relationship between ma-
laria and autoantibodies is still a controversial issue and many
hypotheses have been proposed to explain this link. One hypoth-
esis is that infection by Plasmodium parasites induces host auto-
immune responses that may be, in part, responsible for some ma-
laria clinical manifestations. Along these lines, it has been shown
that, in malaria, autoantibodies may be associated with anemia
(137–139) and thrombocytopenia (140) as well as kidney pathol-
ogy (141). Interestingly, sera from patients with vivax malaria
seem to present higher levels of antierythrocyte immunoglobulins
compared to sera from patients infected with P. falciparum (136).
It is possible that the recognition of surface proteins from nonin-
fected RBCs by autoantibodies or even cross-reacting antibodies,
whose levels are increased during P. vivax infection, leads to the
opsonization of normal RBCs, facilitating their removal by eryth-
rophagocytosis. The increase in levels of malaria autoantibodies
may be associated with molecular mimicry, a mechanism in which
a foreign antigen produced by a pathogen shares structural, func-
tional, or immunological similarities with a self-antigen. This
strategy may represent an attempt by the parasite to manipulate its
host to trigger an immune response directed against autoantigens,
facilitating pathogen evasion from the immune system (142). In-
deed, it has been demonstrated that two distinct molecules ex-
pressed in different Plasmodium life stages, Pf25 and MSP-1, pos-
sess epidermal growth factor (EGF) motifs (143–145). In addition,
it has been recently shown that a 14-amino-acid motif in PfEMP1
exhibits identity with human vitronectin (146). Considering this
information, it is possible to speculate that Plasmodium parasites
may also mimic RBC proteins, a hypothesis that should be further
evaluated in P. vivax anemia.

RETURNING TO OLD CONCEPTS TO PROPOSE NEW IMMUNE
MECHANISMS AGAINST VIVAX ANEMIA

In the challenging task of understanding anemia in vivax malaria,
and in order to continue moving forward, an important step that
may help the scientific community to better elucidate the mecha-
nisms involved in this hematological feature is to go back to old
concepts. This strategy may be a good attempt to answer the fol-
lowing question: how are noninfected RBCs removed from circu-
lation in a P. vivax-infected patient?

Early studies conducted in the 1970s showed that enhanced
expression of neoantigens (antigens that arise from changes in
components already present in the cell membrane) occurs under
physiological conditions during erythrocyte aging. These neoan-
tigens constitute targets for auto-Abs that, in association with en-
hanced complement components, culminate in phagocytosis
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(147–150). According to several studies, anti-band 3 antibodies
mediate this senescent RBC removal (149, 150). Band 3 is the
major integral protein of the RBC membrane, comprising 25% to
30% of its total protein. Band 3 is an anion exchanger protein
mediator and is responsible for cell flexibility and shape mainte-
nance (151). In old RBCs, clusters of band 3 are formed and con-
stitute an important target for natural occurring antibodies (152–
154). In P. falciparum areas of endemicity, band 3 immune
responses seem to be beneficial since malaria-immune children
with higher levels of antibodies induced by two conserved band 3
peptides present a lower mean parasite density than nonimmune
children (155). Other studies have evidenced that, during P. fal-
ciparum infections, synthetic peptides overlapping human band 3
may inhibit not only the RBC invasion but also the cytoadherence/
sequestration by antibody-mediated clearance of infected RBCs
(156, 157). On the other hand, a different role for anti-band 3
immunoglobulins was proposed (158). According to that work,
higher anti-band 3 titers were detected in the high-infection group
of children. Interestingly, during the follow-up of these infants,
five of them exhibited a significant loss of hemoglobin associated
with an increase in anti-band 3 titers (158).

In order to explain the clearance of P. falciparum-parasitized
erythrocytes, a band 3/complement RBC removal model was pro-
posed (154). According to literature data, approximately 1 million
band 3 molecules are dispersedly expressed on RBC surface (154).
Nevertheless, during the aging of erythrocytes, these molecules
form band 3 clusters with hemichromes (products derived from
hemoglobin degradation) originated by oxidative stress. Thereaf-
ter, the immune system recognizes and quickly eliminates those
clusters. It has been shown that P. falciparum-infected erythro-
cytes, in addition to senescent RBCs, also display these clusters.
These data lead to the hypothesis that those band 3 antibodies may
be involved in the mediation of RBC removal. Taking all this in-
formation into account, a question remains: could this model be
used to explain the destruction of uninfected RBCs in vivax ma-
laria via extravascular hemolysis?

Recently, it has been proposed that decay-accelerating factor
(DAF; a complement receptor that accelerates the decay of C3 and
C5 convertases) exerts a crucial role in the RBC recognition by
macrophages (159). According to this model, DAF forms a com-
plex on the surface of the RBC membrane through its association
with C3b, glycophorin A, and band 3 (DAF-C3b-GPA-Band 3).
This complex is thought to alter the viscoelastic properties of the
erythrocyte membrane. As a result, RBCs containing such a com-
plex in their membrane become less deformable than normal ones
and are cleared from circulation by macrophages in the liver or
spleen. By this model, it may be noted that global changes in RBC
membrane organization are directly linked to complement activa-
tion. We believe that it is important to clarify whether this mech-
anism is also involved in the destruction of uninfected RBCs dur-
ing vivax malaria. Further studies are necessary to resolve this
issue.

GAPS OF KNOWLEDGE AND FUTURE STUDIES

Considering that some attention was given only recently to the
major complications of P. vivax infection, such as severe anemia,
data on the pathogenesis of P. vivax-triggered anemia almost do
not exist. Therefore, any future study on this issue will be relevant,
as seen with P. falciparum. The anemia induced by P. vivax infec-
tions is still crudely understood, and the mechanisms that lead to

the loss of uninfected RBCs remain unclear. The lack of an appro-
priate culture method and the difficulties involved in performing
in vivo assays limit the tools available to study this parasite. How-
ever, the possible involvement of the host immune system in gen-
erating anemia may be evaluated using blood samples from dif-
ferent patients living in areas of endemicity. The link between the
number of previous malaria episodes and the generation of severe
anemia may also provide interesting information. It is still impor-
tant to investigate what is behind the immune system dysregula-
tion described in the literature and why some individuals residing
in areas of endemicity display severe symptoms such as anemia
whereas others do not. Furthermore, it is interesting to evaluate
whether this difference is due to host polymorphisms and intrinsic
divergences between infected patients and their own immunity or
also due to polymorphisms between parasite strains that could
induce different immune responses. The confirmation of the ex-
istence of molecular mimicry by P. vivax and its probable involve-
ment in increasing autoantibody levels, including levels of immu-
noglobulins against RBC membrane proteins, is another exciting
and interesting research field in which proteomic and genomic
approaches could give us some important clues. Studies in all
these directions may lead to the identification of biomarkers that
could serve as prognostic indicators as well as guidelines for a
more accurate strategy of treatment and better clinical manage-
ment of infected patients and severe cases.
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