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It is now World Health Organization (WHO) policy that drug concentrations on day 7 be measured as part of routine assessment
in antimalarial drug efficacy trials. The rationale is that this single pharmacological measure serves as a simple and practical pre-
dictor of treatment outcome for antimalarial drugs with long half-lives. Herein we review theoretical data and field studies and
conclude that the day 7 drug concentration (d7c) actually appears to be a poor predictor of therapeutic outcome. This poor pre-
dictive capability combined with the fact that many routine antimalarial trials will have few or no failures means that there ap-
pears to be little justification for this WHO recommendation. Pharmacological studies have a huge potential to improve antima-
larial dosing, and we propose study designs that use more-focused, sophisticated, and cost-effective ways of generating these
data than the mass collection of single d7c concentrations.

Providing effective antimalarial drugs is a cornerstone of public
health policy in the majority of developing countries. Histor-

ically, the evolution of drug resistance undermined the effective-
ness of first-line therapies (1–3), and failing drugs were retained
for much too long (4). This led to a surveillance strategy of using
regular monitoring to confirm the continued efficacy and effec-
tiveness of local first-line therapies (5). Resistance is convention-
ally regarded as a binary trait where infections may be classified as
“resistant” or “susceptible” depending on patient therapeutic out-
come. However, it is becoming more widely recognized that drug
resistance in malaria is not a strictly binary trait of resistance/
susceptible but is a probabilistic trait with the therapeutic out-
come depending on the interaction between three critical factors:
(i) the level of parasite resistance (described by its pharmacody-
namics [PD], such as half-maximal inhibitory concentration
[IC50]), (ii) the amount of drug the patient takes and how she/he
subsequently processes it (the pharmacokinetics [PK], such as
drug distribution and elimination rate), and (iii) the levels of hu-
man immunity. The latter is usually ignored in antimalarial drug
deliberations (but see references 6 and 7) on the basis that drugs
should work even in nonimmune patients; this makes the predic-
tion of therapeutic outcome a function solely of PK and PD. In
principle, this approach should allow us to (crudely) distinguish
drug “failure” from drug “resistance.” Treatment “failures” are
the result of human factors such as low drug concentrations due
to, for example, inadequate drug dosing, unnoticed vomiting, or
natural human PK variation. Drug “resistance” occurs when in-
fections survive treatment due to genetically encoded parasite fac-
tors such as reduced sensitivity. This realization led to suggestions
(8, 9) that drug concentrations measured 7 days after treatment
(day 7 drug concentration [d7c]) could be used to distinguish
drug “failures” from drug “resistance.” Day 7 was justified for
three main reasons (outlined in reference 10): (i) feasibility, as day
7 is one of the several days on which routine patient follow-up
should be performed in antimalarial drug trials; (ii) pharmacody-
namics, because, in theory, if d7c of slowly eliminated antimalar-
ials are at least twice the minimum parasiticidal concentration, all
the infecting parasites should be eliminated; (iii) pharmacokinet-
ics, as in theory, day 7 drug exposure is determined only by vari-
ation in the elimination rate constant. Measurement of d7c in

clinical trials of antimalarial drugs has been widely promoted and
is now supported by well-resourced reference laboratories (11).
The World Health Organization (WHO) (10) has also repeated
these assertions stating that “Measurement of concentrations of
longer-acting antimalarial drugs on day 7 following initiation of
treatment should be considered a routine part of trials” (page 70)
because “The drug concentration on day 7 is predictive of the
outcome” (page 73). They further assert “Measurement of the
blood, serum or plasma concentration of slowly eliminated anti-
malarial drugs (i.e., terminal elimination half-life �2 days) at a
single time is simple and might be a better determinant of thera-
peutic response than the total AUC [area under the concentra-
tion-time curve]” (page 73).

We will argue that these assertions regarding the predictive
ability of d7c are clearly contradicted by PK/PD simulations (see
below) and by reanalysis of field data (see supplemental material)
which suggest exactly the opposite, i.e., that d7c is actually a rather
poor predictor of therapeutic outcome.

WHAT IS A ROC CURVE?

Receiver-operator characteristic (ROC) curves originated in radio
technology but are now widely used in medical research to quantify
the predictive value of a measurement, in our case, the ability of d7c to
predict the therapeutic outcome (12). The x axis is 1� specificity, and
the y axis is sensitivity. It is clearer to relabel the x axis simply as
“specificity” and reverse the axis, as in Fig. 1. Sensitivity is defined as
the number of patients with “low” d7c who fail treatment divided by
the total number of patients who fail treatment. Specificity is defined
as the number of patients with “normal” d7c cured divided by the
total number of patients cured.

The ROC curve plotted as a continuous blue line in Fig. 1 is
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actually a dot plot rather than a true algebraic function. Each d7c
cutoff value is assessed for sensitivity and specificity and plotted
onto the coordinates; the software then links these points with a
line. In this example, we assume that d7c lies between 0 and 100
ng/ml, and the assumption is that d7c is used to predict therapeu-
tic failure. Each hypothetical d7c cutoff value is assessed and in-
cluded on the plot (blue numbers): high cutoff values, such as 60
and 80, result in most patients being classified with “low” d7c,
resulting in high sensitivity (the large group of “low” d7c patients
includes most failures) but poor specificity (many cured patients
will be in this class of “low” d7c), while low cutoff values, such as
10 and 30, have low sensitivity but higher specificity. In this exam-
ple, the hypothetical cutoff value of 45 ng/ml seems the best com-
promise, but the choice of cutoff is an objective choice that de-
pends on the weighting given to consequences of wrong
classifications. Irrespective of the choice of cutoff value, the closer
the ROC curve approaches the top left-hand corner of the graph
(i.e., high sensitivity and high specificity), the better its diagnostic
capability. For future reference, the enumerated black squares in
Fig. 1 are the sensitivity and specificity of the cutoff values of d7c
reported or extracted from the literature (see supplemental mate-
rial); none of these points are remotely near the top left-hand
corner of the plot, which would have indicated good predictive
capability.

ROC curves allow an objective measure of the predictive capa-
bility of a diagnostic test (in this case, the ability of low d7c to
predict treatment failure). In practice, d7c is often measured in
large laboratory batches and only becomes available after the fol-
low-up period. In this case, d7c serves as an explanation, rather

than a predictor, of therapeutic outcome. As would be expected
from a statistical analysis, ROC curve analysis is unaffected by
these semantic differences and properly quantifies both d7c pre-
dictive and explanatory roles. The closer the area under the ROC
curve (auROC) is to 1, the better the diagnostic test performs (an
auROC of 1 implies the test is perfectly accurate). An area under
the ROC curve of 0.5 indicates that the diagnostic test has no
predictive value (i.e., the test is equivalent to relying on pure
chance) and is represented by the solid black diagonal line in Fig.
1. The consensus for classifying the accuracy of a diagnostic test is
the use of the “traditional” academic point system with 0.90 to 1
being excellent, 0.80 to 0.90 being good, 0.70 to 0.80 being fair,
0.60 to 0.70 being poor, and 0.50 to 0.60 being fail (we have been
unable to find an academic citation for this “tradition,” but it can
be found on websites [e.g., http://gim.unmc.edu/dxtests/roc3
.htm]). The red line in Fig. 1 represents our simulated ROC anal-
ysis (6) for lumefantrine with an auROC of 0.615 (95% confidence
interval [95% CI], 0.596 to 0.633). Using the classification above,
this test “fails” as a diagnostic predictor but is consistent with field
data (see Table S1 in the supplemental material).

HOW GOOD IS DAY 7 CONCENTRATION AS A PREDICTOR
OF THERAPEUTIC OUTCOME?

Intuitively, d7c can act as a good predictor of therapeutic outcome
only if it is the dominant parameter determining the outcome.
There are a large number of interacting factors that ultimately
determine the therapeutic outcome of treatment with a typical
artemisinin combination therapy (ACT) (the currently recom-
mended class of first-line antimalarials). ACTs typically contain
two or three distinct drugs: the artemisinin parent drug (if given as
artesunate or artemether), the artemisinin active metabolite dihy-
droartemisinin (DHA), and the partner drug (which may also
have an active metabolite [e.g., amodiaquine]). The degree of par-
asite sensitivity to each drug (its PD profile) is typically described
by Michaelis-Menten dynamics defined by three factors: IC50,
maximal kill rate, and slope of the dose-response curve. The PK
profile of each drug is described by three main factors: bioavail-
ability, volume of distribution, and elimination rate (plus a series
of absorption and conversion rates and distribution across sepa-
rate physiological compartments [10] that we ignore in the inter-
est of simplicity). This results in six main PK/PD parameters per
drug, and hence 12 to 18 for a combination therapy, all of which
contribute to the therapeutic outcome. Each of these parameters
shows substantial variability (10): human PK typically varies over
a 3-fold range (discussed further in reference 10), while parasite
IC50 for a drug typically varies 50- to 1,000-fold (e.g., Fig. 3 of
reference 13). Human immunity also plays a substantial role in the
outcome (14, 15). Another determinant of therapeutic success
that is often overlooked is multiclonal infections. Malaria infec-
tions consisting of several genetically distinct clones are com-
monly observed (up to around 8 clones per infection in higher
transmission areas [16]). The clones are likely to vary in PD, and
therapy must clear all the infections, including the most resistant.
Hence, increasing the number of clones (quantified as a patient’s
multiplicity of infection [MOI]) will increase the failure rate (17).
Consequently, higher MOI introduces another factor contribut-
ing to the therapeutic outcome (17). In summary, the substantial
variation in PK/PD, human immunity levels, and MOI will ob-
scure the relationship between d7c and therapeutic outcome.
Therefore, we decided to review the evidence base for using d7c as

FIG 1 Graphical representation of a receiver-operator characteristic (ROC)
curve. ROC curves are widely used in medical research to quantify the predic-
tive value of a measurement as explained in the text. The black diagonal line is
a ROC curve for a diagnostic with no predictive value, the blue line is an
illustrative example of a good predictor, the red line is a ROC curve for day 7
drug concentrations obtained previously by simulation (18), and the black
dashed line for point 4 illustrates how we estimate the area under the ROC
curve from point estimates of sensitivity and sensitivity (see supplemental
material). These point estimates correspond to the following sources: point 1 is
from White et al. (45), point 2 is from Denis et al. (46), point 3 is from Price et
al. (47), point 4 is from Ezzet et al. (30), point 5 is from Checchi et al. (48), and
point 6 is from McGready et al. (49).

Minireview

5644 aac.asm.org Antimicrobial Agents and Chemotherapy

http://gim.unmc.edu/dxtests/roc3.htm
http://gim.unmc.edu/dxtests/roc3.htm
http://aac.asm.org


a predictor of therapeutic outcome and used two strategies:
PK/PD modeling, and critical appraisal of clinical data previously
invoked as support for the predictive ability of d7c.

The consensus method of quantifying the predictive capability
of a diagnostic measure is by receiver-operator characteristic
(ROC) analysis (12) as described above. We investigated the pre-
dictive ability of d7c by analyzing simulated data of antimalarial
drug treatment outcome generated with the PK/PD model de-
scribed previously (6, 18). PK/PD modeling has the advantage that
we know, and can alter, the factors underlying treatment out-
come. This “mechanism-based PK/PD modeling” was recently
reviewed in reference 19, and it is widely used in infection biology.
These PK/PD simulations have been applied by other investiga-
tors to malaria (20–27) and recently extended by us to incorporate
factors such as multiple doses and drug conversion (6, 10, 28).

Our simulations showed that d7c is, as expected, generally a
good proxy for drug exposure as measured by the area under the
drug concentration-time curve (AUC): the correlation coeffi-
cients of d7c with AUC measured up to 100 days posttreatment
were 0.98 for lumefantrine (LF), 0.94 for chloroquine (CQ), 0.93
for piperaquine (PPQ), and 0.92 for mefloquine (MQ) (details in
Table S3.1 of the supplemental material of reference 6). Popula-
tion attributable risk percentage (PAR%) simulations showed that
between 3% (artesunate [AS] plus MQ) and 17% (dihydroarte-
misinin [DHA] plus PPQ) of failures could be avoided if adequate
drug levels were achieved throughout the patient population (de-
tails in Table 6 of reference 6). The simulations also showed that a
“low” d7c was associated with a statistically significantly increased
odds of failing treatment (details in Tables 5 and of reference 6).
Furthermore, a simulated clinical trial of AS-MQ suggested that a
low d7c was a more important risk factor in treatment outcome
(measured using the Wald statistic) than the patient’s initial par-
asitemia, high malaria transmission intensity, and patient age of
�5 years (details in Table 5 of reference 6).

Despite the clear association of d7c with overall drug exposure
and treatment outcome, simulations show that d7c would have a
very poor predictive capability when evaluated by their auROC
curve (see above and Fig. 1), generally being in the range of 0.55 to
0.65 (Table 6 and Table S3.2 of reference 6). This was consistent
with clinical data (see below). We also noted that even a d7c with
a very poor predictive capability, quantified by its auROC, could
still have a significant association with the outcome as quantified
by its P value; for example, we predicted a P value of 0.001 associ-
ated with a d7c cutoff value (�15th percentile) for MQ (Table 5 of
reference 6). This apparent discrepancy arises from differing roles
of the P value and ROC curve. The ROC curve quantifies the
extent to which d7c is a good (or bad) diagnostic predictor of the
therapeutic outcome. In contrast, the P value simply tests a null
hypothesis, i.e., that d7c has absolutely no association with the
therapeutic outcome. The latter is, hopefully, unlikely, so it is
entirely consistent that low P values can be associated with d7c
whose ROC curves reveal a lack of any useful predictive value. The
use of P values to identify “target” or “cutoff” values of d7c is
therefore problematic and is discussed further in the supplemen-
tal material.

Clinical data were then collated and reviewed to ascertain
whether they follow the patterns predicted by PK/PD modeling.
We identified and read all the papers we could find that reported
the use of d7c as a predictor of therapeutic success (see supple-
mental material). Disappointingly, no authors reported auROC,

and all relied on the use of P values to justify a d7c cutoff which, as
described above, tests the hypothesis of no association rather than
quantifying predictive ability. Some papers reported success/fail-
ure rates associated with a d7c “threshold” which enabled us to
make a crude reconstruction of an auROC curve (dashed black
line in Fig. 1); the auROC values we extracted from these clinical
reports lay in the range 0.6 to 0.7, which is disappointingly low but
entirely consistent with the values obtained by PK/PD simulation
described above and previously (6). In summary, the empirical
evidence base for statements such as “drug concentration on day 7
is predictive of the outcome” (e.g., page 73 of reference 10) ap-
pears weak at best. In fact, our review of the literature reveals that
most clinical data point toward d7c being an extremely poor pre-
dictor of therapeutic outcome.

POTENTIAL PITFALLS WHEN USING DAY 7 CONCENTRATION
IN CLINICAL TRIALS

It is a current WHO recommendation that d7c be measured in
antimalarial drug clinical trials to assess drug exposure. These data
are being collected and reported so it is constructive to consider
what role they can play in clinical trials and, equally important, to
discuss the dangers that may arise from their uncritical use.

One potential use of d7c is to detect patients who poorly adhere
to their drug regimens; once identified, such patients could be
removed from the analysis, and drug cure rates calculated sepa-
rately for completely and poorly adherent patients. Figure 2 shows

FIG 2 A simulation of how day 7 concentration (d7c) varies according to the
level of patient adherence to the regimen. The figure shows the mean d7c of
piperaquine (PPQ) in mg/liter simulated for 10,000 African patients given
dihydroartemisinin (DHA)-PPQ once daily for 3 days using the PK/PD model
described in references 18 and 28. The patients were either dosed with the exact
dosage (mg/kg of body weight) (18 mg/kg per reference 50), dosed according
to their age (per reference 51), or dosed according to their weight (per refer-
ence 52). To investigate patient adherence, it was assumed that patients took
the full course, i.e., all three doses, only the first two doses, or the first dose only.
Outliers are not displayed. The figure was produced using a published one-
compartment model. A more-realistic two-compartment model parameter-
ization based on the work of Staehli Hodel et al. (53) gave identical results
except that the d7c in the central compartment is approximately 4-fold lower
(see Fig. S1 in supplemental material). (The Fig. 2 parameter values were as
follows. The elimination rate per day is 0.03, and the volume of distribution is
150 liters/kg.)
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our simulation of the effect of poor adherence on the d7c of PPQ,
given as 3 daily doses with DHA, in 10,000 patients. As expected,
the mean/median d7c declines as adherence decreases, but the
large amount of natural variation in human PK means that d7c is
unlikely to be diagnostic of poor adherence except in cases where
patients take only the first of the three doses; obviously, the pro-
portion of such patients should be very small to negligible in most
clinical trials.

One tempting way of using d7c data is to simply remove the
patients failing treatment who have “low” d7c from a clinical trial;
one obvious justification is that they may have been adhering
poorly to the treatment regimen. However, removal of only these
drug failures would overestimate the true drug efficacy, as it might
for example exclude patients adhering fully to the treatment reg-
imen with particularly extreme PK parameters. In some cases, this
overestimation may keep the treatment efficacy above the 95%
threshold of initiating policy change (29), thus removing the ne-
cessity to consider a replacement drug, an interpretation with po-
tentially fatal consequences. This bias toward overestimating drug
efficacy can be avoided by removing all patients with low d7c, but
the ROC curve analysis and PK/PD simulation suggest that this
will also remove a lot of drug successes: thus, the results would be
unbiased, but sample size would fall and the confidence intervals
around drug effectiveness would increase. This problem arises be-
cause d7c is such a poor predictor of outcome and is best illus-
trated using a trivial analogy. Suppose we thought, erroneously,
that patients born on a Monday are more likely to fail treatment.
Searching through records of patients failing treatment and re-
moving all failures born on a Monday will reduce the number of
failures and hence artificially increase the apparent drug efficacy;
the correct strategy would be to remove all patients born on a
Monday irrespective of their therapeutic outcome. This will elim-
inate the bias but reduce sample size analyzed in the clinical trial
and hence increase the confidence interval(s) around the esti-
mates of treatment efficacy.

There are considerable dangers in using d7c of a drug to iden-
tify a single d7c cutoff that can be used to distinguish between
“adequate” and “inadequate” dosing and hence used as a “target”
concentration. Informative threshold concentrations occur only
with high values of auROC where the ROC curve is nonlinear and
shows a clear cutoff point with high specificity and sensitivity (e.g.,
the hypothetical drug concentration cutoff of 45 ng/ml on the blue
ROC in Fig. 1). Note that it would be inappropriate to use the
concentration with the lowest P value as a cutoff, because as dis-
cussed above and in the supplemental material, the P value simply
tests the assumption of no association and, critically, is affected by
both the size of the effect and the sample size. Cutoffs between 175
and 600 ng/ml for LF have been suggested (for a review, see page
74 in reference 10) typically with P values of �0.001. The near-
linear relationship between d7c and the chance of falling treat-
ment means that virtually any “cutoff” value can be chosen and
supported by statistics (P value, odds ratio, etc.) to support its
selection. It is important to realize that unless the d7c is associated
with a large auROC, the choice is largely arbitrary.

Drug dosage, regimen, and adherence (which jointly deter-
mine d7c) are the only factors we can actually control in malaria
therapy; all the other PK and PD parameters are determined by
human and malaria genetics, so it is important to assess the impact
of changing the dosage. Analyses of clinical trials consistently
show that the higher the dose given, and d7c attained, the better

the chance of successful treatment; moreover, this relationship
appears to be roughly linear (e.g., Fig. 5 of reference 30 and Fig. 4
of reference 31). On one level, this result is entirely expected and
trivial (32): all antimalarials have had their dosages increased after
their initial deployment, and Guinea-Bissau overcame its problem
of CQ-resistant malaria by simply doubling the dosage of CQ
given to patients (33, 34). The reason dosages are not routinely
increased is because of concerns over toxicity (and no other coun-
try has followed Guinea-Bissau’s policy of doubling CQ dosage);
hence, the results emphasize the need for better toxicity data on
antimalarial drugs which is, in our opinion, an underresearched
area.

Finally, the WHO mandate that the drug efficacy must be
�95% (35) so the expected failure rates will be low in the routine
efficacy monitoring trials and any diagnostic ability of d7c will
probably never be observed. It is pointless doing a ROC analysis
when few or no treatment failures occur in a trial so it is not clear
how these d7c can be properly incorporated except by large meta-
analyses of numerous trials (e.g., pooled analysis of day 7 PPQ
concentrations [31]). Several authors have already noted that d7c
will be of little value when cure rates are very high. For example,
White et al. (9) note that “Relationships between PK variables and
cure rates are not evident when cure rates are very high. Such
relationships are apparent only when resistance develops or doses
are inadequate.” Most clinical trials of antimalarial drugs are now
testing highly effective ACTs, often in noninferiority trials, to al-
low decisions to be made on factors such as cost, side effects, ease
of regimens, length of posttreatment prophylaxis, and so on. It
therefore follows that d7c collected in these trials will be largely
superfluous until resistance starts to arise, in which case of course,
the ACT would have to be replaced.

In summary, there are a number of tempting but ultimately
incorrect ways of using d7c to interpret clinical trial data. It ap-
pears that d7c has no consistently clear predictive cutoff on a ROC
curve so that subsequent analyses tend to draw the rather trivial
conclusion that the more drug given to patients, the higher the
subsequent d7c, and the more chance they have of being cured.
The question therefore arises as to whether we can identify more
informative and/or cost-effective ways of bringing PK/PD mea-
sures into current clinical trial methodology.

CAN WE GATHER MORE-INFORMATIVE PHARMACOLOGICAL
DATA IN CLINICAL TRIALS?

Designing antimalarial therapies would be straightforward if all
people and all parasites were identical. The enormous variation in
parasite sensitivity to drugs, human variation in how a drug is
absorbed, distributed, and metabolized, and how toxicity may oc-
cur makes the rational design of drug regimens enormously com-
plex (36). It is this complexity that limits the use of d7c to a proxy
for drug exposure. The subsequent realization that drug exposure
is not the sole predictor of failure forces us to consider what other
factors contribute to failure and how we can collect and integrate
this information during routine clinical trials.

The first requirement would be to move away from taking drug
measurements at a single time point. Treatment is a dynamic pro-
cess that requires repeat measurements either by intensive sam-
pling or, more likely, through “sparse” sampling and appropriate
population PK analysis (10). The use of sparse sampling and pop-
ulation PK modeling is highly informative, as it allows PK param-
eters such as absorption rates, volumes of distributions, elimina-
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tion rates, and the number of physiological compartments to be
determined in different human populations, alongside the intra-
and interindividual variation of these parameters (37). PK/PD
modeling has been successfully used in other organisms to opti-
mize dosing strategies (38), and it seems reasonable to adopt the
same approach for malaria. However, this requires the measured
mean and associated variation in individual pharmacological pa-
rameters to determine treatment outcome. The d7c would be in-
adequate for such modeling, as it is a composite measure deter-
mined by several distinct PK parameters that need to be split into
its constituent parts, i.e., dosage, bioavailability, volume of distri-
bution, and elimination rate. Day 7 concentrations could still be
measured in each patient (day 7 is a routine surveillance time
point) but be augmented by additional sampling around this day
to generate the sparse data sets required for PK analysis. PK pa-
rameters alone cannot address the issue of how to deal with natu-
ral variation in parasite drug sensitivity which typically ranges 10-
to 100-fold even in the absence of “major” mutations controlling
drug resistance (e.g., Fig. 3 of reference 13). This implies that PK
data need to be accompanied by some indication of the drug sen-
sitivity of local malaria population(s). This would be best achieved
by in vitro measurement of fresh parasite isolates. These strategies
have been worked out in some detail (reviewed in reference 39)
and are now part of the World Wide Antimalarial Resistance Net-
work (WWARN) depository system.

It would then be necessary to integrate these separate sources of
data into a comprehensive framework linking the parameters to
therapeutic outcome. We would suggest PK/PD modeling as a
framework (6, 28) but are not dogmatic, provided that some sort
of coherent framework is used to link parameters to the therapeu-
tic outcome (19, 38). The application of such a framework has
several major advantages.

• Data can be combined from different trials, locations, and
patient groups to calibrate these models. This greatly in-
creases the scope and value of each data set including his-
torical trials that may have collected PK or PD data for dif-
ferent reasons. In particular, it also allows current ACT
trials, where few or no failures may occur, to contribute data
useful for drug regimen optimization.

• Clinical trials are run in highly controlled settings, making it
problematic to extrapolate their efficacy estimated under
near-ideal conditions into effectiveness under real-life con-
ditions. PK/PD modeling can be used to make these extrap-
olations. Obvious applications are to investigate how robust
the regimens are to poor adherence (40); it would be clearly
unethical to give patients incomplete dosages in a clinical
trial, but we know that nonadherence is routinely observed
in the field (recently reviewed in reference 41). Other com-
mon exclusion criteria in clinical trials are patients who are
severely ill or on comedication, both of which may substan-
tially alter their PK. Comedication is important in many
countries where malaria is endemic and where long-term
medication for tuberculosis (TB) and HIV is relatively com-
mon; changes in PK caused by comedication can then be fed
back into the PK/PD model to see whether and how the drug
dosages given to these subgroups of patients should be al-
tered. We do not argue that PK/PD modeling will necessar-
ily give an exact dosing schedule for such people, but we do

argue it can provide a dosing scheduling starting point for
clinical trials in such patients.

• Current trials cannot easily be used to predict future events,
in particular the consequences of increasing drug resistance,
which many commentators regard as inevitable (42). Once
again, PK/PD modeling can investigate how robust regi-
mens may be to small increases in the levels of parasite drug
tolerance/resistance and hence their likely therapeutic life
span (28). The PK/PD data can also be used to try and im-
plement regimens that minimize the selection pressures for
resistance.

CONCLUSIONS

The realization that d7c is apparently poorly predictive for the
therapeutic outcome raises the obvious question of whether this
PK component of clinical trials could be improved. Our first con-
clusion would be that the predictive capability of d7c should be
evaluated and reported using ROC analysis. The collection of d7c
data is not trivial. It requires correct blood sample collection, pro-
cessing, storage, and transportation to a central reference labora-
tory, as well as collation of d7c with clinical outcome and possible
stratification in the subsequent analysis. As argued above, the out-
come of all this effort is likely to be the trivial conclusion that
giving patients more drug improves their chance of treatment
success. It is therefore arguable whether this approach represents
the best use of resources and that better resource allocation might
be achieved through a two-tier clinical trial framework using two
distinct types of clinical trials to guide policy.

First, routine efficacy monitoring trials should be designed to
check that local first-line drug(s) have remained effective. There
seems little point in measuring d7c in such studies given that ef-
fectiveness is likely to be high so that few, if any, failures will occur.
In light of the poor predictive ability of d7c and the difficulties
inherent in pooling results from different studies (discussed in the
supplemental material), we suggest that the WHO drops their
recommendation that d7c should be collected in such studies and
leave individual investigators to consider whether the costs of
measuring d7c can be justified. One such justification would be to
compare whether different populations vary in their drug absorp-
tion and/or subsequent metabolism. In this case, rather than re-
lating the d7c to treatment outcome, investigators would examine
whether d7c differs in “at risk” populations. Examples of “at risk”
populations could be young or malnourished children or patients
with comedication (e.g., antiretrovirals). However, these “at risk”
populations are generally excluded from clinical trials so they may
be better investigated as part of phase IV trials. One other justifi-
cation would be as a crude measure of factors affecting PK: if the
same population exhibits differing d7c over time, then it suggests,
for example, that adherence to the drug regimen was altered as it is
unlikely that human PK parameters will have changed.

Second, we recommend the periodic use of more-focused and
specialized PK/PD trials, including a sophisticated PK component
designed to generate the data required for long-term optimization
of regimens and enrolling the full range of patient types. This PK
component would necessitate an optimized, drug-specific, sam-
pling schedule, which may or may not include measurement on
day 7 (43). Furthermore, these trials should also be accompanied
by culturing local parasite isolates to estimate PD parameters,
thereby allowing investigation of changing circumstances, such as
the possible evolution of drug resistance. However, conducting
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focused PK/PD trials will be challenging and likely to need exter-
nal support. Analyzing one drug concentration sample point costs
typically $20 or more. This does not include the cost of staff, con-
sumables, sample storage, sample transport, acquisition or main-
tenance of analytical equipment, etc. The culturing component is
also technically and logistically demanding, as the blood is some-
times collected in very remote areas and needs to reach the lab
early enough that parasites are still viable (39).

We also require an ethical framework for performing the
PK/PD trials. There are limits on how much blood can be drawn
from any individual patient, particularly infants. Blood is rou-
tinely drawn at prescribed days of follow-up to check for para-
sitemia, but it is likely that at least some of the blood sample (for
example for parasite culturing for IC50 analysis, repeat sampling
for artemisinin PK) may be of no direct clinical benefit to the
patient. This is not ethically impossible, but it does require some
justification that individual patients will accrue future benefits
from effective antimalarial drug provision that outweighs the in-
conveniences of providing additional blood sample not required
for immediate clinical purposes. In summary, we need a consen-
sus protocol for these strategic trials and a consensus that they can
be deemed ethical.

Statisticians often recommend that researchers planning a
study should first simulate, and then analyze, a realistic data set so
that their eventual study design can avoid any likely pitfalls re-
vealed in the simulations. For once we have heeded our own ad-
vice. The collection of PK data (d7c) was recently discussed in the
WHO publication Global Report on Antimalarial Drug Efficacy and
Drug Resistance: 2000 –2010 (44), where it was noted that “The
interpretation of the results of blood concentration studies for
determining drug resistance is not, however, always straightfor-
ward.” We think that this is an understatement and that too little
preparatory work has gone into identifying the best ways of ana-
lyzing the data. Part of the problem is that, of course, it is impos-
sible to analyze the data until it has been generated, and methods
of analysis typically have to be refined according to the data. In
summary, we believe that simply collecting d7c is unlikely to be
the best use of PK resources and that more-sophisticated PK ele-
ments of clinical trials be designed and rolled out. The resulting
detailed PK data on mean values and distributions can then use-
fully contribute to the rationale design of robust and effective
antimalarial drug regimens.
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