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Abstract

Screening and detection of prostate cancer (CaP) currently lacks an image-based protocol which is 

reflected in the high false negative rates currently associated with blinded sextant biopsies. Multi-

protocol magnetic resonance imaging (MRI) offers high resolution functional and structural data 

about internal body structures (such as the prostate). In this paper we present a novel 

comprehensive computer-aided scheme for CaP detection from high resolution in vivo multi-

protocol MRI by integrating functional and structural information obtained via dynamic-contrast 

enhanced (DCE) and T2-weighted (T2-w) MRI, respectively. Our scheme is fully-automated and 

comprises (a) prostate segmentation, (b) multimodal image registration, and (c) data representation 

and multi-classifier modules for information fusion. Following prostate boundary segmentation 

via an improved active shape model, the DCE/T2-w protocols and the T2-w/ex vivo histological 

prostatectomy specimens are brought into alignment via a deformable, multi-attribute registration 

scheme. T2-w/histology alignment allows for the mapping of true CaP extent onto the in vivo 

MRI, which is used for training and evaluation of a multi-protocol MRI CaP classifier. The meta-

classifier used is a random forest constructed by bagging multiple decision tree classifiers, each 

trained individually on T2-w structural, textural and DCE functional attributes. 3-fold classifier 

cross validation was performed using a set of 18 images derived from 6 patient datasets on a per-

pixel basis. Our results show that the results of CaP detection obtained from integration of T2-w 

structural textural data and DCE functional data (area under the ROC curve of 0.815) significantly 

outperforms detection based on either of the individual modalities (0.704 (T2-w) and 0.682 

(DCE)). It was also found that a meta-classifier trained directly on integrated T2-w and DCE data 

(data-level integration) significantly outperformed a decision-level meta-classifier, constructed by 

combining the classifier outputs from the individual T2-w and DCE channels.
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1. INTRODUCTION

Prostate cancer (CaP) is the second leading cause of cancer-related deaths among males in 

the US with an estimated 186,320 new cases in 2008 alone, with 28,660 fatalities*. The 

current protocol for CaP detection is a screening test based on elevated levels of the Prostate 

Specific Antigen (PSA) in the blood. High PSA levels typically call for a blinded sextant 

transrectal ultrasound (TRUS) guided symmetrical needle biopsy. However, TRUS biopsies 

have been associated with a significantly lower CaP detection accuracy due to (a) the low 

specificity of the PSA test, and (b) poor image resolution of ultrasound.1

1.1 Use of multimodal MRI for CaP detection

Recently, Magnetic Resonance Imaging (MRI) has emerged as a promising modality for 

CaP detection with several studies showing that 3 Tesla (T) endorectal in vivo T2-weighted 

(T2-w) imaging yields significantly higher contrast and resolution compared to ultrasound.2 

An additional advantage offered by MRI is the ability to capture information using different 

protocols within the same acquisition. Dynamic-Contrast Enhanced (DCE) MRI3 aims to 

provide complementary information to the structural data captured by T2-w MRI, by 

characterizing the uptake and washout of paramagnetic contrast agents over time within an 

organ. Cancerous tissue is known to possess increased vascularity and therefore exhibits a 

significantly differing uptake profile as compared to normal tissue.3

1.2 Challenges in building an integrated multi-protocol CAD system

Recently several clinical studies have shown that the combination of DCE MRI and T2-w 

MRI results in improved CaP localization compared to any individual modality.2–5 The 

ability to quantitatively integrate multiple MR protocols to build a meta-classifier for CaP 

detection is impeded by significant technical challenges (described below).

• Data alignment—The different imaging modalities  and  considered in a multi-

protocol system require to be brought into the same spatial plane of reference via image 

registration. This is especially challenging when the two modalities are structurally different 

(e.g. histology and T2-w MRI). The aim of multimodal image registration is to find a 

mapping ψ between  and  which will bring them into alignment and overcome issues 

related to modality artifacts and/or deformations.

• Knowledge representation—Following image alignment of the 2 modalities  and 

, the objective is to integrate the corresponding feature vectors fA(x) and fB(x), where x is 

a single spatial location (pixel) on , . However in certain cases, it may not be possible 

*Source: American Cancer Society
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to directly concatenate fA(x) and fB(x), owing to dimensionality differences in fA(x) and fB(x). 

For instance fA(x) may correspond to scalar image intensity values and fB(x) may be a vector 

of values (e.g. if  and  correspond to T2-w and Magnetic Resonance Spectroscopy 

(MRS) data respectively). One possible solution is to apply a transformation Ω to each of 

 and  yielding data mappings Ω(fA(x)) and Ω(fB(x)) respectively, such that |Ω(fA(x))| = 

|Ω(fB(x))| , where |S| is the cardinality of any set S. The direct concatenation of Ω(fA(x)) and 

Ω(fB(x to result in a new feature vector fAB(x) = [Ω(fA(x)), Ω(fB(x))] could then be used to 

train a classifier hAB(x) to identify x as belonging to one or two of several classes. An 

alternative approach is to develop individual classifiers hA(x) and hB(x) and then combine 

the individual decisions. Note that hAB(x), hA(x), hB(x) could represent posterior class 

conditional probabilities regarding class assignment of x or could represent actual class 

labels (0 and 1 in the 2-class case).

• Fusion approaches—As suggested by Rohlfing et al.,6 data fusion could either be via 

data level integration (creating a consolidated feature vector fAB(x) and then the meta-

classifier hAB(x)) or via decision level integration (combining hA(x) and hB(x) via one of 

several classifier fusion strategies - product, average, or majority voting).

1.3 Previous work in computer-aided diagnosis of CaP from multi-protocol MRI

Madabhushi et al.7 presented a weighted feature ensemble scheme that combined multiple 

3D texture features from 4 Tesla ex vivo T2-w MRI to generate a likelihood scene in which 

the intensity at every spatial location corresponded to the probability of CaP being present. 

We have presented unsupervised computer-aided diagnosis (CAD) schemes for CaP 

detection from in vivo T2-w8 and DCE-MRI9 respectively. In spite of using only single 

protocols, our CAD systems yielded CaP detection accuracies of over 80%, when evaluated 

on a per-pixel basis. Vos et al.10 have described a supervised CAD scheme for DCE MRI 

prostate data which used pharmacokinetic features and SVM classifiers while examining the 

peripheral zone of the prostate alone. In [11], a multimodal classifier which integrated 

texture features from multi-protocol 1.5 T in vivo prostate MRI (including T2-w, line-scan 

diffusion, and T2-mapping) was constructed to generate a statistical probability map for 

CaP. We have also presented an unsupervised meta-classifier for the integration of T2-w 

MRI and MRS data12 which yielded a higher CaP detection rate compared to either modality 

alone. Vos et al.,13 also recently presented a supervised CAD system to integrate DCE and 

T2-w intensities, however they reported no improvement in CaP detection accuracy.

1.4 Our solution

In this paper, we present a novel comprehensive CAD scheme which integrates structural 

and functional prostate MR data for CaP detection. Our methodology seeks to provide 

unique solutions for each of the challenges in multimodal data integration (data alignment, 

knowledge representation, and data fusion). Our scheme comprises dedicated prostate 

segmentation, data alignment, and multi-classifier modules. A novel active shape model 

(ASM), called MANTRA (Multi-Attribute, Non-initializing, Texture Reconstruction based 

ASM)14 is used to to segment out the prostate boundary on the T2-w and DCE MRI images. 

Bias field correction15 and MR image intensity standardization16 techniques are then applied 
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to the image data. T2-w and DCE MRI data are aligned via a novel multimodal registration 

scheme, COLLINARUS (Collection of Image-derived Non-linear Attributes for Registration 

Using Splines).17 COLLINARUS is also applied to align corresponding histological sections 

from ex vivo prostatectomy specimens to the T2-w and DCE imagery to enable mapping of 

CaP extent onto T2-w/DCE MRI. The CaP extent thus determined on T2-w and DCE MRI 

is then used for classifier training and evaluation on the MR imaging protocols. Multiple 

texture feature representations of T2-w MRI data7 which we have previously shown to better 

discriminate between CaP and benign areas are then extracted from the image scene. We 

construct meta-classifiers for CaP by (a) fusing the structural T2-w and functional DCE 

information in the data space and (b) performing decision level integration via fusing 

classifiers trained separately on the T2-w and DCE data (Figure 1). The classifier that we 

consider here is the random forest18 obtained by bagging multiple decision tree classifiers.19 

A basic overview of the system is presented in Figure 2.

2. EXPERIMENTAL DESIGN

2.1 Data Acquisition

A total of 6 patient studies were obtained using a 3 T Genesis Signa MRI machine at the 

Beth Israel Deaconess Medical Center. Each of the patients was confirmed to have prostate 

cancer via core needle biopsies. These patients were then scheduled for a radical 

prostatectomy. Prior to surgery, MR imaging was performed using an endorectal coil in the 

axial plane and included T2-w and DCE protocols. The DCE-MR images were acquired 

during and after a bolus injection of 0.1 mmol/kg of body weight of gadopentetate 

dimeglumine using a 3-dimensional gradient echo sequence (3D-GE) with a temporal 

resolution of 1 min 35 sec. Prostatectomy specimens were later sectioned and stained with 

Haematoxylin and Eosin (H & E) and examined by a trained pathologist to accurately 

delineate presence and extent of CaP. A pathologist and radiologist working in consort, 

visually identified 18 corresponding whole mount histological sections (WMHS) and T2-w 

MRI sections from these 6 studies. Correspondences between T2-w and DCE images were 

determined via the stored DICOM † image header information.

2.2 Notation

We represent a single 2D slice from a 3D MRI T2-w scene as , where CT2 

is a finite 2D rectangular array of pixels cT2 and fT2(cT2) is the T2-w MR image intensity at 

every cT2 ∈ CT2. Similarly  represents a single planar slice from a spatio-

temporal 3D DCE scene where f T 1,t(c) assigns an intensity value to every pixel c ∈ C at 

time point t, t ∈ {1, . . . , 7}. A whole mount histological section (WMHS) is similarly 

denoted as . Following image registration via COLLINARUS to DCE-MRI 

and hence the 2D grid C, T2-w MR images are denoted as  and WMHS are 

†http://medical.nema.org/
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denoted as . We thus data analyze all image at the DCE-MRI resolution (256 

× 256 pixels).

2.3 Prostate boundary segmentation via MANTRA

We have recently developed a Multi-Attribute, Non-initializing, Texture Reconstruction 

based Active shape model (MANTRA) algorithm14 for automated segmentation of the 

prostate boundary on in vivo endorectal MR imagery. MANTRA requires only a rough 

initialization (such as a bounding-box) around the prostate to be able to segment the 

boundary accurately. Unlike traditional active shape models (ASMs), MANTRA makes use 

of local texture model reconstruction as well as multiple attributes with a combined mutual 

information20 metric to overcome limitations of using image intensity alone in constructing 

an ASM. MANTRA is applied to segment the prostate boundary for all images  and 

. The main steps involved in MANTRA are,

Step 1 (Training)—Landmarks on the prostate boundary are selected from expert prostate 

boundary segmentations. A statistical shape model is then constructed by performing 

Principal Component Analysis (PCA) across the landmarks. Texture features are calculated 

on training images, and regions of pixels sampled from areas surrounding each landmark 

point are used to construct a statistical texture model via PCA.

Step 2 (Segmentation)—Regions within a new image are searched for the prostate 

border and potential boundary landmark locations have pixels sampled from around them. 

The pixel intensity values within a region associated with a landmark are reconstructed from 

the texture model as best as possible, and mutual information is maximized between the 

reconstruction and the extracted region to test whether the location associated with this 

region may be a boundary location. An ASM is fit to a set of locations selected in this 

manner, and the process repeats until convergence.

Figure 3 shows sample results of prostate boundary segmentation using MANTRA on 3 T 

T2-w endorectal in vivo MR images. The original 3 T T2-w images  are shown in 

Figures 3(a) and 3(g) with the initializing bounding box in yellow. The final segmentations 

of the prostate boundary via MANTRA (in yellow) for each image are shown in Figures 3(b) 

and 3(h).

2.4 Correct bias field artifacts and intensity non-standardness

We used the ITK BiasCorrector algorithm15 to correct each of the 2D MR images,  and 

 for bias field inhomogeneity. Intensity standardization16 was then used 

to correct for the non-linearity in MR image intensities on  to ensure that the T2-w 

intensities have the same tissue-specific meaning across images within every patient study, 

as well as across different patient studies.
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2.5 Multimodal registration of multi-protocol prostate MRI and WMHS

Registration of multimodal imagery is complicated by differences in both image intensities 

and shape of the underlying anatomy from scenes corresponding to different modalities and 

protocols. We have previously addressed these challenges in the context of rigid registration 

using our feature-driven registration scheme, COmbined Feature Ensemble Mutual 

Information (COFEMI).20 The goal of the COFEMI technique is to provide a similarity 

measure that is driven by unique low level image textural features to result in a registration 

that is more robust to intensity artifacts and modality differences, compared to traditional 

similarity measures (such as MI) which are driven by image intensities alone. However, our 

specific problem, namely alignment of WMHS and T2-w MRI, is complicated by non-linear 

differences in the overall shape of the prostate between in vivo T2-w and DCE MRI and ex 

vivo WMHS as a result of (1) the presence of an endorectal coil during MR imaging and (2) 

deformations to the histological specimen due to fixation and sectioning.21 Consequently, 

achieving correct alignment of such imagery requires elastic transformations to overcome 

the non-linear shape differences. Our new COLLINARUS non-rigid registration scheme17 

allows us to make use of the robustness of COFEMI to artifacts and modality differences20 

in combination with fully automated non-linear image warping at multiple scales via a 

hierarchical B-spline mesh grid optimization scheme. Registration by COLLINARUS is 

critical to account for local deformations that cannot be modeled by any linear coordinate 

transformations. This technique is used to align all 18 corresponding ,  and 

. The main steps involved in COLLINARUS are described below:

1.
Initial affine alignment of  to the corresponding  via COFEMI20 which 

enables correction of large scale translations, rotations, and differences in image 

scale.

2.
Automated non-rigid registration of rigidly registered  from step 1 to  using 

our automated feature-driven COLLINARUS technique to correct for non-linear 

deformations caused by the endorectal coil on  and histological processing on 

.

3.
Affine registration of  to  (chosen due to improved contrast) via 

maximization of mutual information (MI) to correct for subtle misalignment and 

resolution mismatch between the MR protocols, thus bringing all modalities and 

protocols into spatial alignment. It is known that the individual DCE time point 

images , are in implicit registration and hence require no 

additional alignment step.

4.
Calculate combined transformation Φ1 based on Steps 1-3 to apply to  resulting 

in new WMHS scene , bringing it into alignment with .
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5.
Calculate transformation Φ2 based on Step 3 to apply to  resulting in new T2-w 

MR scene , also bringing it into alignment with .

The CaP extent on  is mapped via Φ onto , yielding the set of CaP pixels G(C), 

which then corresponds to CaP extent at DCE MRI resolution. Figures 3(b)-(c) and Figures 

3(h)-(i) show corresponding  and  slices. The results of registering  and  in 

Step 2 are shown in Figures 3(d) and 3(j). Figures 3(e) and 3(k) show the result of mapping 

CaP extent from  (Figures 3(d) and 3(j)) onto  (Figures 3(b) and 3(h)) after 

transforming  and  to be in alignment with . Figures 3(f) and 3(l) show the 

mapping of CaP extent from  onto .

2.6 Knowledge Extraction

2.6.1 Structural attributes from T2-w MRI—We have previously demonstrated the 

utility of textural representations of T2-w MR data in discriminating CaP regions from 

benign areas, as compared to using T2-w MR image intensities alone.7 A total of 6 texture 

features are calculated for  and denoted as , where  is the feature 

value associated with each pixel c ∈ C, and feature operator φ ∈ {1, . . . , 6}. We define a κ-

neighborhood centered on c ∈ C as  where , ∥ e − c ≤ κ, , |S| is 

the cardinality of any set S, and ∥ . ∥ is the Euclidean distance operator. The 6 texture 

features that we extract include,

1. First order statistical features (standard deviation operator): This is defined as the 

standard deviation of the gray level distributions of pixels within local 

neighborhoods  centered about each c C. Figure 4(b) shows the result of 

applying this operator to the T2-w MR image shown in Figure 4(a).

2. Non-steerable features (Sobel-Kirsch operator): This is used to detect the strength 

of horizontal edges via the convolution of the following linear operator 

 with the image . Figure 4(c) shows the resulting image 

upon applying this operator to the T2-w scene shown in Figure 4(a).

3. Second order statistical (Haralick) features: To calculate the Haralick feature 

images, we first compute a  co-occurrence matrix P d,c,κ within each , 

c ∈ C, such that the value at any location [g1, g2] in Pd,c,κ represents the frequency 

with which two distinct pixels  with associated image intensities f(a) = 

g1, f(b) = g are separated by distance d, where  is the maximum gray scale 

intensity in  and . A total of 4 Haralick features including 

intensity average, entropy, correlation, and contrast inverse moment are calculated 

with , d = 1, κ = 1. Figure 4(d) shows the Haralick feature image (contrast 

inverse moment) corresponding to the image shown in Figure 4(a).
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The extracted T2-w texture features and the T2-w intensity values are concatenated to form 

a feature vector  associated with every pixel c 

∈ C.

2.6.2 Functional attributes from DCE MRI—The wash-in and wash-out of the contrast 

agent within the gland is characterized by varying intensity values across the time-point 

images , t ∈ {1, . . . , 7 . Figure 4(e) shows typical time-intensity curves associated 

with pixels belonging to cancerous (red) and benign (blue) regions respectively.3 It can be 

seen that cancerous regions have a distinctly steeper uptake and wash-out as compared to the 

more gradual uptake of benign regions, in turn reflecting the increased vascularity of the 

CaP regions. The time-point information is concatenated to form a single feature vector 

FT1(c) = [fT1,t(c)|t ∈ {1, . . . , 7}] associated with every pixel c ∈ C.

2.7 Knowledge representation and integration

2.7.1 Data level integration—In this work we adopt the approach of Braun et al.,22 to 

achieve data level integration of structural and functional attribute vectors FT1(c) and FT2f(c) 

by directly concatenating features in the original high-dimensional feature space. This 

results in an integrated attribute vector FT1T2f(c) = [FT1(c), FT2f(c)], for c ∈ C. Additionally 

we consider data level integration in intensity space as FT1T2(c) = [FT1(c), fT2(c)], whereby 

only the original untransformed protocol intensity values are combined.

2.7.2 Decision level integration—Decision integration refers to the combination of 

weak classifiers (based on individual modalities) via some pre-decided rule such as 

averaging or majority voting. Any c ∈ C is assigned to one of several classes (Y = {0, 1} in 

the 2 class case) via multiple weak classifiers hn(c), n ∈ {1, . . . , N}. For the 2 class case, 

hn(c) {0, 1}. A meta-classifier h(c) is then achieved via one of the several rules mentioned 

below. For instance, assuming that all hn(c), c ∈ C, n ∈ {1, . . . , N} are independent, we can 

invoke the product rule as

(1)

We formulate the averaging rule as

(2)

Another strong classifier hOR(c) is defined as,

(3)
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2.8 Description of classifier ensembles

In the following subsections we describe some of the classifier schemes employed to 

generate weak and strong classifiers.

2.8.1 Naive Bayes classifier—Consider a set of labeled instances C, where for each c ∈ 

C, Y (c) ∈ {0, 1}. For all c ∈ C, such that Y (c) = 1, a distribution D1 is obtained. Similarly 

∀c ∈ C such that Y (c) = 0, distribution D 0 can be obtained. The posterior conditional 

probability that c belongs to class Y, given the value of c, can then be calculated as

(4)

where p(c|Y, DY ) is the posterior conditional probability for the occurrence of c given class 

Y , p(Y) is the prior probability of class Y, and the denominator is a normalizing constant. 

For the T2-w intensity feature set fT2(c), c ∈ C we can define a naive Bayesian classifier 

such that Y (c) {0, 1}, where 1 represents the cancer class (∀c ∈ G(C), Y (c) = 1). Then, 

hT2(c) = P (Y, DY |fT2(c)), Y = 1, is the posterior class conditional probability that c belongs 

to class Y , given its T2-weighted image intensity fT2(c).

2.8.2 Random forests of decision trees—A random forest18 refers to a classifier 

ensemble of decision trees based on bootstrap aggregation (or bagging) and uses averaging 

to combine the results of multiple weak classifiers such that the overall bias and variance 

across all classifiers is reduced. For a given training set of labeled instances C, we have for 

each c ∈ C, Y (c) ∈ {0, 1}. We construct subsets of C asĈ , n ∈ {1, . . . , N} such that 

, . These Ĉn are bootstrap replicates so that 

. From each Ĉn we construct a decision tree classifier (C4.5 

algorithm19) as hn(c) ∈ {0, 1}, n ∈ {1, . . . , N} for all c ∈ C. The final Random Forest 

classifier result is obtained via Equation (2) as hAvg(c) ∈ [0, 1].

2.8.3 Classifier prediction results—Given a classifier h, we can obtain a binary 

prediction result at every c ∈ C by thresholding the associated probability value h(c) ∈ [0, 

1]. We define hρ(c) as this binary prediction result at each threshold ρ ∈ [0, 1] such that

(5)

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1 Description of Experiments

The different feature vectors that are formed from ,  and , the 

associated classifier outputs and resulting binary predictions employed for the specific 

application considered in this paper are summarized in Table 1. Labeled data ∀c ∈ C for the 

classifiers are generated based on G(C) such that ∀c ∈ G(c), Y (c) = 1 and Y (c) = 0 
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otherwise. Decision-level fusion (Section 2.7.2) is performed at every threshold ρ and ∀c ∈ 

C. This results in two decision level classifiers  and 

, obtained by invoking the independence assumption and the 

logical OR operation.

3.2 Evaluation of classification schemes

Based on the binary prediction results β(c), 

, ∀c ∈ C, Receiver Operating 

Characteristic (ROC) curves representing the trade-off between CaP detection sensitivity 

and specificity can be generated. The vertical axis of the ROC curve is the true positive rate 

(TPR) or sensitivity, and the horizontal axis is the false positive rate (FPR) or 1-specificity 

and each point on the curve corresponds to the sensitivity and specificity of detection of the 

classification for some ρ ∈ [0, 1]. For any scene , the CaP detection result obtained by the 

classifiers described in Table 1 is given as , c ∈ C. For each 

and corresponding CaP extent G(C), sensitivity (SN) and specificity (SP{) are calculated

(6)

A 3-fold randomized cross-validation procedure is used when testing the system, whereby 

from the 18 images, 3 sets of 6 slices each are formed. During a single cross-validation run, 

2 out of the 3 sets are chosen (corresponding to 12 MR images) as training data while the 

remaining set of 6 images are used as testing data. The final result is generated for each test 

image based on the feature sets and procedures as described previously. This process is 

repeated until all 18 images are classified once within a cross-validation run. Randomized 

cross-validation is repeated 25 times for different sets of training and testing slices.

Average ROC curves for each classifier were generated by fitting a smooth polynomial 

through the ROC curve generated for each image to allow averaging over all 18 images, and 

then averaging across all 25 cross-validation runs. Mean and standard deviation of Area 

Under the ROC (AUC) values for each of the classifiers was calculated over 25 runs. The 

operating point θ on the ROC curve is defined as value of ρ which yields detection SN, SP 

that is closest to 100% sensitivity and 100% specificity (the top left corner of the graph). 

The accuracy of the system at the threshold θ corresponding to the operating point, as well 

as the AUC values for each of the average curves generated previously is used in our 

quantitative evaluation.

3.3 Qualitative Results

Sample detection results are shown in Figure 5 with each row corresponding to a different 

study. Figures 5(a) and 5(g) show overlays of G(C) in green on  (obtained via 

COLLINARUS, Section 2.5). In Figures 5(b)-(f) and Figures 5(h)-(l) the binary prediction 

for CaP at the operating point threshold θ via different classifiers has been overlaid on 

and shown in green. The results in Figures 5(e) and 5(k) corresponding to the integration of 
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structural T2-w texture features and the functional intensity features  show accurate 

segmentations of CaP when compared to the ground truth in Figures 5(a) and 5(g) 

respectively. Compare this result (Figures 5(e) and 5(k)) with that obtained from the 

individual modalities (Figures 5(b), (h) for , Figures (c), (i) for ), data level fusion 

in intensity space (Figures 5(d), 5(j) for ) as well as decision level fusion of these 

modalities (Figures 5(f), 5(l) for ).

3.4 Quantitative Results

Figure 6(a) shows average Receiver-Operating Characteristic (ROC) curves obtained via 

averaging corresponding results across 18 slices and 25 cross-validation runs. The highest 

AUC value corresponds to the classifier  (shown in black), while the lowest is for hT2 

(shown in purple). AUC values averaged over 18 slices and 25 cross validation runs for each 

of the different classifiers are summarized in Table 6(b) with corresponding standard 

deviations. Paired student t-tests were conducted using the AUC and accuracy values at the 

operating point of the average ROC curves corresponding to each of 25 cross validation 

runs, with the null hypothesis being no improvement in performance of  when 

compared to the remaining classifiers (Table 2). The significantly superior performance (p < 

0.05) when using  suggests that integrating structural textural features and functional 

information directly at the data level offers the most optimal results for CaP detection.

4. CONCLUDING REMARKS

In this paper we have presented an integrated system for prostate cancer detection via fusion 

of structural and functional information from multi-protocol (T2-w and DCE) 3 T in vivo 

prostate MR images. Our solution provides a comprehensive scheme for prostate cancer 

detection, with different automated modules to handle the individual tasks. The prostate 

region of interest is extracted via our automated segmentation scheme, MANTRA. Our 

recently developed multimodal image registration scheme, COLLINARUS, is used to 

register whole-mount histological sections and the multi-protocol MR data, as well as align 

T2 and DCE protocols prior to integration. Texture features are used to quantify regions on 

T2-w MRI and functional intensity information is used from DCE MRI. Detection results 

using multiple combinations of structural and functional MR data are quantitatively 

evaluated against ground truth estimates for cancer presence and extent. Additionally we 

have compared the performance of classifiers generated via data-level and decision-level 

integration. The fusion of DCE-MR functional information with extracted T2-w MR 

structural information in data space was found to perform statistically significantly better as 

compared to all other decision and data level classifiers, with an average AUC value of 

0.815 and an accuracy value of 0.861. Future work will focus on validating these results on a 

larger cohort of data.
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Figure 1. 
Constructing a meta-classifier for CaP detection by combining functional and structural data 

at the (a) data-level, and at the (b) decision-level.
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Figure 2. 
Flowchart showing different system components and overall organization. Note the 

convention of using blue arrows to represent the T2-w MRI data flow and red arrows to 

represent the DCE MRI data flow.
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Figure 3. 

(a), (g) 3 T in vivo endorectal T2-w prostate MR images  for two different patient 

studies (in each row), with manually placed bounding-boxes (in yellow) which serves as 

model initialization for MANTRA; (b), (h) resulting prostate boundary segmentations via 

MANTRA (in yellow). The WMHS  corresponding to the MRI sections in (a), (g) with 

CaP extent outlined in blue by a pathologist are shown in (c) and (i), respectively. The result 

of registration of  ((c), (i)) to  ((b), (h)) via COLLINARUS are sh  own in (d) 

and (j) respectively. Note the warped appearance of the WMHS in (d) and (j), which is now 

in spatial correspondence with  in (b) and (h) respectively. (e) and (k) show the mapping 

of the CaP extent (in green) from  onto , following alignment to  . (f) and (1) 

show the corresponding mapping of spatial CaP extent (in green) from the newly aligned 

 to .

Viswanath et al. Page 16

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2014 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(a)  with CaP extent G(C) superposed in green. Feature scenes for  in (a) 

corresponding to (b) first order statistics (standard deviation), (c) Sobel-Kirsch, and (d) 

second order statistics (contrast inverse moment). (e) Corresponding time-intensity curves 

for CaP (red) and benign (blue) regions are shown based on DCE MRI data. Note the 

significant differences in the uptake and wash-out characteristics.
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Figure 5. 
(a) and (g) G(C) superposed on  and highlighted in green. CaP detection results (in 

green) are shown corresponding to (b), (h) ; (c), (i)  ; (d), (j)  ; (e), (k) 

; (f), (l)  at the operating-point threshold θ, where θ ∈ [0, 1]. Note the 

significantly improved CaP detection via the integrated structural, functional classifiers in 

(e) and (k) as compared to the others.
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Figure 6. 
(a) Average ROC curves across 18 slices and 25 cross validation runs. different colors 

correspond to different classifiers. The best performance corresponds to the classifier based 

on integration of structural and functional data , in black. (b) Average and standard 

deviation of AUC and accuracy values for different classifiers averaged over 18 slices and 

25 cross-validation runs.
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Table 1

Notation corresponding to different types of data and decision fusion approaches.

Description Data decision vectors Classifier outputs Binary prediction

Data-level fusion Structural intensity FT2(c) = [fT2(c)] hT2(c) hρ
T 2(c)

Functional intensity FT1(c) = [fT1,t(c)|t ∈ {1,..., 7] hAvg
T 1 (c) hAvg ,ρ

T 1 (c)

Derived structural features FT 2 f (c) = f T 2(c), f ϕ
T 2(c) ∣ ϕ ∈ {1, …, 6} hAvg

T 2 f (c) hAvg ,ρ
T 2 f (c)

Integrated intensities FT1T2(c) = [FT1(c), FT2(c)] hAvg
T 1T 2(c) hAvg ,ρ

T 1T 2(c)

Integrated structural, 
textural, functional

FT1T2f(c) = [FT1(c), FT2f(c)] hAvg
T 1T 2 f (c) hAvg ,ρ

T 1T 2 f (c)

Decision-level fusion Independent classifiers hAvg ,ρ
T 1 × hAvg ,ρ

T 2 f hInd
T 1,T 2 f (c) hInd ,ρ

T 1,T 2 f (c)

Majority voting of 
classifiers OR hAvg ,ρ

T 1 , hAvg ,ρ
T 2 f hOR

T 1,T 2 f (c) hOR,ρ
T 1,T 2 f (c)
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Table 2

p values for a paired student t-test comparing the improvement in CaP detection performance (in terms of 

AUC and accuracy) of  with the other classifiers (Table 1) across 25 cross-validation runs and over 18 

slices.

hT2
hAvg

T 1 hAvg
T 2 f hAvg

T 1T 2 hInd
T 1,T 2 f hOR

T 1,T 2 f

Accuracy 1.742e-40 2.282e-19 4.421e-4 2.960e-13 1.233e-54 4.306e-07

AUC 0.013 9.281e-23 4.689e-11 1.255e-17 1.811e-18 5.894e-13
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