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Abstract

We focus on the analysis, quantification and visualization of atypicality in affective facial

expressions of children with High Functioning Autism (HFA). We examine facial Motion Capture

data from typically developing (TD) children and children with HFA, using various statistical

methods, including Functional Data Analysis, in order to quantify atypical expression

characteristics and uncover patterns of expression evolution in the two populations. Our results

show that children with HFA display higher asynchrony of motion between facial regions, more

rough facial and head motion, and a larger range of facial region motion. Overall, subjects with

HFA consistently display a wider variability in the expressive facial gestures that they employ.

Our analysis demonstrates the utility of computational approaches for understanding behavioral

data and brings new insights into the autism domain regarding the atypicality that is often

associated with facial expressions of subjects with HFA.
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1. INTRODUCTION

Facial expressions provide a window to internal emotional state and are key for successful

communication and social integration. Individuals with High Functioning Autism (HFA),

who have average intelligence and language skills, often struggle in social settings because

of difficulty in interpreting [1] and producing [2, 3] facial expressions. Their expressions are

often perceived as awkward or atypical by typically developing observers (TD) [4].

Although this perception of awkwardness is used as a clinically relevant measure, it does not

shed light into the specific facial gestures that may have elicited that perception. This

motivates the use of Motion Capture (MoCap) technology and the application of statistical
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methods like Functional Data Analysis (FDA, [15]), that allow us to capture, mathematically

quantify and visualize atypical characteristics of facial gestures. This work is part of the

emerging Behavioral Signal Processing (BSP) domain that explores the role of engineering

in furthering the understanding of human behavior [5].

Starting from these qualitative notions of atypicality, our goal is to derive quantitative

descriptions of the characteristics of facial expressions using appropriate statistical analyses.

Through these, we can discover differences between TD and HFA populations that may

contribute to a perception of atypicality. The availability of detailed MoCap information

enables quantifying overall aspects of facial gestures such as synchrony and smoothness of

motion, that may affect the final expression quality. Dynamic aspects of facial expressions

are of equal interest, and the use of FDA techniques such us functional PCA (fPCA)

provides a mathematical framework to estimate important patterns of temporal variability

and explore how such variability is employed by the two populations. Finally, given that

children with HFA may display a wide variety of behaviors [6], it is important to understand

child-specific expressive characteristics. The use of multidimensional scaling (MDS)

addresses this point by providing a principled way to visualize differences of facial

expression behavior across children.

Our work proposes the use of a variety of statistical approaches to uncover and interpret

characteristics of behavioral data, and demonstrates their potential to bring new insights into

the autism domain. According to our results, subjects with HFA are characterized on

average by lower synchrony of movement between facial regions, more rough head and

facial motion, and a larger range of facial region motion. Expression-specific analysis of

smiles indicates that children with HFA display a larger variability in their smile evolution,

and may display idiosyncratic facial gestures unrelated to the expression. Overall, children

with HFA consistently display a wider variability of facial behaviors compared to their TD

counterparts, which corroborates with existing psychological research [6]. Those results

shed light into the nature of expression atypicality and certain findings, e.g., asynchrony,

may suggest an underlying impairment in the facial expression production mechanism that is

worth further investigation.

2. RELATED WORK

Since early psychological works [7, 8], autism spectrum disorders (ASD) have been linked

to the production of atypical facial expressions and prosody. Autism researchers have

reported that the facial expressions of subjects with ASD are often perceived as different and

awkward [2, 3, 4]. Researchers have also reported atypicality with the synchronization of

expressive cues, e.g., verbal language and body gestures [9]. Inspired by these observations

of asynchrony, we examine synchronization properties of minute facial gestures, which are

often hard to describe by visual inspection.

Recent computational work aims to bring new understanding of this psychological condition

and develop technological tools to help ASD individuals and psychology practitioners.

Work in [10] describes eye tracking glasses to be worn by the practitioner and track gaze

patterns of children with ASD during therapy sessions, while [11] introduces an expressive
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virtual agent that is designed to interact with children with ASD. Computational analyses

have mostly focused on atypical prosody, where certain prosodic properties of subjects with

ASD are shown to correlate with the severity of autism diagnosis [12, 13, 14]. In contrast,

computational analysis of atypical facial expressions is a relatively unexplored topic.

Our analysis relies heavily on FDA methods, which were introduced in [15] as a collection

of statistical methods for exploring patterns in time series data. A fundamental difference

between FDA and other statistical methods is the representation of time series data as

functions rather than multivariate vectors, which exploits their dynamic nature. FDA

techniques have been successfully applied for quantifying prosodic variability in speech

accents [16], and the analysis of tendon injuries using human gait MoCap data [17].

3. DATABASE

We analyze data from 37 children (21 with HFA, 16 TD) aged 9-14, while they perform

mimicry of emotional facial expression videos from the Mind Reading CD, a common

psychology resource [18]. Expressions last a few seconds and cover a variety of emotions

including happiness (smile), anger (frown) and emotional transitions, e.g. surprise followed

by happiness (mouth opening and smile). Children are instructed to watch and mimic those

expressions. There are two predefined sets of expressions with 18 expressions each,

covering similar expressions. Each child mimics the 18 expressions of one set. Children

wear 32 facial markers, as in Figure 1, and are recorded by 6 MoCap cameras at 100 fps.

4. DATA PREPARATION

Four stability markers were used to factor out head movement (depicted in Fig 1 as larger

markers in the forehead and ears). The positions of the remaining 28 markers are computed

with respect to the stability markers and used for further facial expression processing, while

the the stability markers are used to provide head motion information. Facial data were

further rotated to align with the (x,y,z) axes as depicted in Figure 1, and were centered to the

origin of the coordinate system. Data visualization tools were developed to visually inspect

the Mo-Cap sequence and correct any artifacts.

We perform face normalization to smooth out subject-specific variability due to different

facial structure, and focus on expression related variability. We apply the normalization

approach proposed in our previous work [19], where each subject’s mean marker positions

are shifted to match to the global mean positions computed across all subjects. Finally,

marker trajectories were interpolated to fill in gaps shorter than 1sec, that result from

temporarily missing or occluded markers. We use cubic Hermite spline interpolation, which

we empirically found to produce visually smooth results.

Marker data are then transformed into functional data. This process consists of

approximating each marker coordinate time series, e.g., x1, …xT, by a function say

, where φk, k = 1, …, K are the basis functions and c1, c2, …, ck are the

coefficients of the expansion. Conversion into functional data performs smoothing of the
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original time series, enables computing smooth approximations of high order derivatives of

marker trajectories (Section 5), and enables FDA methods such as fPCA (Section 6).

We use B-splines as basis functions, which are commonly used in FDA because of their

flexibility to model non-periodic series [15, 16]. Fitting is done by minimizing:

where D2 denotes second derivative and parameter λ controls the amount of smoothing

(second term) relative to the goodness of fit of function  (first term). We choose λ = 1

empirically according to the Generalized Cross Validation (GCV) criterion [20]. The FDA

analysis throughout the paper is performed using the FDA toolbox [20].

5. ANALYSIS OF GLOBAL CHARACTERISTICS OF AFFECTIVE

EXPRESSIONS

We group the expressions into two groups containing expressions produced by subjects with

TD and HFA, and perform statistical analysis of expressive differences. We examine

properties inspired from psychology, such as synchrony [9], or properties that intuitively

seem to affect the quality of the final expression, e.g., facial motion smoothness and range of

marker motion (large range may suggest exaggerated expressions).

TD and HFA groups contain roughly 16 × 18 and 21 × 18 expressions respectively, although

certain samples are removed because of missing or noisy markers. When grouping together

various facial expressions, we want to smooth out expression-related variability and focus

on subject-related variability. Therefore, all metrics described below are normalized by

mean shifting such that the mean of each metric per expression (and across multiple

subjects) is the same across expressions.

We examined synchrony of movement across left-right and upper-lower face regions. For

left-right comparisons, we measured facial distances associated with muscle movements,

specifically mouth corner, cheek raising, and eyebrow raising. These distances are depicted

as D1, D2 and D3 respectively for the right face and D1′, D2′, D3′ for the left face, in Fig 1.

To measure their motion synchrony, we computed Pearson’s correlation between D1-D1′,

D2-D2′ and D3-D3′. For upper-lower comparisons, we measured mouth opening (D4,

Figure 1) and eyebrow raising distances (D3 and D3′), and we computed Pearson’s

correlation between D4-D3, and D4-D3′. We examine the statistical significance of group

differences in correlation using a difference of means t-test. Results are presented in Table 1

indicating lower facial movement synchrony for subjects with HFA.

Although statistical tests reveal global differences, subject-specific characteristics are also of

interest. Subject characteristics are visualized using multidimensional scaling (MDS), which

is a collection of methods for visualizing the proximity of multidimensional data points [21].

MDS takes as input a distance (dissimilarity) matrix, where dissimilar data points are more
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distant, and provides methods for transforming data points into lower dimensions, typically

two dimensions for easy visualization, while optimally preserving their dissimilarity.

Here, a data point is a subject associated with a multidimensional feature of average

correlations. A subject performs 18 expressions, and for each we compute the 3 left-right

facial correlations mentioned above. By averaging over expressions we compute a 3D

average correlation feature per subject. Dissimilarity between subjects is computed by

taking euclidean distances of their respective features. MDS uses this dissimilarity matrix to

compute the distances between subjects in 2D space. Figure 2(a) shows the MDS

visualization for TD subjects represented in blue ‘T’, and subjects with HFA in red ‘A’,

when the average left-right symmetry correlations are used as features (we applied non-

classical multidimensional scaling using the metricstress criterion, and confirmed that

original dissimilarities are adequately preserved in 2D [21]). Intuitively, Figure 2(a)

illustrates similarities of subjects with respect to left-right facial synchrony behavior. We

notice that subjects with HFA generally display larger behavioral variability, although there

is one TD outlier. This visualization could help clinicians understand subject-specific

characteristics with respect to particular facial behaviors.

Smoothness of motion was investigated by computing higher order derivatives of facial and

head motion. We examine 5 facial regions, i.e., left and right eyebrows, left and right

cheeks, and mouth (Figure 1). Each region centroid is computed by averaging the markers in

that region, and for each centroid motion we estimate the absolute derivatives of order i, i =

1, 2, 3 averaged during the expression. We call this a roughness measure of order i. Similar

computations are performed for head motion, where the head centroid is the average of the 4

stability markers. The results in Table 1, indicate more roughness of head and lower/right

facial region motion for subjects with HFA. For lack of space we present only acceleration

results (i = 2), but other order derivatives follow similar patterns. We perform MDS analysis

using as features the average acceleration roughness measures per subject from mouth, right

cheek and right eyebrow regions. We select those regions since, according to Table 1, they

have significantly higher roughness measures. According to the resulting MDS visualization

of Figure 2(b), subjects with HFA are more likely to be outliers and display larger

variability.

Finally, we examine the range that facial regions traverse during an expression, i.e. range of

motion for eyebrows, cheeks, upper and lower mouth region centroids. This range is

significantly higher for the HFA group for lower and right face regions, as seen in Table 1.

6. QUANTIFYING EXPRESSION-SPECIFIC ATYPICALITY THROUGH FPCA

While previous analyses looked at global expression properties, here we perform

expression-specific analysis focusing on dynamic expression evolution. As an example, we

choose an expression of happiness, consisting of two consecutive smiles. This expression

belongs to one of the two expression sets mentioned in Section 3, so it is only performed by

19 children (7 TD, 12 HFA), out of the 37 children in our database. Smiles are chosen for

study because they are common in a variety of social interactions. Moreover, since this

expression contains a transition between two smiles, it has increased complexity and is a
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good candidate for revealing typical and atypical variability patterns. Finally, mouth region

expressions seem to differ between TD and HFA groups, as shown in Section 5, while the

onset and apex of those expressions are easily detected by looking at mouth distances, for

example distance D1 from Figure 1.

In Fig 3(a) we depict the mouth corner distance D1 during the two smiles expression from a

TD subject (blue solid line), and a subject with HFA (red dashed line). The expression of the

TD subject depicts a typical evolution where the 2 distance minima (black circles)

correspond to the apex of the two smiles and are surrounded by 3 maxima (black squares),

representing the beginning, middle (between smiles) and end of the expression respectively.

The expression of the subject with HFA follows a more atypical evolution and contains

seemingly unrelated motion, for example the oscillatory motion in the middle.

For better comparison, expressions are aligned such that the smile apices of different

subjects coincide. We apply a method called landmark registration [15, 16], which uses a set

of predefined landmarks, e.g., comparable events during an expression, and computes

warping functions such that the landmark points of different expression realizations

coincide. Here we define 5 landmarks; the 2 minima (smile apices) and 3 maxima described

above. Landmarks are automatically detected by searching for local maxima/minima and are

manually corrected if needed. In Figure 3(e) we show the subjects’ expressions after

landmark registration, where the two smile events are aligned and clearly visible.

After alignment, we compute principal components of expression variability using fPCA.

fPCA is an extension of ordinary PCA that operates on a set of functional input curves, i.e.,

xi(t), i = 1, .., N (here N=19). fPCA iteratively computes eigenfunctions ξj(t) such that the

data variance along the eigenfunction is maximized at each step j, i.e., maximize

, subject to normalization and orthogonality constraints, i.e.,

 and . The resulting set of eigenfunctions represents an

orthonormal basis system where input curves are decomposed into principal components of

variability. The PCA score of input curve xi(t) along ξj(t) is defined as 

(assuming mean subtracted curves for simplicity).

Figures 3(b)-(d) present the first 3 eigenfunctions (harmonics), cumulatively covering 82%

of total variability. As in [15], the black line is the mean curve, and the solid red line and

dashed blue lines illustrate the effect of ξj(t) by adding or subtracting respectively std(cj) ×

ξj(t) to the mean curve (standard deviation std(cj) is computed over all PCA scores cij).

Although, these three first principal components of variability are estimated in a data-driven

way, they seem visually interpretable. They respectively account for variability of: overall

expression amplitude (Fig. 3(b)), the smile width as defined by the curve dip happening

between initial and ending points (Fig. 3(c)), as well as mouth closing and second smile

apex happening in the second half of the expression (Fig. 3(d)). Figures 3(f)-(j) present

scatterplots of the first 3 PCA scores of different subjects’ expression. Subjects with HFA

display a wider variability of PCA score distribution, which translates to wider variance in

the expression evolution, and potentially contributes to an impression of atypicality. Note

that fPCA is unaware of the diagnosis label when it decomposes each expression into
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eigenfunctions. This decomposition naturally reveals differences between the TD and HFA

groups in the way the smile expression evolves.

We performed fPCA analysis of various expressions, and made similar observations of

greater variability in the evolution of expressions by subjects with HFA, mostly for complex

expressions containing transitions between facial gestures e.g., mouth opening and then

smile, consecutive smiles of increasing width. Mimicry of such expressions might be

challenging for children with HFA, and may thus reveal differences between expressions of

the two groups. Note that since we analyze posed expressions from children we would

expect some degree of unnaturalness from the subjects. However, Figures 3(a) and (f)-(j)

suggest a different nature and wider variance of expressive choices produced by subjects

with HFA, which are sometimes unrelated to a particular expression. For example, the

oscillatory motion displayed by the subject with HFA at Figure 3(a) appears in other facial

regions and other expressions of the same subject, and seems to be an idiosyncratic facial

gesture.

7. CONCLUSIONS AND FUTURE WORK

We have focused on quantifying atypicality in affective facial expressions, through the

statistical analysis of MoCap data from facial gestures, which are hard to describe

quantitatively by visual inspection. For this purpose, we have demonstrated the use of

various data representation, analysis and visualization methods for behavioral data. We have

found statistically significant differences in the affective facial expression characteristics

between TD children and children with HFA. Specifically, children with HFA display more

asynchrony of motion between facial regions, more head motion roughness, and more facial

motion roughness and range for the lower face regions, compared to TD children. Children

with HFA also display a wider variability in the expressive choices that they employ. Our

results shed light on the characteristics of facial expressions of children with HFA and

support qualitative psychological observations regarding atypicality of those expressions [2,

3]. In general, our described analyses could be applied in various time series data of human

behavior, where the main goal is the discovery and interpretation of data patterns.

Our future work includes analysis of a wider range of expressions including both positive

and negative emotions. We also plan to obtain perceptual measurements of awkwardness of

the collected expressions by TD observers in order to further interpret our findings. Finally,

the availability of facial marker data enables analysis-by-synthesis approaches, including

facial expression animation using virtual characters. It would be interesting to explore if the

development of expressive virtual characters for animation and manipulation of typical and

atypical facial gestures could provide any further insights to autism practitioners, or provide

a useful educational tool of facial expression visualization for individuals with HFA.
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Fig. 1.
Placement of facial markers and definition of facial distances (left) and facial regions (right).
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Fig. 2.
MDS visualization of similarities across subjects for left-right synchrony and facial region

motion roughness metrics.
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Fig. 3.
Analysis of the expression of two consecutive smiles. Plots of distance D1 from multiple

subjects before and after landmark registration (subjects with HFA in red, TD in blue lines).

Plots of the first 3 fPCA harmonics and scatterplots of corresponding fPCA scores.
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Table 1

Results of Statistical Tests of Global Facial Characteristics (t-test, difference of means)

comparison result

Left-Right Face Synchrony

left-right mouth corner cor
relations

Lower correlations for HFA,
p=0.02

left-right cheek correlations Lower correlations for HFA,
p=0.07

left-right eyebrow correla
tions

Lower correlations for HFA,
p=0.01

Upper-Lower Face Synchrony

right eyebrow & mouth
opening correlations.

Lower correlations for HFA,
p=0.05

left eyebrow & mouth open
ing correlations

Lower correlations for HFA,
p=0.03

Facial Motion Roughness (i = 2)

mouth roughness Higher roughness for HFA,
p=0.02

right cheek roughness Higher roughness for HFA,
p=0.01

left cheek roughness no difference

right eyebrow roughness Higher roughness for HFA,
p=0.07

left eyebrow roughness no difference

Head Motion Roughness (i = 2)

head roughness Higher roughness for HFA,
p ≈ 0

Facial Motion Range

upper mouth motion range Higher range for HFA,
p ≈ 0

lower mouth motion range Higher range for HFA,
p ≈ 0

right cheek motion range Higher range for HFA,
p ≈ 0

left cheek motion range no difference

right eyebrow motion range no difference

left eyebrow motion range no difference
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