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Highly active antiretroviral therapy (HAART) involves combination treatment with three or more antiretroviral agents. The an-
tiviral effects of combinations of emtricitabine (FTC) plus tenofovir (TFV) plus antiretroviral agents of all the major drug classes
were investigated. Combinations of FTC and TFV with a nonnucleoside reverse transcriptase inhibitor (NNRTI) (efavirenz or
rilpivirine) or with a protease inhibitor (PI) (atazanavir, lopinavir, or darunavir) showed additive to synergistic anti-HIV-1 ac-
tivity. FTC-TFV with an HIV-1 integrase strand transfer inhibitor (INSTI) (elvitegravir or raltegravir) showed the strongest syn-
ergy. Anti-HIV-1 synergy suggests enhancement of individual anti-HIV-1 activities within cells that may contribute to potent
treatment efficacy and open new areas of research into interactions between reverse transcriptase (RT) and integrase inhibitors.

Highly active antiretroviral therapy (HAART) is the current
standard of care for HIV infection and involves treatment

with a combination of three or more antiretroviral agents. Gener-
ally, these are combinations of two or more drug classes which
target different steps of the HIV-1 replication cycle. The most
extensively studied anti-HIV-1 drug combinations are those of
nucleoside/nucleotide reverse transcriptase (RT) inhibitors
(NRTIs) and nonnucleoside RT inhibitors (NNRTIs). NRTIs are
competitive inhibitors of HIV-1 RT that cause chain termination
of viral DNA polymerization and form the two-drug backbone of
most regimens. The third agents are chosen from the different
drug classes, consisting of NNRTIs (noncompetitive inhibitors of
HIV-1 RT), protease inhibitors (PIs), and integrase strand trans-
fer inhibitors (INSTIs). The first single-tablet regimen containing
an INSTI was recently approved and consists of the two NRTIs
emtricitabine (FTC) and tenofovir (TFV) disoproxil fumarate
(TDF), an oral prodrug of TFV; the INSTI elvitegravir (EVG); and
the pharmacoenhancer cobicistat (COBI), which increases EVG
concentrations (1).

Combinations of antiviral inhibitors can directly affect the an-
tiviral potency of their counterparts in an additive, antagonistic,
or synergistic manner. Determination of the in vitro antiviral in-
teractions between inhibitors used together in patients is an im-
portant component of the drug development process. Combina-
tions that show antagonism should be avoided, and combinations
that show synergy may have added benefit in vivo. There have been
a number of studies showing that combinations of NRTIs plus
NNRTIs inhibit HIV-1 infection more efficiently than the additive
effect expected for the individual drugs studied alone, thus dem-
onstrating synergy in vitro (2–9). For example, combinations of
efavirenz (EFV)-TFV, EFV-FTC, rilpivirine (RPV)-TFV, and
RPV-FTC have shown moderate to strong antiviral synergy
against HIV-1 in cell culture (3, 10). Studies have also shown that
some combinations within a drug class, such as two or more
NRTIs, can act synergistically in vitro (11–17). In-depth studies
have been performed on the combination of FTC and TFV, and these
two drugs show synergy (by median-effect analysis, combination in-
dex range of 0.52 to 0.56) to strong synergy (by MacSynergy analysis,
synergy volumes of 153 to 181 nM2%) against HIV-1 in cell cul-

ture (3, 10). This has been partially explained by a positive meta-
bolic interaction between FTC and TFV that leads to higher levels
of phosphorylation to the active metabolites when dosed in com-
bination and more efficient trapping of TFV in a dead-end chain-
terminated complex (3, 10, 17). Combinations of NRTIs or
NNRTIs with INSTIs have also shown additive to synergistic ef-
fects in vitro (18, 19).

As combination therapies are the standard of care in HIV treat-
ment, it is important to understand how newer inhibitors in dif-
ferent classes work in combination with existing therapies. This
study evaluates the in vitro anti-HIV activity of three-drug com-
binations of FTC and TFV plus representatives from all the major
drug classes—NNRTIs, PIs, and INSTIs.

MATERIALS AND METHODS
Reagents. TFV, FTC, EVG, atazanavir (ATV), darunavir (DRV), and
COBI were synthesized at Gilead Sciences, Inc. Raltegravir (RAL) was
purchased from Naeja Pharmaceutical, Inc. (Edmonton, Alberta, Can-
ada). EFV and lopinavir (LPV) were purchased from Toronto Research
Chemicals (North York, Ontario, Canada). RPV was synthesized by Jans-
sen Infectious Diseases BVBA (Beerse, Belgium). Ribavirin (RBV) and
zidovudine (AZT) were purchased from Sigma-Aldrich (St. Louis, MO).
Stavudine (d4T) was provided by Bristol-Myers Squibb (Princeton, NJ).

Susceptibility assays. MT-2 cells were obtained from the NIH AIDS
Research and Reference Reagent Program and were maintained as de-
scribed previously (10). The cells were infected with the HIV-1 strain IIIb
virus (Advanced Biotechnologies, Columbia, MD) or xxLAI virus (20), as
described previously (10). TFV, FTC, EVG, RAL, EFV, RPV, ATV, DRV,
LPV, RBV, AZT, and d4T were each tested for effective concentrations
that inhibited 50% of viral replication (EC50), determined using the
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GraphPad Prism (La Jolla, CA). After a 5-day incubation period at 37°C,
the virus-induced cytopathic effect was determined using an XTT [2,3-
bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide]-
based colorimetric cell viability assay (21).

For the three-drug-combination studies, compounds were combined
at a 1:1:1 ratio based on their EC50. Eight concentrations of each combi-
nation were assayed in triplicate in 96-well plates, using 1.5-fold serial
dilutions.

Drug combination data analysis. Three-drug-combination data were
analyzed according to the median-effect principle of Chou and Talalay
(22) using CalcuSyn software (version 2.0, Biosoft, Cambridge, United
Kingdom). The EC50s obtained with single antiviral agents were com-
pared to the EC50s obtained with the combination drugs. When studying
RBV, which has no antiviral effect against HIV-1, a negligible dose re-
sponse from 0% to 0.2% inhibition was entered into the software in order
to model the synergy or antagonism effects seen with this drug. Virus
inhibition values between 5% and 99% were used in the analysis; extrap-
olated values were not included. A combination index (CI) was calculated
from the data as a measure of the interaction among drugs. CI values of
�0.9 indicate synergy, CI values of 0.9 to 1.1 indicate an additive effect,
and CI values of �1.1 indicate antagonism. The degree of synergy is pro-
portional to the CI value; key values noted in this study showed CIs rang-
ing from 0.3 to 0.7 (representing synergy), 0.7 to 0.85 (representing mod-
erate synergy), and 3.3 to 10 (representing strong antagonism). The
reported CI value for a combination of drugs is the average of the CI values
at EC50, EC75, and EC90 from each replicate experiment. To graph the
data, all CI points from the replicate experiments were plotted on one
graph for each combination, and the mean and 95% confidence interval
lines were determined from these complete data sets.

RESULTS
Three-drug combinations of TFV, FTC, and other antiretroviral
agents showed antiviral additivity or synergy against HIV-1 in
cell culture. Three-drug-combination studies were performed
with FTC-TFV plus representative agents of the other major drug
classes—NNRTIs, PIs, and INSTIs (Fig. 1). The two NNRTIs
studied were EFV and RPV. The EFV-FTC-TFV combination
showed synergy as expected, with a CI value of 0.56 � 0.08 (3).
The RPV-FTC-TFV combination showed moderate synergy (CI,
0.73 � 0.13) that was not statistically different from the EFV-FTC-
TFV combination.

The three PIs studied were DRV, ATV, and LPV. The combi-
nations of DRV-FTC-TFV and ATV-FTC-TFV both showed
moderate synergy, with CI values of 0.77 � 0.11 and 0.83 � 0.19,
respectively. The LPV-FTC-TFV combination showed additivity,
with a CI value of 0.97 � 0.10.

The INSTIs studied were EVG and RAL. The EVG-FTC-TFV
combination showed synergy, with a mean CI value of 0.47 �
0.09. The RAL-FTC-TFV combination was tested in parallel and
also showed synergy, with a mean CI value of 0.52 � 0.05. The
single-tablet regimen containing EVG, COBI, FTC, and TDF also
contains a pharmacokinetic enhancer, COBI, which lacks antiviral
activity; the in vitro EVG-FTC-TFV combination was tested with
an overlay of 25 �M COBI to determine whether COBI altered the
antiviral activity of the triple combination. This combination
showed synergy comparable to that of the EVG-FTC-TFV combi-
nation, with a mean CI value of 0.45 � 0.06. The EVG-FTC-TFV
combination was significantly more synergistic than the RPV-
FTC-TFV combination (P � 0.03) but was only numerically more
synergistic than the EFV-FTC-TFV combination (P � 0.15). The
EVG-FTC-TFV combination was significantly more synergistic
than all three of the combinations of FTC-TFV with PIs (P �

0.013 for ATV, P � 0.009 for DRV, and P � 0.002 for LPV). We
also carried out the isobologram analysis (23, 24) for the combi-
nations of FTC-TFV with the representative NNRTIs, PIs, and
INSTIs, and found similar synergy results (data not shown).

Control experiments combining FTC, FTC, and FTC yielded
the expected additivity, with a mean CI value of 0.92 � 0.06. The
d4T-AZT-RBV combination was tested as an antagonism control,
since previous reports have shown RBV-d4T to be strongly antag-
onistic (25, 26), RBV-AZT to be strongly antagonistic (25), and
d4T-AZT to be additive to antagonistic (27, 28). The triple com-
bination d4T-AZT-RBV showed strong antagonism, with a mean
CI value of �5.9.

Overall, the combination of TFV-FTC and the INSTIs showed
the highest level of synergy, with no evidence of antagonism (Fig.
2). The combinations of FTC-TFV with antiretroviral agents from
the NNRTI and PI classes showed synergy or additivity, with no
evidence of antagonism.

DISCUSSION

This study investigated the anti-HIV-1 activity of three-drug com-
binations consisting of FTC and TFV plus a third antiretroviral
agent from one of the three major drug classes—NNRTIs, PIs, and
INSTIs. The three-drug combination of FTC-TFV with the
NNRTIs EFV and RPV or the PIs DRV and ATV all showed anti-
viral synergy in cell culture. Additive antiviral activity was found
for FTC-TFV and LPV. The strongest synergy observed was with
the combinations of FTC-TFV with the INSTIs EVG and RAL.
Synergy between the NRTI backbone FTC-TFV has been attrib-
uted to elevations in the levels of the active metabolites of FTC and
TFV when dosed together in cells and to enhanced dead-end com-
plex formation of TFV-terminated DNA and HIV-1 RT in the
presence of FTC-triphosphate (TP) (3, 17).

Three-drug combinations of FTC-TFV with two agents from
the INSTI class showed comparable and high-level synergy. EVG
and RAL have a similar mechanism of action of inhibiting inte-
grase (IN) strand transfer activity, which is required for the inte-
gration of HIV-1 DNA into the host genome (29). Previous stud-
ies have shown additive to synergistic inhibition of HIV-1
infection using a combination of the integrase inhibitor RAL plus
FTC or TFV (30) and EVG plus FTC or TFV (19). Therefore,
synergy in vitro was not unexpected.

Clinical studies of INSTIs with or without FTC/TDF have
shown durable efficacy (31–39). The INSTIs as a class and by
themselves elicit a more rapid viral load decline than that observed
for any other drug class. Monotherapies with the EVG or RAL
INSTI have shown significant drops in viral load over 10 days,
with average decreases of about 2.2 log10 HIV-1 RNA copies/ml
(31, 32). Further, when dosed in a combination study of treat-
ment-naive subjects receiving tenofovir and lamivudine (3TC) as
a background regimen, subjects taking RAL had a more rapid
decline in HIV-1 RNA than subjects taking the EFV–3TC–TDF
regimen, although both arms reached the same reduction in viral
load by week 24 (40). Clinical studies comparing EVG-COBI-
FTC-TDF with EFV-FTC-TDF or ATV-ritonavir-FTC/TDF had
the similar result of a transiently more rapid viral load suppression
(36, 37). The finding in this study that NRTIs with INSTIs showed
the highest level of synergy may contribute to the clinical efficacy
of INSTIs with FTC-TDF.

Potential underlying mechanisms of rapid HIV-1 RNA de-
creases with INSTIs have been proposed (41, 42). The most widely
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FIG 1 Three-drug combination and control results. Three-drug antiviral synergy plots of the combination index (CI; synergy score) versus the fractional effect
(level of inhibition of viral replication). Dotted black line, additivity line indicating a CI value of 1; solid red line, mean synergy curve fit line; dotted red line, 95%
confidence interval. CI values were calculated as described in Materials and Methods, using CalcuSyn. These numbers represent the mean and standard deviation
of at least three independent experiments.

October 2014 Volume 58 Number 10 aac.asm.org 6147

http://aac.asm.org


accepted model is that the INSTIs uniquely block HIV-1 replica-
tion in cells that have been infected and have produced the viral
double-stranded DNA genome but have not yet undergone inte-
gration into the host genome (preintegration latency) (41). The
first-phase viral load decay rate is longer for INSTIs than for
NNRTIs (43), potentially because they act later in the HIV-1 rep-
lication cycle (42). Although INSTIs show a rapid viral load de-
cline in monotherapy studies, and the synergy of FTC with TFV is
well established, the finding that INSTIs combined with NRTIs
showed the highest levels of synergy does not appear solely attrib-
utable to simply a combination of two classes of drugs since the
NRTIs with PIs were significantly less synergistic. RT and IN are
both present in HIV-1 preintegration complexes (PICs) (44), so
there may be an interaction between these two enzymes or the
drugs that target them. Studies have shown that the IN protein is
required for efficient reverse transcription and may interact phys-
ically with RT or other components of the RT initiation complex
(45, 46). Other studies with noncatalytic site integrase inhibitors
(NCINIs) showed that these inhibitors block viral replication by
targeting an IN-dependent step during virus production that sub-
sequently causes a defect in reverse transcription in newly infected
target cells (47, 48). Additionally, the INSTI drug to HIV-1 dou-
ble-stranded DNA target ratio may be increased in the presence of
NRTIs leading to better inhibition of the virus with INSTIs. This
study supports these observations and hypotheses by showing that
combinations of FTC-TFV with INSTIs show synergy greater than
the combinations of FTC-TFV with other antiretroviral drug
classes. These results open new areas of research into interactions
between RT and integrase inhibitors, including other possible
mechanisms of action to account for the high synergy observed
between NRTIs and INSTIs.

In summary, the combinations of FTC-TFV with a third agent
from one of the major drug classes, INSTIs, NNRTIs, or PIs, all

showed additive to synergistic anti-HIV-1 activity in vitro. The
strongest synergy was seen with the combinations of EVG or RAL
with FTC-TFV, and this may contribute to the durable clinical
antiviral efficacy observed for these drug regimens, which are both
recommended as preferred INSTI-based regimens for ART-naive
patients (49).
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