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ABSTRACT: The aim of untargeted metabolomics is to profile as
many metabolites as possible, yet a major challenge is comparing
experimental method performance on the basis of metabolome
coverage. To date, most published approaches have compared
experimental methods by counting the total number of features
detected. Due to artifactual interference, however, this number is
highly variable and therefore is a poor metric for comparing
metabolomic methods. Here we introduce an alternative approach
to benchmarking metabolome coverage which relies on mixed
Escherichia coli extracts from cells cultured in regular and 13C-
enriched media. After mass spectrometry-based metabolomic
analysis of these extracts, we “credential” features arising from E.
coli metabolites on the basis of isotope spacing and intensity. This
credentialing platform enables us to accurately compare the number of nonartifactual features yielded by different experimental
approaches. We highlight the value of our platform by reoptimizing a published untargeted metabolomic method for XCMS data
processing. Compared to the published parameters, the new XCMS parameters decrease the total number of features by 15% (a
reduction in noise features) while increasing the number of true metabolites detected and grouped by 20%. Our credentialing
platform relies on easily generated E. coli samples and a simple software algorithm that is freely available on our laboratory Web
site (http://pattilab.wustl.edu/software/credential/). We have validated the credentialing platform with reversed-phase and
hydrophilic interaction liquid chromatography as well as Agilent, Thermo Scientific, AB SCIEX, and LECO mass spectrometers.
Thus, the credentialing platform can readily be applied by any laboratory to optimize their untargeted metabolomic pipeline for
metabolite extraction, chromatographic separation, mass spectrometric detection, and bioinformatic processing.

The objective of untargeted metabolite profiling is to assay
as many endogenous small molecules in a biological

sample as possible.1 Mass spectrometry-based metabolomics
represents an established analytical platform that has been
widely applied toward this goal and has already yielded many
fundamental biological insights.2−5 Nevertheless, experimental
strategies to maximize the number of metabolites profiled are
still being developed.6−8 A major challenge in optimizing
metabolomic methodologies has been the difficulty in
comparing the number of metabolites profiled in each. Given
that the size and identity of the complete metabolome is
unknown, it is currently not possible to assess metabolome
coverage directly. Consequently, the most common metric used
to compare different experimental approaches has been the
number of features detected in a sample.6,9−12

We show here that a method detecting a maximal number of
features does not necessarily provide the greatest metabolome
coverage. We present a solution for the evaluation of
untargeted metabolomic method performance that enables us
to distinguish between two types of features: artifactual features
and biologically derived features. Artifactual features are peaks
in metabolomic data that arise from contaminants, chemical

noise, and bioinformatic noise. In contrast, biologically derived
features are peaks that arise from metabolites in the biological
sample being analyzed. We refer to the process of distinguish-
ing artifactual features from features of biological origin as
“credentialing”. In the credentialing workflow (Figure 1),
standard samples are prepared from Escherichia coli grown in
either natural-abundance media or uniformly 13C (U-13C)
enriched media. After performing metabolomic experiments
utilizing the methods to be compared, our algorithm finds and
credentials features based on expected isotope-intensity ratios.
This number of credentialed features represents a more reliable
metric of metabolome coverage than total feature count
because credentialed features are known to be of biological
origin and hence are representative of true metabolites. Upon
optimizing our bioinformatic workflow by counting creden-
tialed features, we reduce noise features by 15% and increase
properly detected and grouped features by 20%. Further, we
select several biological features for tandem mass spectrometry
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(MS/MS) analysis without any prior knowledge of their
identity or physiological significance. It is important to
emphasize that the credentialing platform described herein is
not intended to identify differences between various biological
phenotypes (discovery profiling). Rather, the credentialing
platform is designed only to compare the performance of
different untargeted metabolomic methods. We provide a step-
by-step protocol for performing credentialing with E. coli. While
other cell types could potentially be used, E. coli is a simple
model system whose optimized results will be applicable to the
vast majority of metabolomic optimizations.

■ BACKGROUND

Metabolomic studies are complex, multistep experiments with a
large number of parameters to optimize. The choice of sample
extraction, chromatography, and ionization method strongly
influences which metabolites are detected. Establishing
protocols which survey the broadest number of metabolites
during untargeted profiling has received detailed attention in
recent years.6,12−15 Previous studies have explored a multitude
of experimental variations to improve global metabolome
coverage that include the addition of ammonium fluoride and
ion-pairing reagents to chromatographic mobile phases,
separation strategies ranging from reversed-phase to hydro-
philic interaction liquid chromatography (HILIC), different
mass analyzers such as time-of-flight and the Orbitrap, and
various informatic software solutions for subsequent data
processing.12,15−18 The extensive list of mutually exclusive
experimental possibilities is confounding, particularly to
scientists just entering the field of untargeted metabolomics.
Yet, to date, comparisons of different methods have been
impractical because there is no robust metric for performance
evaluation.
Most published comparisons of mass spectrometry-based,

untargeted metabolomic methods are evaluated by counting the
total number of features detected. A feature is defined as a peak
in the metabolomic data set with a unique retention time and
mass-to-charge ratio. The number of features detected depends
on numerous factors including sample type, metabolite
extraction protocols, analyte separation, mass analyzer, and

bioinformatic processing. For liquid chromatography/mass
spectrometry (LC/MS)-based metabolomics, it is common to
detect thousands of features from a biological sample.
Importantly, a single metabolite often leads to many features19

due to: (i) isotopic peaks from naturally occurring 13C, (ii)
adduct formation such as hydrogen, ammonium, and sodium
adducts, (iii) neutral-loss fragments (loss of a hydroxyl group as
water or a carboxylate as carbon dioxide), (iv) other
fragmentation (breakage at labile bonds such as esters), (v)
multiple-charge states, and (vi) chromatographic effects which
result in a single metabolite eluting at more than one retention
time.
Informatic solutions have been established to annotate

isotopes, adducts, and neutral losses in untargeted metabolomic
data sets.17,20,21 Although these approaches are effective, they
cannot distinguish signals as endogenous or artifactual. Thus,
even after data reduction, a subset of the remaining features are
likely the result of contaminants introduced during sample
preparation, carryover from previous experiments, chemical
noise, or bioinformatic error. These highly variable artifactual
signals found in untargeted metabolomic data sets make it
challenging to estimate the number of true biologically derived
metabolites that are assayed by a particular untargeted LC/MS-
based metabolomic experiment. There is therefore a great need
to develop a robust metric to the evaluate performance of
untargeted metabolomic methods.

■ EXPERIMENTAL SECTION

Our filtering process relies on the generation of standard
samples derived from a mixture of E. coli grown on 100%
natural-abundance glucose and E. coli grown on 100% U-13C-
glucose as the sole carbon source. Two standard samples are
required for the filtering process; these are generated by mixing
natural-abundance E. coli cultures and U-13C-glucose E. coli
cultures at either 5 mL/5 mL or 3 mL/6 mL ratios, respectively.
The mixed E. coli samples are then extracted, yielding a
standard sample for analysis and optimization.

Materials. U-13C-D-Glucose was purchased from Cambridge
Isotope Laboratories Inc. (Andover, MA). E. coli strain K12,
MG1655 was purchased from ATCC (Manassas, VA). Lennox

Figure 1. Overview of the feature credentialing process. A sample is generated from two cultures of E. coli grown in parallel, one grown on natural-
abundance glucose and a second grown on 13C-glucose as the sole carbon source. These two cultures are mixed in distinct ratios prior to harvesting,
here 1:1 and 1:2. Extraction and LC/MS analysis is then performed on the standard samples. The resulting data are searched for pairs of coeluting
peaks which satisfy the following requirements: (i) the intensities of the peaks must reflect the mixing ratio, (ii) the U-13C peak must predict a
feasible number of carbons for the mass in question, and (iii) the exact masses of the peaks must predict an integer number of carbons. These
requirements define a “credentialed space” in which the apex of a second peak must be found to qualify as an acceptable isotope. These candidate
peaks are then aligned and grouped between the two samples. Each peak pair is compared across samples and a second, stricter intensity check is
performed. This requires that the ratios of each sample (Ia12/Ia13 and Ib12/Ib13) are proportional to the mixed ratios of each sample. Peaks that pass
these filters are considered credentialed.
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LB broth powder, 5× M9 salts, and all LC/MS-grade solvents
were purchased from Sigma-Aldrich (St. Louis, MO). Cell
culture was performed with ultrapure water provided by a Milli-
Q system (Millipore).
Growth of E. coli Standards. Cultures were grown in a

rotary shaker at 37 °C and 250 rpm. A preculture of E. coli was
grown in LB broth for 16 h. Prior to inoculation, 3 mL of
preculture was pelleted and resuspended to OD600 = 0.6 in M9
salts. M9 salts were prepared with the following concentrations
in sterile Erlenmeyer flasks: 6.8 g/L Na2HPO4·7H2O; 3 g/L
KH2PO4; 1 g/L NH4Cl; 0.5 g/L NaCl; 240 mg/L MgSO4; 11
mg/L CaCl2. Salts were divided into two 100 mL aliquots, and
to each aliquot, 2 mL of 20% glucose was added with a fresh-
filtered syringe. The filter was rinsed with 2 mL of ultrapure
water to ensure complete transfer of glucose. One aliquot
received U-13C-glucose and the second received natural-
abundance glucose. The M9 media was then inoculated with
1 mL of the resuspended preculture per 100 mL of media.
Cultures were grown to OD600 = 0.6, at which point they were
harvested as described below.
Harvesting of E. coli Standards. Upon reaching OD600 =

0.6, flasks were removed from the shaker and placed on ice.
Appropriate volumes of the 12C and 13C cultures were pipetted
together into 15 mL centrifuge tubes, also on ice, generating
samples with ratios of 1/1 of 1/2 12C/13C culture. These
mixtures established two distinct ratios of 12C to 13C feature
intensities that could then be used in our credentialing
algorithm, described below. Cells were pelleted by centrifuga-
tion at 2000g for 10 min at 4 °C. The supernatant was removed
via pipet, and the cell pellets were snap-frozen in liquid
nitrogen. In addition to the mixed 12C and 13C cultures, natural-
abundance (12C) cultures were used as controls. We refer to the
mixed samples as “labeled” and the natural-abundance extracts
alone as “unlabeled.”
Metabolite Extraction. The mixed E. coli pellets were

extracted as previously described.6 Briefly, cells were lysed by
three freeze−thaw cycles in 2/2/1 methanol/acetonitrile/water
along with sonication and vortexing. The soluble portion was
then vacuum concentrated and reconstituted in 100 μL of 1/1
acetonitrile/water for LC/MS analysis.
LC/MS Analysis. The data shown herein were obtained

from an Agilent 6540 UHD QTOF interfaced with an Agilent
1260 Capillary LC. The column used for separation was a
Phenomenex Luna NH2 (150 mm × 1 mm, 3 μm). HILIC
solvents were A, 95% water in acetonitrile with 10 mM
ammonium acetate/10 mM ammonium hydroxide (pH 9.8),
and B, 95% acetonitrile in water. HILIC was performed at 45
μL/min with the following linear gradient (minutes, %B): 0,
100%; 5, 100%; 45, 0%; 50, 0%; 51, 100%; 60, 100%. For all
experiments, 5 μL of extract was injected. MS parameters were
as follows: gas, 300 °C 9 L/min; nebulizer, 35 psi 1000 V;
sheath gas, 350 °C 11 L/min; capillary, 3500 V; fragmentor,
175 V; scan rate, 1 scan/s.
To demonstrate the wide applicability of our credentialing

approach to other metabolomic platforms, we also analyzed our
samples and subsequently validated correct credentialing with
multiple chromatographic and mass spectrometrometric
technologies. In addition to the Agilent QTOF, we credentialed
data from the Thermo QE, the AB SCIEX TripleTOF, and the
LECO Pegasus GC-HRT. Chromatographic methods we
credentialed include reversed-phase LC and HILIC. Effective
parameters for credentialing each of these experimental
platforms are listed in the Supporting Information Table S-3.

Data Analysis. Analysis was performed with a custom
filtering script that utilizes the XCMS16 and CAMERA20 R22

packages as well as the METLIN23 database. The script is
available on our laboratory Web site at http://pattilab.wustl.
edu/software/credential/. The algorithm identifies features of
biological origin through two rounds of data filtering, as
depicted in Figure 1. Prior to filtering, features are detected
from the MS raw data with the XCMS findPeaks.centWave
algorithm. In the first round of filtering, coeluting peaks within
a single sample are assessed for potential isotopologue pairs
differing by [(n)1.003355/z] Da in mass, where n is a whole
number, z is the ion’s charge, and the constant is the mass
difference between 12C and 13C. Upper and lower bounds of n
for each m/z in question were calculated from the distribution
of mass per carbon number from the compounds in ECMDB24

(E. coli Metabolome Database, Supporting Information Figure
S-2). The ratios of the putative 12C and 13C peak intensities are
then evaluated. Each measured ratio that is not within a set
percentage of the mixture ratio of the 12C and 13C culture is
disqualified. For credentialing, the default value of 400% is
effective.
The two filtered samples with distinct mixture ratios of 12C

and 13C are then taken together for a final round of filtering.
Peaks from each sample are aligned and grouped. Surviving
features found in both samples are evaluated such that
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where xi is the 12C/13C mixing ratio of the ith sample, ri is
intensity ratio (I12C/I13C) of the ith sample, and e (ratio_tol)
sets the acceptable tolerance for the intensity ratio relative to
the mixing ratio. This two-round intensity filter allows for
features with varying 12C and 13C intensity ratios (due to the
kinetic isotope effect or carbon fixation of atmospheric CO2) to
pass the relaxed first round and stricter second round as long as
their intensities vary systematically between samples. All
passing features are termed credentialed. Credentialed features
are output as a summary table that includes all U-12C peaks
determined to be of biological origin.

■ RESULTS AND DISCUSSION

Each step of the untargeted metabolomic workflow can
introduce artifactual signals that are not endogenous to the
biological sample being analyzed. It is generally not possible to
discriminate features of biological origin from artifactual
features a priori, and thus, artifactual signals significantly
complicate interpretation of untargeted metabolomic results.
These artifactual signals can arise from sample contamination
during metabolite extraction, carryover from previous experi-
ments, background noise detected by the MS, or misannotation
of data during bioinformatic processing. While efforts are made
to minimize artifactual signals, it is not possible to completely
eliminate them from the features list. We therefore attempted
to filter out artifactual signals by using isotopic signatures of
cellular metabolism that are easily identified by informatic
analysis. We utilized the widely available and extensively
characterized E. coli strain K12 to generate isotopically enriched
biological extracts. Two cultures were prepared in parallel, one
containing 12C (natural-abundance) glucose and the other
containing 13C glucose as the sole carbon source in M9 minimal
media. The cultures were mixed in defined ratios and processed
through the metabolomic workflow together. By searching the
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resulting features list for pairs of unlabeled and fully labeled
isotopologues and comparing their intensities to the values
expected from the culture volume ratios, signals of biological
origin can be distinguished from artifactual ones. The output of
the approach is a list of credentialed features arising from the
biological sample of interest. These features reflect the extent to
which the methodology employed was able to capture the
metabolome.
The power of stable isotope labeling in conjunction with

mass spectrometry has long been leveraged to improve
quantitative measurements. Mixing labeled and unlabeled
samples has proven to be an effective approach to perform
quantitation in proteomics,25−27 and similar approaches have
recently been extended to metabolomics.28 Mashego et al.
developed “mass isotopomer ratio analysis of U-13C labeled
extracts” (MIRACLE) in which U-13C labeled metabolites
obtained from yeast grown in defined culture medium are
mixed with unlabeled sample extracts to improve quantita-
tion.29 More recently, an innovative variation of 12C−13C
metabolite mixing was developed in which cells are grown in
either 5% or 95% randomly enriched 13C glucose. This
experimental strategy, termed isotopic ratio outlier analysis or
IROA, leads to a diagnostic isotopic pattern for naturally
occurring compounds that can be used for quantitation and
metabolite identification during untargeted profiling.30,31 Here,
we introduce another experimental approach which involves
mixing 12C and 13C metabolic extracts. We then use the unique
isotopic signals that result from the metabolic transformation of
the label as a mechanism to identify features of biological
origin.
Contrasting the Credentialing and IROA Platforms. It

is worth distinguishing IROA from our credentialing approach.
Fundamental to the distinction is that mixing a natural-
abundance sample with a U-13C labeled sample in a single ratio
does not provide a specific enough signature to effectively
discriminate features of biological origin from artifactual
features. IROA introduces additional specificity to the isotopic
pattern by enriching one sample with 5% 13C and a second
sample with 95% 13C, instead of using natural-abundance and
U-13C samples. In contrast, credentialing introduces additional
specificity to the isotopic pattern by mixing different ratios of
natural-abundance and U-13C samples. In credentialing, one
sample is made by mixing natural-abundance and U-13C cells at
a ratio of 1/1 and a second sample is made by mixing natural-
abundance and U-13C cells at a ratio of 1/2. There are
experimental benefits of each approach that make the platforms
better suited for each of their unique experimental applications.
IROA has been used to identify and quantitate differences
between biological phenotypes during untargeted profiling.
Given that the relative ratio of any given peak between
biological phenotypes is unknown during untargeted profiling,
the credentialing strategy based on defined ratios is
incompatible with this type of discovery analysis. The objective
of credentialing, on the other hand, is to identify features of
biological origin exclusively from standard E. coli samples.
While IROA could be used for this purpose in principle, the
credentialing platform is not constrained by the aim of
discovery analysis and therefore offers several advantages.
First, media needed to produce labeled E. coli samples for
credentialing is easily synthesized in any laboratory, whereas
IROA media can only be obtained commercially. Second, the
credentialing platform is better suited to identify low-intensity
features of biological origin. In IROA, the signal intensity of any

given metabolite is shifted away from the U-12C peak and the
U-13C peak as a function of carbon number. For a metabolite
with 10 carbons, as an example, 50% of the signal intensity is
lost from the U-12C peak or the U-13C peak. This decrease in
signal intensity prevents low-abundance E. coli derived
metabolites that are detected in unlabeled samples from
being detected with IROA. Because the credentialing platform
only uses natural-abundance and U-13C samples, it is not
subject to this limitation. Indeed, detection of low-abundance
metabolites is of particular importance when optimizing
metabolomic methods as these compounds are the most
challenging to measure, but can be of great biological
importance. Finally, because credentialing only uses E. coli
samples, the analysis of the resulting isotopic data can exploit
the known relationship between mass and carbon number
derived from ECMDB (Supporting Information Figure S-2).

Parameters for Credentialing. To accomplish the
filtering of artifactual signals, we created a simple R package.
The core function, credential(), has several adjustable
parameters allowing various chromatographic and instrumental
platforms to be credentialed. These parameters include (i)
iso_ppm, the ppm tolerance when searching for 13C isotopes,
(ii) iso_rt, the retention-time window in which a peak and its
isotope must elute, (iii) mix_tol, the tolerance for the intensity
ratio of the 12C and 13C peak, (iv) ratio_tol, the tolerance for
the ratio of the intensity ratios between two samples, and (v)
mpc_tol, the tolerance for compounds with unusually high or
low mass compared to the number of carbons they contain.
(Details concerning the calculation of mass per carbon based
on the ECMDB can be found in Supporting Information Figure
S-2.)
We have determined effective parameters for reversed-phase

and hydrophilic interaction liquid chromatography as well as for
the Agilent QTOF, Thermo QE, AB SCIEX TripleTOF 5600+,
and the LECO Pegasus GC-HRT. These parameters have been
experimentally validated and are listed in the Supporting
Information Table S-3.
Evaluation of the filtering effectiveness was accomplished by

comparing the number of credentialed features found in
unlabeled and labeled extracts. In addition to the labeled
extracts, natural-abundance (unlabeled) extracts were generated
as controls. An unlabeled extract should have no credentialed
features if it is not mixed with a labeled extract. Therefore, the
number of passing features in an unlabeled extract represents
the false positive rate. Initial experiments indicated that filtering
based on a single mixed-extract sample was not sufficiently
selective to remove the majority of artifactual peaks. We found
that a two-sample, relative-intensity filter was most effective. As
shown in Table 1, this filtering process is selective. The process
credentialed only 0.6% of the negative-control features, whereas
9% of the 12C/13C mixture features were credentialed.
To further validate the filtering process, we examined the

natural isotopic peaks that were credentialed in our 12C/13C
sample. Consider that in a 12C sample many peaks will contain
a natural-abundance M + 1 peak which by definition satisfies
the mass requirement to be an isotope. The filtering process
credentials some of these natural isotopes along with the
monoisotopic peak. These are easily detected and removed by
established deisotoping methods, but these peaks allowed us to
assess how often an M + 1 is credentialed when the M + 0 is
not. If this occurs often, it would indicate that the algorithm is
inappropriately disqualifying features. We detected 385
credentialed natural isotopes in our mixture sample. Out of

Analytical Chemistry Article

dx.doi.org/10.1021/ac503092d | Anal. Chem. 2014, 86, 9583−95899586



the 385 credentialed, natural isotopes only one did not have a
corresponding U-12C in the final credentialed features list. This
indicates the filtering approach is performing reliably.
Application: Reoptimization of a Previously Pub-

lished XCMS Method. With an established method to
credential features as biological in origin and exclude various
noise sources, we set out to optimize our XCMS-based
informatic workflow. XCMS is a widely used informatic
package suited for the analysis of untargeted LC/MS data
sets. The general XCMS workflow involves peak finding, peak
grouping across samples, and retention-time alignment. Settings
for each step in this process affect the quality of features
returned and therefore the overall performance of the
untargeted metabolomic workflow. For example, we found
that settings for peak picking that cause the annotation of
spurious noise peaks as features lower the quality of peak
grouping and retention-time alignment (data not shown).
Further, using poor grouping parameters can lead to XCMS
splitting a single peak into multiple groups, thereby resulting in
erroneous statistics.
To generate data for XCMS optimization, a previously

published method was replicated.6 The same LC/MS system,
extraction method, and chromatography protocols were utilized
as published and described in the Experimental Section. When
processing the data, however, we varied several parameters of
the XCMS functions findPeaks.centWave(), group(), and
retcor(). As the filtering depends on each of these functions,
the final number of credentialed features is representative of the
quality of XCMS data processing. Previous approaches to
optimizing untargeted metabolomic parameters such as these
have relied on counting the total number of features detected.
Here, we applied our filtering approach to instead count the
number of credentialed features and use this as a benchmark for
parameter optimization. Our results show that the published
method parameters based on total number of features are
suboptimal (Table 2). The published parameters do return a
greater number of total features, but the number of features of
biological origin accurately detected and grouped is substan-
tially lower with these settings. These data highlight that a
larger feature number does not necessarily indicate better
metabolome coverage and therefore an improved untargeted
metabolomic method.
Reoptimization of XCMS parameters resulted in a substantial

improvement. Our XCMS parameters led to an increase of 20%
in credentialed features (an increase of 342 features), while
reducing the total number of features by 15% (a decrease of
4750 features). Parameters for findPeaks.centWave() were
determined to be the most critical to the analysis, while further
optimization of group and retcor qualified only an additional 41

peaks . I t i s notab le tha t , p r ior to opt imiz ing
findPeaks.centWave(), optimization of group() parameters
increased the number of credentialed features, partially
overcoming the negative impact of artifactual signals.

Characterizing Features in Untargeted Metabolomic
Data Sets. To translate metabolomic data into biochemical
insight, the features generated in a typical untargeted
experiment must first be structurally characterized. The
standard workflow for structurally characterizing features
requires matching MS/MS data of the features of interest to
the MS/MS data of authentic standards. Identifying features is
the most time-demanding step of the untargeted metabolomic
workflow and is generally performed in a targeted manner. That
is, MS/MS data are only acquired and interpreted for a handful
of features determined to be interesting, usually on the basis of
statistical thresholds. While this worfklow is often applied to
identify tens of metabolites in a metabolomic study, attempting
to identify each of the thousands of features detected in a
typical sample with this approach is impractical. New
technologies to reduce the time required to establish metabolite
identifications are an active area of research, but high-
throughput methods to structurally characterize metabolites
are not widely available. Moreover, many of the MS/MS data
are challenging to interpret. When the MS/MS pattern of a
feature does not match any of the MS/MS patterns in
metabolite databases, it is difficult to determine if the MS/MS
data correspond to an unknown metabolite or merely MS/MS
data from an artifactual feature.
The feature credentialing approach offers a mechanism to

rapidly filter features that should not be pursued for
identification, namely, those features that do not correspond
to signals of biological origin. When we applied credentialing to
E. coli extract, we reduced the number of features that represent
candidates for MS/MS from 23 567 to 2192. The resulting
subset of credentialed features can be targeted for MS/MS
analysis with standard workflows. As an example, we performed
targeted MS/MS on 250 compounds in a single experimental
run. These data illustrate that MS/MS experiments could be
performed on every feature of biological origin over a minimal
and feasible number of analytical runs. Select data are presented
in Figure 2A−C. The MS/MS data collected on these features
were matched to the METLIN metabolite database and
resulted in the identification of three metabolites: uracil, ADP
(adenosine diphosphate), and UDP-GlcA (uridine diphosphate
glucuronic acid). MS1 spectra and chromatograms for these
compounds can be found in Supporting Information Figure S-
4.

Table 1. Performance of Feature Credentialinga

sample type
total

features
credentialed
features

percentage
credentialed (%)

no injection 1564 13 0.8
extraction blank 2736 18 0.7
natural-abundance E. coli 18643 120 0.6
12C/13C standard sample 23567 2192 9.3

aA summary of the results of the credentialing process after being
applied to several different data sets. The rows labeled “no injection”
and “extraction blanks” represent credentialed peaks due to carryover
from previous credentialing runs. Natural-abundance E. coli is a
negative control that estimates the false positive rate of the
credentialing process.

Table 2. Reoptimization of Published XCMS Parametersa

XCMS parameter
published
parameters

with optimized
peak finding

with optimized
retcor and group

ppm 15 12 12
peak width 10, 120 15, 140 15, 140
mzwid 0.015 0.015 0.015
bw 5 5 10
gapInit 0.6
total features 32010 27260 27260
credentialed features 1475 1776 1817

aParameters used and the results of each step in the optimization
process are shown. Published parameters were taken from a previously
published method (ref 6). The column labeled “with optimized peak
finding” shows results for the optimization of findPeaks.centWave().
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In addition to generating MS/MS data for metabolites
included in databases, it is possible to reliably generate MS/MS
data on biological peaks which currently cannot be annotated
by metabolomic databases. Because credentialed features have
passed our filtering rounds, we know that they are true
metabolites of biological origin even if they do not return any
database hits. Of the 1827 credentialed features, 392 were not
found in METLIN or the METLIN fragment databases. Three
such example features are seen in Figure 2D−F. Previously
these features may have been discarded as artifacts, but the
credentialing platform provides confidence in their authenticity
such that they can be reported and referenced in future
experiments.

■ CONCLUSION

The feature credentialing strategy presented here is a powerful
platform to discriminate biological features from the various
noise sources prevalent in untargeted metabolomic data. The
process is experimentally straightforward and can be easily
implemented in any metabolomic laboratory. Feature creden-
tialing reliably removes artifactual features such as those arising
from chemical and informatic noise, thereby resulting in a
valuable list of features of biological origin. These credentialed
features address many of the drawbacks associated with feature
counting in comparing method performance on the basis of
metabolome coverage. As such, counting credentialed features
can be used in the development and optimization of untargeted
metabolomic approaches as demonstrated by the reoptimiza-
tion of XCMS parameters. Credentialing features is also an

effective data reduction strategy for untargeted metabolomic
results such that a smaller number of peaks can be targeted for
MS/MS analysis. In summary, the feature credentialing
platform introduced here represents a step toward defining
optimal untargeted metabolomic platforms and provides a
standard metric to facilitate collaboration between different
metabolomic laboratories.
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Neumann, S. Anal. Chem. 2012, 84, 283−289.
(21) Alonso, A.; Julia,̀ A.; Beltran, A.; Vinaixa, M.; Díaz, M.; Ibañez,
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