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The intracellular protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a serious disorder that affects
millions of people in Latin America. Cell invasion by T. cruzi and its intracellular replication are essential to the parasite’s life
cycle and for the development of Chagas disease. Here, we present evidence suggesting the involvement of the host’s cyclooxy-
genase (COX) enzymes during T. cruzi invasion. Pharmacological antagonists for COX-1 (aspirin) and COX-2 (celecoxib)
caused marked inhibition of T. cruzi infection when rat cardiac cells were pretreated with these nonsteroidal anti-inflammatory
drugs (NSAIDs) for 60 min at 37°C before inoculation. This inhibition was associated with an increase in the production of NO
and interleukin-1� and decreased production of transforming growth factor � (TGF-�) by cells. Taken together, these results
indicate that COX-1 more than COX-2 is involved in the regulation of anti-T. cruzi activity in cardiac cells, and they provide a
better understanding of the influence of TGF-�-interfering therapies on the innate inflammatory response to T. cruzi infection
and may represent a very pertinent target for new therapeutic treatments of Chagas disease.

Chagas disease, caused by Trypanosoma cruzi infection, remains
an important neglected tropical disease and has emerged as an

important global public health problem because many T. cruzi-
infected people from Latin America immigrate to countries where
the disease is not endemic (1). An estimated 14,000 people die
annually from this disease worldwide (2). Clinically, T. cruzi in-
fection causes acute myocarditis followed by chronic cardiomy-
opathy and vasculopathy in humans and in experimental models.

Studies from diverse laboratories using different host cell types
and T. cruzi strains have demonstrated that this parasite can in-
vade almost all nucleated cells, both phagocytic and nonphago-
cytic (3). Although T. cruzi trypomastigotes are broadly dispersed
among many different organs in the mammalian host, cardiac
tissue is an important target for this parasite, and the T. cruzi-
cardiomyocyte interaction has been the subject of intense investi-
gation (4–7).

During the T. cruzi-cardiomyocyte interaction, the parasite
gains control of overall host cell gene expression, including ex-
pression of 353 genes related to the immune response, inflamma-
tion, cytoskeleton organization, cell-cell and cell-matrix interac-
tions, apoptosis, the cell cycle, and response to oxidative stress.
This information provides insights into how the parasite survives,
replicates, and persists in the infected host and ultimately the clin-
ical outcome of the infection (5).

T. cruzi induces upregulation of nitric oxide (NO) production
in cardiomyocytes along with an upregulation in the levels of in-
terleukin-6 (IL-6), IL-1�, tumor necrosis factor alpha (TNF-�),
and transforming growth factor � (TGF-�) (8–13). The resulting
acute myocarditis is characterized by an intense inflammatory re-
sponse typified by upregulation of inflammatory mediators, such
as cytokines, chemokines, inducible nitric oxide synthase (iNOS),

and endothelin (7), and also eicosanoids (10), which are essential
elements to the defensive reaction in cardiac tissue (4), and it can
also result in cardiac hypertrophy (8, 9).

Many of the changes that occur during acute and chronic Cha-
gas disease can be explained by the effects of arachidonic acid
(AA)-derived lipids, such as leukotrienes, lipoxins, hydroxyeico-
satetraenoic and hydroperoxyeicosatetraenoic acids, prostaglan-
dins (PGs), and thromboxane (10). A recent study demonstrated
that cardiac calcium-independent phospholipase A2� (iPLA2�) is
responsible for AA and prostaglandin E2 (PGE2) release in T. cruzi
infection (11). PGs are oxygenated lipid mediators formed from
the �6 essential fatty acid AA. The committed step in PG biosyn-
thesis is the conversion of AA to PGH2, which is catalyzed by either
PG endoperoxide H synthase-1 or -2, enzymes that are commonly
known as cyclooxygenase-1 (COX-1) and -2 (COX-2), respec-
tively (14, 15). Both COX-1 and COX-2 are nonselectively inhib-
ited by nonsteroidal anti-inflammatory drugs (NSAIDs) such as
aspirin (ASA) and ibuprofen, whereas COX-2 activity is selectively
blocked by COX-2 inhibitors called coxibs (e.g., celecoxib) (16).
The relevance of these enzymes and the bioactive lipids that they
produce are not well understood in parasitic diseases, although
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the role of eicosanoids in the pathogenesis of Chagas disease is
becoming better defined (10).

Given the increasing interest in the role of eicosanoids in T.
cruzi infection, we investigated the effect of prostaglandin synthe-
sis inhibition with ASA and celecoxib on the inflammatory re-
sponse and cardiac myoblast invasion by T. cruzi. Our results
showed that the internalization of the parasite was reduced when
H9C2 cells were treated with ASA or celecoxib. This reduction was
associated with an increase in the production of NO and IL-1�
and reduction of TGF-� only by cells that were treated with ASA.
Taken together, these results indicated that COX-1 is involved in
the regulation of anti-T. cruzi activity by cardiac cells and that it
participates in T. cruzi invasion of myoblasts. These results eluci-
date the influence of eicosanoids on the innate inflammatory re-
sponse to T. cruzi infection as well as provide an alternate perspec-
tive of specific immune interventions.

MATERIALS AND METHODS
Chemicals, drugs, and reagents. Dimethyl sulfoxide (DMSO), ASA, and
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenytetrazolium bromide (MTT)
were purchased from Sigma-Aldrich, Brazil Ltda. Penicillin, streptomycin
sulfate, gentamicin, Dulbecco’s modified Eagle’s medium (DMEM), and
fetal bovine serum (FBS) were purchased from Gibco (Grand Island, NY).
Celecoxib was purchased from Pfizer Pharmaceuticals. Forskolin and
wortmannin were purchased from Santa Cruz Biotechnology, Inc.

Cardiac myoblast cultures. The rat cardiac myoblast H9C2 cell line
(ATCC CRL-1446) was maintained in DMEM supplemented with 10%
heat-inactivated FBS, 100 U/ml penicillin, and 100 �g/ml streptomycin
sulfate in a humidified incubator at 37°C in 5% CO2. The cells were plated
onto 13-mm round glass coverslips and washed in warm phosphate-buff-
ered saline (PBS) before the interaction assays. Additionally, 2 � 105 cells
were plated onto 96-well dishes. One set of plates was used to quantify
cytokines and the other set was for NO and iNOS detection.

Parasites. Trypanosoma cruzi (Y strain) (17) was maintained by
weekly intraperitoneal inoculation of Swiss mice with 2 � 105 trypomas-
tigotes. To conduct our experiments, blood from previously infected mice
was obtained by cardiac puncture with anticoagulant. The blood was cen-
trifuged at 1,500 � g for 1 min and allowed to stand at 37°C for 60 min.
The supernatant serum containing most of the T. cruzi trypomastigotes
was centrifuged at 1,200 � g for 15 min. The sediment was resuspended in
1 ml of RPMI 1640 medium (Gibco, Grand Island, NY) containing 10%
inactivated FBS, 100 U/ml penicillin, and 100 �g/ml streptomycin (Gibco,
Grand Island, NY).

Blood trypomastigotes from 5 mice previously infected with strain Y
were used to infect LLC-Mk2 cells (ATCC CCL-7; American Type Culture
Collection, Rockville, MD), and trypomastigotes derived from the super-
natants of T. cruzi-infected LLC-Mk2 cell cultures were used for subse-
quent experiments. T. cruzi-infected LLC-Mk2 cell cultures were grown in
RPMI 1640 medium containing 10% inactivated FBS, 40 �g/ml gentami-
cin, 100 U/ml penicillin, and 100 �g/ml streptomycin (Gibco, Grand Is-
land, NY). Subconfluent cultures of LLC-Mk2 cells were infected with 5 �
106 trypomastigotes. Free parasites were removed after 24 h, and cultures
were maintained in 10% FBS–RPMI 1640. Five days postinfection, free
trypomastigote forms could be found in the cell supernatants.

Treatment of myoblasts with drugs, including NSAIDs. Before the
experiments, previously washed H9C2 cells were incubated for 1 h at 37°C
in a 5% CO2 atmosphere in the presence of different concentrations of
ASA or celecoxib (2.5 mM, 1.25 mM, and 0.625 mM) to test the effects of
the drugs on parasite internalization into the host cell. After incubation,
the medium containing NSAIDS was removed and cells were allowed to
interact with trypomastigote forms, added at a ratio of 5 parasites per cell.
The interaction was allowed to proceed for 24 h at 37°C in a 5% CO2

atmosphere. The cells were then washed three times, fixed with Bouin’s
fixative, stained with Giemsa stain (Merck), and observed under a light

microscope at 1,000� magnification. Other treatments included incuba-
tion with 10 �M forskolin for 20 min at 37°C and 200 nM wortmannin for
30 min at 37°C in the presence or absence of celecoxib. The internalization
index was calculated by multiplying the percentage of infected cells by the
mean number of parasites per infected cell (18). All the internalization
indices were normalized.

Experiments were performed in triplicate, and five independent ex-
periments were completed. All the experiments included untreated, in-
fected H9C2 cells as controls. Quantification was carried out via light
microscopy, and a total of 500 cells were randomly counted.

Cell viability assay. Viability of the cells obtained from the cultures
before and after incubation experiments was determined in an MTT assay
to show the mitochondrial activity of living cells. Briefly, the H9C2 cells
were plated at 2 � 105 cells/well in a 96-well microplate for 24 h. After
treatment, the cells were incubated with MTT (final concentration, 0.5
mg/ml) at 37°C for 4 h. The supernatant was aspirated, and DMSO was
added to the wells. Insoluble crystals were dissolved by mixing, and the
plates were read using a multiplate reader (Bio-Rad, Hercules, CA) at a
test wavelength of 570 nm and a reference wavelength of 630 nm. The
percentage of cell viability was calculated using the following formula, as
previously described (19): percent cell viability � [(mean absorbance in
test wells)/(mean absorbance in control wells)] � 100.

Detection of NO levels by high-sensitivity chemiluminescence. NO
levels were evaluated by employing a highly sensitive, previously described
chemiluminescence system (20) with some modifications. In this method,
NO reacts with hydrogen peroxide, resulting in peroxynitrite. In the pres-
ence of luminol, peroxynitrite produces triplet oxygen, which decays to
singlet oxygen and emits photons; the photons are detected by using a
luminometer system coupled to software.

To measure the NO/peroxynitrite level, supernatants of the H9C2 cell
cultures were removed from incubation and immediately diluted in fresh
sterile Na2CO3 buffer (2 mM; pH 8.5) that was previously degassed via N2

bubbling for 20 min, to eliminate the presence of molecular oxygen and
oxidation of NO to nitrite/nitrate. The final reaction volume was 1 ml,
with a cell concentration of 2 � 105 cells/ml.

The starting reagent was prepared by mixing equal volumes of luminol
solution (4.39 �M dissolved in 1 M KOH) diluted 1:10 in desferrioxamine
(36.58 �M), and H2O2 (2.44 �M) was added to 3 parts of degassed
Na2CO3 buffer (2 mM; pH 8.5). This mixture was vortexed for 5 min
before use. All the solutions were sterile, kept at 25°C in covered tubes, and
protected from light. Finally, the samples were injected with 50 �l of
starting reagent, and the reaction was performed in a Glomax luminom-
eter (Promega) with an automatic reagent injector, employing a kinetic
protocol that allowed 10 readings per second.

The total curve profile, integrated area, and curve were analyzed to
determine the peroxynitrite levels. A standard curve was obtained for
nitrite reduction at an acidic pH to determine the NO/peroxynitrite con-
centration. NO is generated by nitrite (NO2	) reduction at acidic pH, as
previously described (19). In this reaction, 1.8 ml of 0.1 M H2SO4– 0.1 M
KI and 7.2 ml of 0.1 mM NaNO2 were used. The reaction immediately
generates a solution of 400 pM NO at room temperature. This solution
was diluted to final concentrations of 100 fM, 200 fM, 300 fM, and 400 fM
NO in 2 mM Na2CO3 buffer, pH 8.5, that had been previously degassed
using N2.

Immunocytochemistry labeling for iNOS. Immunocytochemistry
for iNOS was performed on coverslip-adherent cells by using the labeled
streptavidin biotin method and a LSAB kit (Dako Japan, Kyoto, Japan)
without microwave accentuation. The coverslips were incubated with
10% Triton X-100 solution for 1 h, washed 3 times in PBS, and treated for
40 min at room temperature with 10% bovine serum albumin. The cov-
erslips were then incubated overnight at 4°C with primary antibody (anti-
iNOS rabbit monoclonal antibody diluted 1:200; catalog number 610599;
BD Biosciences), followed by secondary antibody treatment for 2 h at
room temperature. Horseradish peroxidase activity was visualized by
treatment with H2O2 and 3,3=-diaminobenzidine (DAB) for 5 min. At the
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last step, the sections were weakly counterstained with Harry’s hematox-
ylin (Merck). Negative controls were prepared by omitting primary anti-
body. Intensity and localization of the immune reaction against primary
antibody were examined on all coverslips with a photomicroscope (Olym-
pus BX41; Olympus Optical Co., Ltd., Tokyo, Japan).

For image analysis, photomicroscopic color slides of representative
areas (magnification, �40) were digitally acquired. After conversion of
the images into gray scale (Adobe Photoshop), iNOS-positive pixels and
total pixels thresholds were determined and data were processed using the
ImageJ software. Positive immunostained areas were calculated as the
proportion (percentage) of positive pixels to total pixels.

ELISA for TNF-�, TGF-�, and IL-1�. Culture supernatants from
H9C2 cells in 96-well plates were untreated or treated with ASA or cele-
coxib, either infected or not infected with T. cruzi, and incubated for 24 h.
Levels of TNF-�, TGF-�, and IL-1� in 100 �l medium were measured by
using a commercial enzyme-linked immunosorbent assay (ELISA) kit
(Ready-SET-Go!; eBioscience, San Diego, CA), according to the manu-
facturer’s instructions.

Statistical analysis. Statistical analysis was conducted via an analysis
of variance with Bonferroni’s multiple comparison test. Values are pre-
sented as means 
 standard errors of the means. The results were consid-
ered significant when P was �0.05. Statistical analysis was performed with
the GraphPad Prism 5.0 computer software (GraphPad Software, San
Diego, CA).

RESULTS
ASA and celecoxib inhibit T. cruzi entry into H9C2 cells. To
determine whether COX-derived mediators are involved in T.
cruzi entry into host cells, H9C2 cells were infected with trypomas-
tigotes in the presence of ASA or celecoxib at various concentra-
tions. The cells were treated with increasing amounts of NSAIDs
for 1 h. After treatment, the medium containing the inhibitors was
removed before exposure to the parasites in order to guarantee
that the inhibitors only affected the host cell and not the parasites.
After 24 h of incubation with parasites, which provided sufficient
time for them to enter into cells, the free parasites were removed
and the cells were stained with Giemsa stain.

Both inhibitors reduced the internalization of trypomastigotes
into H9C2 cells at 2.5 mM, 1.25 mM, and 0.625 mM (ASA) as well
as 1.25 mM, 0.625 mM, and 0.312 mM (celecoxib) (Fig. 1a and b).
Thus, PGE2 synthesis inhibition by NSAIDs improves the myo-
blast response to T. cruzi infection. The cytotoxicity of inhibitors
in the cells was evaluated in an MTT assay (Fig. 1c), and neither
ASA nor celecoxib induced cell death. ASA irreversibly inhibited
COX-1 by acetylation of a single serine residue on the enzyme, and
this inactivation persisted for an extended period of time (�24 h).
Therefore, to guarantee a prolonged effect of ASA on H9C2 cells in
the cultures, we used the highest concentration, since it was not
cytotoxic.

Effect of adenylyl cyclase activation on H9C2 cell invasion by
T. cruzi. Trypanosoma cruzi trypomastigotes trigger elevation in
host cell cyclic AMP (cAMP) levels. Furthermore, parasite inva-
sion is prevented by inhibition of host cell adenylyl cyclase and
enhanced by stimulation of cAMP production (22). Here, we
tested the effect of forskolin, an activator of adenylyl cyclase (23),
on H9C2 cell invasion by T. cruzi after COX inhibition.

Cells were either untreated or treated with ASA (2.5 mM) or
celecoxib (0.625 mM) for 1 h at 37°C in a 5% CO2 atmosphere.
After washing in PBS, the cells were incubated with control (me-
dium) or 10 �M forskolin for 30 min at 37°C. An equivalent
amount of the carrier (DMSO) was added to untreated cells. After

washing in PBS, control and forskolin-treated cells were incu-
bated for 24 h with parasites at a cell ratio of 5:1.

The activation of adenylyl cyclase with forskolin did not
affect H9C2 cell invasion by trypomastigote in the Y strain (P �
0.05) (Fig. 2) but reversed the effects of ASA and celecoxib (Fig.
2a and b).

FIG 1 Aspirin and celecoxib inhibit T. cruzi entry into H9C2 cells. Internal-
ization indices of the interaction process between macrophages treated for 1 h
with increasing concentrations of ASA (a) or celecoxib (b) and exposed to T.
cruzi (Y strain). After treatment with ASA or celecoxib, H9C2 cells interacted
with a 5:1 parasite:cell ratio of trypomastigotes for 24 h, after which they were
washed, fixed with Bouin’s fixative, and stained with Giemsa stain. Quantifi-
cation was carried out under a light microscope, where the number of intra-
cellular parasites was counted in a total of least 500 cells. (c) The effects of ASA
and celecoxib on cell viability. An MTT assay was conducted to measure cell
viability in H9C2 cells after treatment with inhibitors at concentrations from
0.625 to 2.5 mM. Values are means 
 standard errors of means of 10 experi-
ments or two experiments (c). *, P � 0.05; **, P � 0.01; ***, P� 0.001 (com-
pared to infected cells cultured in medium alone).
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H9C2 cell PI3K activity is required for invasion by T. cruzi.
The involvement of phosphatidylinositol 3-kinase (PI3K) in T.
cruzi host cell invasion has been examined using specific inhibi-
tors, such as wortmannin (24). To investigate the role of PI3K in
cells treated with NSAIDs, we administered wortmannin (200
nM) to cells for 30 min after NSAID treatment. An equivalent
amount of the carrier (DMSO) was added to untreated cells.

The treatment of H9C2 cells with wortmannin significantly
impaired T. cruzi invasion, independent of pretreatment with
both NSAIDs (Fig. 3a and b). These data indicate that PI3 activity
is involved in the entry into the cardiac cells used in this study, and
this observation is consistent with previously published research
demonstrating that both inhibitors cause downregulation in the
PI3K/Akt pathway (25, 26).

NSAIDs modulate the innate inflammatory response of
H9C2 cells infected with T. cruzi. We examined the effects on NO
production and cytokines of various treatments that alter intra-
cellular signal transducing pathways. Internalization of T. cruzi
into H9C2 cells did not stimulate the release of TNF-� (Fig. 4a) or

TGF-� (Fig. 4b), but it increased IL-1� production (Fig. 4c).
Treatment with ASA (Fig. 4a) or celecoxib (Fig. 5a) did not affect
TNF-� production by cardiac cells but increased IL-1� produc-
tion (Fig. 4c and 5c), whereas ASA (Fig. 4b), but not celecoxib,
inhibited TGF-� production by the cells (Fig. 5b).

The effect of both inhibitors on NO production was evaluated
by detection of NO in T. cruzi-infected H9C2 supernatants using
high-sensitivity chemiluminescence. Interesting, NO production
in cardiac cells was diminished by T. cruzi and increased by prior
treatment of cells with ASA (0.625 mM) and celecoxib (1.25 mM)
(Fig. 6). The increase in NO production induced by ASA was
concentration dependent. Additionally, we observed that ASA
and celecoxib treatment stimulated iNOS expression in T. cruzi-
infected H9C2 cells (Fig. 7). Interestingly, when cells were incu-
bated with ASA in combination with forskolin, we observed a
large number of internalized trypomastigotes (Fig. 2a), which was
associated with increased TGF-� production by cells (Fig. 8).

DISCUSSION

Previous studies have shown that the release of eicosanoids during
infection with T. cruzi regulates host responses and controls dis-
ease progression (10, 27–31). PGs, together with NO and TNF-�,

FIG 2 Activation of adenylyl cyclase with forskolin reverted the ASA and
celecoxib effects on T. cruzi-infected H9C2 cells. Internalization indices were
calculated for the interaction process between H9C2 cells treated for 1 h with
ASA (2.5 mM) (a) or celecoxib (0.625 mM) (b) and exposed to T. cruzi (Y
strain). Cells were pretreated or not with ASA (2.5 mM) or celecoxib (0.625
mM) for 1 h at 37°C in a 5% CO2 atmosphere. After washing in PBS, the cells
were incubated with control (medium) or 10 �M forskolin for 30 min at 37°C.
An equivalent amount of the carrier (DMSO) was added to untreated cells.
After washing in PBS, control and forskolin-treated cells were incubated for 24
h with parasites at a parasite:cell ratio of 5:1. Values are the means 
 standard
errors of the means of three experiments. *, P � 0.001 (compared to infected
cells cultured in medium alone); **, P � 0.05 (compared to cells cultured in
ASA or celecoxib).

FIG 3 Treatment of H9C2 cells with wortmannin significantly diminished the
infectivity of parasites independently of pretreatment with ASA or celecoxib.
Internalization indices were calculated for the interaction process between
H9C2 cells pretreated for 1 h with ASA (2.5 mM) (a) or celecoxib (0.625 mM)
(b) and exposed to T. cruzi (Y strain). Cells were treated or not with ASA or
celecoxib for 1 h at 37°C in a 5% CO2 atmosphere. After washing in PBS, the
cells were incubated with medium (control) or wortmannin (200 nM) for 30
min at 37°C. An equivalent amount of the carrier (DMSO) was added to
untreated cells. After washing in PBS, control and wortmannin-treated cells
were incubated for 24 h with a parasite:cell ratio of 5:1. Values are the means 

standard errors of the means of three experiments. *, P � 0.001 (compared to
infected cells cultured in medium alone); ns, not significant.
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participate in a complex circuit that controls lymphoproliferative
and cytokine responses in T. cruzi infection (28). However, the
involvement of COX-mediated PG production in the entry of T.
cruzi into cardiac cells is largely unexplored.

The data shown herein demonstrate that treatment of rat car-
diac cells with NSAIDs such as aspirin and celecoxib significantly
inhibits internalization of T. cruzi trypomastigotes and strongly
support the idea that the COX pathway plays a fundamental role

in the process of parasite invasion. In fact, PGE2 production sig-
nificantly increases in T. cruzi-infected macrophages compared
with uninfected macrophages (35), and PGE2 synthesis inhibition
by using aspirin synergistically enhances the activity of nifurtimox
and benznidazole in infected RAW 264.7 cells (36).

The effects of aspirin on T. cruzi infection have been associated
in part, with a switch to the AA pathway that is linked to acetyla-
tion of the COX-2 isoenzyme (37). This acetylation enables
COX-2 to synthesize other lipid products derived from AA, some
of them with anti-inflammatory properties, such as 15-epi-LXA4,

FIG 4 Effects of aspirin on TNF-�, TGF-�, and IL-1 � production in T.
cruzi-infected H9C2 cells. Cells were treated for 1 h with ASA (0.625 and 1.25
mM) and exposed to T. cruzi (Y strain). After treatment, the cells interacted
with a 5:1 trypomastigote:cell ratio for 24 h, after which they were cultured at
37°C in 5% CO2 during 24 h. TNF-� (a), TGF-� (b), and IL-1� (c) levels in
supernatants were measured with a specific enzyme-linked immunosorbent
assay. Results are the means 
 standard errors of the means for duplicate
determinations and are representative of two independent experiments. *, P �
0.05 (compared to cell culture in medium alone); ND, not detected.

FIG 5 Effects of celecoxib on TNF-�, TGF-�, and IL-1� production in T.
cruzi-infected H9C2 cells. Cells were treated for 1 h with celecoxib (0.625 and
1.25 mM) and exposed to T. cruzi (Y strain). After treatment, the cells inter-
acted with a 5:1 trypomastigote:cell ratio for 24 h, after which they were cul-
tured at 37°C in 5% CO2 during 24 h. TNF-� (a), TGF-� (b), and IL-1� (c)
levels in supernatants were measured with a specific enzyme-linked immu-
nosorbent assay. Results are the means 
 standard errors of the means for
duplicate determinations and are representative of two independent experi-
ments. *, P � 0.05 (compared to cell culture in medium alone); ND, not
detected.
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known as an “aspirin-triggered lipoxin.” High levels of 15-epi-
LXA4 were observed in T. cruzi-infected mice treated with the low
doses of ASA, while high ASA doses decreased 15-epi-LXA4 levels
(37). Importantly, 15-epi-LXA4 prevented parasitemia, mortality,
and cardiac changes in vivo and restored the protective role in the
treatment group that received a high dose of ASA (37). Addition-
ally, polyamines seem to be crucial for the trypomastigote inter-
nalization process in at least some cellular types and in infection
progression (38).

COX is related to an increase of ornithine decarboxylase
(ODC) activity in T. cruzi-infected macrophages (33), which
might increase the polyamine content in macrophages. Since T.
cruzi uses these polyamines to synthesize trypanothione (an en-
zyme that participates in the hydroperoxide detoxification of T.
cruzi), the inhibition of COX by ASA probably results in a reduc-
tion in polyamine levels caused by inhibition of ODC, indirectly
contributing to decreased trypanothione synthesis in T. cruzi, as
suggested by López-Muñoz and collaborators (36).

Trypomastigotes (the infective stages of T. cruzi) trigger eleva-
tions in host cell cAMP levels. This is a significant finding, because
trypomastigotes are the T. cruzi life cycle stages that are capable of
invading host cells through a Ca2-dependent lysosome recruit-
ment process, which involves parasite-mediated signaling (22).
Elevation of intracellular Ca2 levels has also been demonstrated
in T. cruzi-infected cardiac cells (4).

Our results showed that treatment of H9C2 cells with the ad-

enylyl cyclase activator forskolin (23) did not alter the infectivity
of trypomastigotes (Y strain). The treatment of H9C2 cells with
celecoxib (an inhibitor of COX-2) or ASA in combination with
forskolin restored the infectivity of trypomastigotes in cardiac
cells. This could have been due to the effects of NSAIDs through
the inhibition of cAMP, as previously described (39).

The PI3K inhibitor wortmannin caused marked inhibition of
T. cruzi infection when H9C2 cells were treated before inocula-
tion. This inhibition was independent of pretreatment with aspi-
rin or celecoxib. These findings suggest a role for host PI3K activ-

FIG 6 Effects of aspirin upon NO production in T. cruzi-infected H9C2 cells.
Cells were treated for 1 h with ASA (0.625, 1.25, and 2.5 mM) (a) or celecoxib
(0.625, 1.25 and 2.5 mM) (b) and exposed to T. cruzi (Y strain). After treat-
ment with NSAIDs, cells interacted with a 5:1 trypomastigote:cell ratio for 24
h, after which they were washed and cultured at 37°C in 5% CO2 during 24 h.
NO levels in supernatants were measured by high-sensitivity chemilumines-
cence. Results are the means 
 standard errors of the means for duplicate
determinations and are representative of two independent experiments. *, P �
0.05; **, P � 0.01 (compared to the untreated infected cell culture [Tc]).

FIG 7 Effects of aspirin and celecoxib on iNOs expression in T. cruzi-infected
H9C2 cells. Immunocytochemistry for iNOS was performed on coverslip-
adherent cells by the labeled streptavidin biotin method with a LSAB kit (Dako
Japan, Kyoto, Japan) without microwave accentuation. (1) Intracellular iNOS
protein was detected by immunocytochemistry in uninfected (control) H9C2
cells. (2) T. cruzi provoked a discrete increase of iNOs expression. (3 and 4)
ASA (3) and celecoxib (4) were effective inducers of iNOS expression in T.
cruzi-infected H9C2 cells.

FIG 8 Aspirin in combination with 10 �M forskolin increased TGF-� pro-
duction by T. cruzi-infected H9C2 cells. Cells were treated for 1 h with ASA
(2.5 mM). After treatment, cells were washed and incubated with 10 �M for-
skolin for 20 min. After treatment, cells were washed again and allowed to
interact with a 5:1 trypomastigote:cell ratio for 24 h at 37°C. TGF-� levels in
supernatants were measured with a specific enzyme-linked immunosorbent
assay. Results are means 
 standard errors of the means for duplicate deter-
minations and are representative of two independent experiments. *, P � 0.05
(compared to infected cells in cell culture medium, ASA, or forskolin alone).
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ities during the T. cruzi infection process into cardiac cells.
Therefore, our findings are consistent with the hypothesis that
PI3K inhibition results in an increase in COX-2 production (40).
Further work will be required to test our hypothesis and to deter-
mine whether wortmannin promotes increases of PGs in T. cruzi-
infected H9C2 cells.

Inhibition of COX activity may increase NO levels, thus restor-
ing the antiparasitic activity of macrophages (38). Our results are
consistent with this hypothesis. Additionally, we showed that
iNOS expression in H9C2 cells increased with ASA or celecoxib
treatment, which is also in agreement with our hypothesis.

Moreover, there is no evidence to support the hypothesis that
low TGF-� production by H9C2 cells reduces T. cruzi infection.
We attempted to determine whether TGF-� is involved in the
effect of ASA or celecoxib on T. cruzi-infected cells. We did not
find any effect of celecoxib on TGF-� production by H9C2 cells,
but when we used ASA, we observed a decrease in TGF-� released
by cells, indicating the role of TGF-� in ASA activity. In fact,
TGF-� is required for the invasion of host cells by the parasite
(41). T. cruzi infection induces the production of NO, which could
contribute to parasite killing by host cells. TGF-� is a potent sup-
pressor of NO production (42), and its inhibition caused de-
creased T. cruzi invasion in cardiomyocytes (43).

Finally, in T. cruzi-infected H9C2 cells, COX inhibition by ASA
or celecoxib was related to the increase of IL-1� but not of TNF-�,
which might explain in part the increase of antiparasitic activity of
cardiac cells treated with NSAIDs. In fact, IL-1� is critical for the
restriction of Leishmania amazonensis infection (44), and recently
it was demonstrated that T. cruzi-infected macrophages treated
with IL-1� released fewer trypomastigotes than untreated macro-
phages and that IL-1� triggered NO release by infected macro-
phages in a dose-dependent manner (45).

In conclusion, this is the first report, to our knowledge, show-
ing the in vitro effect of NSAIDS (aspirin and celecoxib) on T. cruzi
entry into rat cardiac cells, providing a better understanding of the
influence of TGF-�-interfering therapies on the innate inflamma-
tory response to T. cruzi infection and may represent a very perti-
nent target for new therapeutic treatments of Chagas disease.
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