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In tuberculosis treatment, susceptibility is defined by a critical concentration of 1.0 mg/liter for rifampin and 0.2 or 1.0 mg/liter
for low- and high-level isoniazid resistance on the basis of an epidemiologic cutoff method that uses the distribution of the MICs
for isolates. However, pharmacokinetics-pharmacodynamics-based clinical trial simulations suggested that the breakpoints
should be 0.0625 mg/liter for rifampin and 0.0312 or 0.125 mg/liter for isoniazid. We examined the outcomes of 36 patients with
drug-susceptible tuberculosis whose rifampin and isoniazid MICs were determined, whose plasma drug concentrations were
also measured, and who were part of a prospective cohort study in Western Cape, South Africa. We performed classification and
regression tree analysis to identify clinical and laboratory factors that predicted 2-month sputum conversion rates and long-
term clinical outcomes. Poor long-term clinical outcomes were defined as microbiological failure, relapse, or death within a
2-year follow-up period. Peak drug concentrations and areas under the concentration-time curve were most predictive of out-
comes and constituted the primary node, similar to our findings on the larger cohort. However, rifampin and isoniazid MICs
improved the predictive capacity of the primary decision node by 20 and 17%, respectively, for these 36 patients. The rifampin
MIC cutoff above which there was therapy failure was 0.125 mg/liter, while that of isoniazid was 0.0312 mg/liter; these are simi-
lar to those derived in clinical trial simulations. The critical concentrations used to define multidrug resistance for clinical deci-
sion making should take clinical outcomes into account.

Patients with drug-resistant tuberculosis, especially multidrug-
resistant tuberculosis (MDR-TB; defined as tuberculosis resis-

tant to both isoniazid and rifampin) and extremely drug-resistant
tuberculosis (XDR-TB; MDR-TB with additional resistance to
fluoroquinolones and injectable compounds) need to be accu-
rately categorized from the outset, as they need specific manage-
ment with second-line regimens (1–5). Hence, it is crucial that
resistance testing identify infections with a susceptibility thresh-
old beyond which patients receiving the first-line regimen with
standard doses of rifampin and isoniazid will respond poorly. Re-
sistance to isoniazid and rifampin is said to be present when �1%
of a Mycobacterium tuberculosis culture grows in medium supple-
mented with the critical concentration of each drug. The critical
concentrations of rifampin and isoniazid were derived from the
MICs for �95% of wild-type isolates of M. tuberculosis, termed
epidemiologic cutoff values (6–8). While they are extensively
used, as evidenced by the regular release of MDR-TB worldwide
figures by the World Health Organization (3), it is nevertheless
unclear if the epidemiologic cutoff values are predictive of clinical
responses and if they are the most accurate. Here, we investigated
this possibility on the basis of data from a prospective cohort
study.

Another approach that has been used to identify susceptibility
breakpoints is a pharmacokinetics (PK)-pharmacodynamics
(PD)-based derivation that takes into account the PK variability of
each drug (9). PK-PD studies in preclinical models such as the
hollow-fiber model, as well as in clinical studies of tuberculosis
patients, have identified peak-to-MIC and area under the concen-
tration-time curve (AUC)-to-MIC ratios below which there is a
poor outcome (10–14). In addition, PK variability has been shown
to be one of the important determinants of therapy failure in pa-
tients and has delineated optimal AUCs and peak concentrations
below which therapy fails (15, 16). Therefore, we have proposed

that the critical concentration be defined as the MIC above which
maximum tolerated doses fail to effectively kill M. tuberculosis at
the site of infection (17). If the recommended doses in the treat-
ment regimen are unable to effectively kill bacilli in patients be-
cause of the MIC, then that MIC defines clinically meaningful
drug resistance. Monte Carlo simulations that utilized PK-PD ex-
posures associated with optimal outcomes and antibiotic PK vari-
ability encountered in patients led to the proposal that critical
rifampin concentrations be lowered from the epidemiologic cut-
off-derived value of 1.0 to 0.0625 mg/liter and isoniazid low- and
high-level resistance concentrations be lowered from 0.2 and 1.0
to 0.0312 and 0.125 mg/liter in Middlebrook medium (17). Here,
we used an agnostic machine learning method to identify the ri-
fampin and isoniazid MICs above which treatment with short-
course chemotherapy in the clinic fails.

MATERIALS AND METHODS
One hundred forty-two patients with sputum culture-positive tuberculo-
sis were enrolled in a PK-PD study at Brewelskloof Hospital in Worcester,
Western Cape, South Africa as described in prior reports (15, 18). Patients
were recruited between August 1999 and February 2002. The isoniazid
and rifampin MICs for the isolates from 36 of these 142 patients, ran-
domly chosen, were also identified at the time of diagnosis. Patients were
treated with the following daily doses during the intensive phase of ther-
apy: 300 mg of isoniazid, 20 to 35 mg/kg pyrazinamide, 15 mg/kg etham-
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butol, and 600 mg of rifampin daily if they weighed �50 kg or 450 mg if
they weighed less. Patients with prior tuberculosis also received intramus-
cular streptomycin (1 g if they weighed more than 55 kg, 0.75 g if they
weighed 38 to 54 kg, and 0.5 g if they weighed �37 kg). In the continua-
tion phase, all of the patients received the same isoniazid and rifampin
doses but for 5 in 7 days and patients with prior tuberculosis were contin-
ued on ethambutol. All patients were hospitalized during the first 2
months of therapy to ensure directly observed therapy, for reasons out-
lined in the primary PK study publication (18). PK studies were per-
formed over 24 h during the 8th week of therapy. The compartmental PK
analyses have been published elsewhere (15). Sputum microscopy and
culture (using liquid cultures in the Bactec 460 instrument) were per-
formed after 8 weeks of treatment. Patients were then followed up pro-
spectively for sputum conversion and long-term outcomes for 2 years.

All of the patients’ isolates were directly tested for sensitivity with the
Bactec 460 instrument. The isoniazid and rifampin MICs for the initial
isolates from 36 patients were determined at diagnosis. Isoniazid suscep-
tibility was determined in the Bactec system by using the following con-
centrations: 0.0125, 0.025, 0.05, 0.1, and 0.2 mg/liter. For rifampin, the
following concentrations were examined: 0.06, 0.125, 0.25, 0.5, 1.0, and
2.0 mg/liter. MICs of pyrazinamide or ethambutol were not identified.

Classification and regression tree (CART) analysis is a nonparametric
method that uses recursive partitioning to classify data (19–21), which we
and others have used for clinical decision making to examine outcomes in
several infectious-disease studies (15, 22–25). We were interested in the
classification of the 36 patients into two categories, therapy failure versus
success. Two clinical outcome measures were used, sputum microbiology
status at 2 months and long-term outcome. A poor long-term outcome
was defined as a relapse, microbiologic failure, or death within the 2-year
follow-up period since the start of therapy (15). Several outcome predic-
tors were examined, including the AUC, peak drug concentrations in
serum, trough concentrations, isoniazid MIC, rifampin MIC, age, gender,
weight, HIV status, and treatment with streptomycin. CART analysis ex-
amines all of these potential outcome predictors and examines all of the
possible threshold values of the predictors to create a tree. A step-by-step
description of this method of analyzing tuberculosis therapy was previ-
ously published (15). Briefly, the upside tree created starts with a root
node, which is the most important potential predictor or decision node.

Daughter nodes are added to the tree, and a score of how much they
improve the primary decision node (as a percent score of the primary
node) is computed. For each outcome, maximal trees were generated by
splitting each daughter node so that each class was homogeneous in the
outcome examined until further splits were not possible. Maximal trees
are important in identifying data structure, as well as clinically meaningful
interactions between covariates, particularly among fewer patients (small
daughter nodes). We then pruned the maximal trees based on relative
misclassification costs, complexity, and maximization of parsimony.
Next, we performed a 10-fold validation. In this process, the data set is
randomly split 10 times in order to construct optimal trees, to identify
how predictive the primary analysis was with these randomly created
“test” data sets. This process obviates the need for a validation data set.

RESULTS

The full clinical characteristics of the 36 patients whose isoniazid
and rifampin MICs were determined are shown in Table 1. The
characteristics are similar to those of the entire set of 142 patients
(15), confirming that this subset of patients was randomly chosen
from the larger data set. The distribution of isoniazid MICs is
shown in Fig. 1. The mean isoniazid MIC was 0.07 � 0.04 mg/liter.
The epidemiologic cutoff value was 0.2 mg/liter. The distribution
of rifampin MICs is shown in Fig. 2. The mean rifampin MIC was

TABLE 1 Clinical and demographic factors of 35 patients treated for
tuberculosis in the Western Cape, South Africa

Characteristic Value

No. (%) of females 23 (65.71)
Median age, yr (range) 35 (20–71)

No. (%) self-identified as:
Mixed-race South African 31 (88.57)
Black South African 4 (11.43)

Median body wt, kg (range) 47.3 (30–68)
No. (%) HIV infected 3 (8.57)

Median dose, mg/kg (range)
Rifampin 10.71 (8.38–15.00)
Isoniazid 6.39 (4.41–10.00)
Pyrazinamide 35.14 (19.69–50.00)
Ethambutol 23.87 (12.88–30.77)

No. (%) with prior tuberculosis 23 (65.71)
Median hemoglobin level, g/dl (range) 12.00 (7.40–14.00)
Median white blood cell count, 109/ml (range) 8.60 (3.80–25.70)
Median platelet count, 109 cells/ml (range) 410.0 (66.0–813.0)
Median ESR,a mm/h (range) 58 (12–136)
Median total protein level, g/liter (range) 77 (62–92)
Median albumin level, g/liter (range) 34.00 (21–43)
a ESR, erythrocyte sedimentation rate.

FIG 1 Distribution of isoniazid MICs for isolates from 36 patients. The Gauss-
ian distribution is skewed towards the left and shows a slightly higher epide-
miologic cutoff value than in the literature (6).

FIG 2 Distribution of rifampin MICs for isolates from 36 patients. The Gauss-
ian distribution of the rifampin MICs shows a range of MICs of the drug for
clinical isolates. Thus, the standard notion of stating that the rifampin MIC for
clinical isolates is, say, 0.125 mg/liter is meaningless.
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0.28 � 0.13 mg/liter. The rifampin epidemiologic cutoff value was
0.5 mg/liter.

With regard to the 2-month sputum conversion rates, 18/36
patients (50%) had a positive culture or smear at 8 weeks. The
factors most predictive of 2-month sputum conversion included
peak pyrazinamide, rifampin, and isoniazid concentrations, as
identified in the larger 142-patient study (15). However, in the 36
patients, isoniazid and rifampin MICs were also predictive of
2-month sputum conversion; MIC thresholds are shown in Table
2. While 2-month sputum conversion is an important surrogate,
the gold standard of antituberculosis therapy efficacy is still the
long-term outcome. With regard to the long-term outcomes,
the pyrazinamide AUC was the primary root node, followed by the
rifampin AUC and the isoniazid AUC, consistent with findings
from the entire data set of 142 patients. However, the next root
node was the rifampin MIC, followed by the isoniazid MIC. Ri-
fampin and isoniazid MICs improved the primary decision node
by 20 and 17%, respectively. The rifampin and isoniazid cutoff
points associated with outcomes are shown in Table 2. However,
in standard assays, MICs are determined on the basis of 2-fold
dilution steps, so that the nearest observed MIC that fulfills the
nonstrict inequality values shown in Table 2 was chosen as the
breakpoint MIC (Table 2). The results held in the 10-fold valida-
tion process. Since predictive power is defined as the performance
of the training set-derived tree with the test data set, our results
suggest a good role for these rifampin and isoniazid MICs in pre-
dicting therapy failure. As shown in Table 2, the isoniazid MIC
breakpoint for patients whose therapy failed was 0.0312 mg/liter,
while that of rifampin was 0.125 mg/liter.

DISCUSSION

Isoniazid and rifampin MICs were predictive of clinical outcomes,
both at the 2-month time point and in the long term. These data
are consistent with classic antimicrobial PK-PD theory, which is
that the MIC for a bacterial species is an important outcome de-
terminant (26–29). Therefore, as with many other pathogens,
such as standard Gram-negative and Gram-positive bacteria, the
MICs of antituberculosis drugs affect clinical outcome. The MIC’s
effect on microbial killing is considered relative to the drug con-
centration achieved at the site of infection. The drug concentra-
tions achieved in patients have a ceiling at the maximum tolerated
dose and are driven mainly by PK variability between patients. As
the MIC rises in the face of that ceiling concentration, the AUC/
MIC or peak/MIC ratio falls, leading to less and less killing. Even-
tually, an MIC is reached above which microbial killing is not
effective in most patients and which defines clinical resistance.
This MIC above which therapeutic failure occurs is not necessarily
linked to the 95% epidemiologic cutoff value derived from the
MIC distribution. Indeed, there should be no mathematical or
physiological reason to expect the patient response to be linked to
Gaussian parameters of drug MICs for M. tuberculosis isolates. On

the other hand, a shift in the 95% epidemiologic cutoff value in
different time periods indicates that the population of isolates
from the locale is moving more and more toward drug resistance,
making it an excellent index for epidemiologic and public health
work tracking of MDR-TB and XDR-TB. Our present study sug-
gests that for clinical decision making during combination ther-
apy, however, susceptibility breakpoint values should be lowered
to 0.0312 mg/liter for isoniazid and 0.125 mg/liter for rifampin
and do not coincide with the 95% epidemiologic cutoff value. The
implication is that MDR-TB rates in the world are likely multiple-
fold higher than currently assumed.

Our results redefine MDR-TB and, by extension, XDR-TB,
given that these definitions are dependent on critical concentra-
tions of isoniazid and rifampin. In the case of rifampin, in four sets
of case reports from New Zealand, Australia, and The Nether-
lands, a total of 11 clinical isolates from these three centers had
mutations in the � subunit of RNA polymerase (rpoB), were
flagged as rifampin resistant by Gene-Xpert technology, and were
found to have rifampin MICs of 0.125 to 1.0 mg/liter, rifampin-
containing multiple-drug therapy failed (30–32). The authors
termed this “phenotypically occult” resistance. We propose, in-
stead, that the rifampin breakpoint should, in fact, be lower than
the current standard, at �0.125 mg/liter. Moreover, our proposed
breakpoint is based on the failure of patients to respond to therapy
and is therefore not defined by chromosomal mutations, as is the
case with Gene-Xpert. That is because not all drug resistance is due
to mutations; the MICs for some M. tuberculosis isolates are nat-
urally high, while other mechanisms of drug resistance such as
efflux pump induction could also lead to drug resistance (33–36).
There have not been any case reports on isoniazid similar to the 11
case reports on rifampin since there is no rapid molecular test
with which to identify isoniazid-resistant mutants. Nevertheless,
mechanisms such as efflux pumps are also known to play a role in
isoniazid resistance, which means that the final definition of iso-
niazid resistance will ultimately have to be based on phenotypic
tests such as MIC determinations (11, 13, 37, 38). Our present
findings suggest that the critical concentration of isoniazid for
clinical decision making should also be lowered. In essence, there
is now clinical support for a change in the critical concentrations
that define MDR-TB. These new concentrations should be con-
sidered for clinical decision making by the several bodies impor-
tant in the clinical care of tuberculosis around the world, such as
the WHO and STOP TB, as well as by groups designing assays for
the diagnosis of MDR-TB.

The approach using hollow-fiber PK-PD and PK variability in
Monte Carlo simulations to identify provisional and definitive
susceptibility breakpoints of antituberculosis agents (17) identi-
fied breakpoints virtually the same as those identified in our pres-
ent clinical study. Similarly, the breakpoint of pyrazinamide was
correctly identified by this method and was also recently identified
by CART as identical (25). This is noteworthy because CART anal-
yses did not prespecify the susceptibility breakpoints that should
be selected but were “agnostic” in identifying the MIC as a clinical
outcome predictor from among several clinical factors and also
calculated threshold MICs that classify patients as those whose
therapy fails and those whose therapy succeeds without relying on
a prior choice. Therefore, the pharmacometric pathway consisting
of (i) preclinical PK-PD studies of monotherapy to identify opti-
mal drug exposures in the hollow-fiber or other preclinical model,
followed by (ii) the use of population PK in Monte Carlo experi-

TABLE 2 CART analysis-derived MIC breakpoints for isolates from 36
patients

Parameter

MIC (mg/liter) cutoff (2-log scale)

Isoniazid Rifampin

2-mo sputum conversion �0.150 (0.125) �0.188 (0.125)
Long-term outcome �0.038 (0.0312) �0.38 (0.25)
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ments and (iii) the choice of a susceptibility breakpoint based on
�10% of patients failing to achieve optimal exposures, is validated
for setting anti-TB drug susceptibility breakpoints. We propose its
use for the new and experimental antituberculosis therapies cur-
rently being studied.

Our study has several limitations. First is the size of the clinical
study, which could limit the generalizability of the findings. How-
ever, CART has been able to correctly identify thresholds with
similarly small populations in the past (24, 25, 39). Second, several
other clinical factors also determine clinical outcomes, including
drug concentrations, cavitary disease, and bacterial burdens.
However, these factors need not exclude a role for MICs in out-
come prediction. Indeed, our CART analysis also examined some
of these as possible predictors, and with the exception of drug
concentrations, they were outranked by MICs. Third, one poten-
tial limitation of CART is fitting and biasing toward covariates
with many possible splits. Thus, our findings should be taken with
these factors in context. Nevertheless, cross-validation identified
the same MIC thresholds, which were virtually identical to Monte
Carlo simulation results published 5 years earlier (17). This means
that the same breakpoints have now been identified by two com-
pletely independent methods. In the case of rifampin, retrospec-
tive case reports led to the same conclusion, adding a third inde-
pendent method. Thus, critical concentrations of 0.125 mg/liter
for rifampin and 0.0312 mg/liter for isoniazid should be used to
define MDR-TB. Such PK-PD evaluations should form the basis
of the accurate determination of susceptibility breakpoints. The
continued use of breakpoints that disregard the drug exposures of
patients administered recommended doses will lead to the incor-
rect categorization of patients and treatment with inappropriate
regimens (40).
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