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Abstract

Differential privacy is a cryptographically-motivated definition of privacy which has gained

significant attention over the past few years. Differentially private solutions enforce privacy by

adding random noise to a function computed over the data, and the challenge in designing such

algorithms is to control the added noise in order to optimize the privacy-accuracy-sample size

tradeoff.

This work studies differentially-private statistical estimation, and shows upper and lower bounds

on the convergence rates of differentially private approximations to statistical estimators. Our

results reveal a formal connection between differential privacy and the notion of Gross Error

Sensitivity (GES) in robust statistics, by showing that the convergence rate of any differentially

private approximation to an estimator that is accurate over a large class of distributions has to

grow with the GES of the estimator. We then provide an upper bound on the convergence rate of a

differentially private approximation to an estimator with bounded range and bounded GES. We

show that the bounded range condition is necessary if we wish to ensure a strict form of

differential privacy.

1. Introduction

Differential privacy (Dwork et al., 2006b) is a strong, cryptographically-motivated definition

of privacy which has gained significant attention in the machine-learning and data-mining

communities over the past few years (McSherry & Mironov, 2009; Chaudhuri et al., 2011;

Friedman & Schuster, 2010; Mohammed et al., 2011). In differentially private solutions,

privacy is guaranteed by ensuring that the participation of a single individual in a database

does not change the outcome of a private algorithm by much. This is typically achieved by

adding some random noise, either to the sensitive input data, or to the output of some

function, such as a classifier, computed on the sensitive data. While this guarantees privacy,

for most statistical and machine learning tasks, there is a subsequent loss in statistical

efficiency, in terms of the number of samples required to estimate a function to a given
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degree of accuracy. Thus the main challenge in designing differentially private algorithms is

to optimize the privacy-accuracy-sample size trade-off, and a body of literature has been

devoted to this goal.

In this paper, we focus on differentially-private statistical estimation. We ask: what

properties should a statistical estimator have, so that it can be approximated accurately with

differential privacy? Privately approximating an estimator based on a functional T that

performs well when data is drawn from a specific distribution F is easy: ignore the sensitive

data, and output T (F). Thus the challenge is to design differentially private approximations

to estimators that are accurate over a wide range of distributions.

Previous work (Smith, 2011) on differentially private statistical estimation shows how to

construct differentially private approximations to estimators which have asymptotic

normality guarantees under fairly mild conditions. In practical situations, however, we must

take into account the effect of a finite number of samples. Moreover, it has been empirically

observed (e.g., Chaudhuri et al., 2011; Vu & Slavkovic, 2009) that there is often a

significant gap in statistical efficiency between a differentially private estimator and its non-

private counterpart. Thus there is a need to study finite sample convergence rates for

differentially private statistical estimators, in order to characterize the properties that make a

statistical estimator amenable to differentially-private approximations.

In this paper, we provide upper and lower bounds on the finite sample convergence rates of

such estimators. Our first finite sample result draws a connection between differentially

private statistical estimators and Gross Error Sensitivity, a measure commonly used in the

robust statistics literature (Huber, 1981). The Gross Error Sensitivity (GES) of a statistical

functional T at a distribution F is the maximum change in the value of T (F) by an arbitrarily

small perturbation of F by any point mass x in the domain. We provide a lower bound on the

convergence rate of any differentially private statistical estimator, showing that an estimator

that approximates T (Fn) well with differential privacy over a large class of distributions

must have its convergence rate grow with the GES of T.

A natural question to ask next is whether bounded GES is sufficient for the existence of

differentially private estimators that are accurate for large classes of distributions. We next

show that at least for α-differential privacy, this is not the case. Any estimator based on a

functional T that takes values in a range of length R and guarantees α-differential privacy for

a wide class of distributions, has to have a finite sample convergence rate that grows with

increasing R.

We then show that bounded range and GES are indeed sufficient for differentially private

estimation. In particular, given an estimator based on a functional T which takes values in a

bounded range, and has bounded GES for all distributions close to the underlying data

distribution F, we show how to compute a differentially private approximation to T (F)

based on sensitive data drawn from F. Our approximation preserves (α, δ)-differential

privacy, a relaxation of α-differential privacy, and is based on the smoothed sensitivity

method (Nissim et al., 2007). We provide a finite sample upper bound on the convergence

rate of this estimator.
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The statistical estimators in our upper bounds are computationally inefficient in general. We

conclude by providing a separate explicit method for privately approximating M-estimators

with certain properties. We prove that these differentially-private estimators enjoy similar

privacy and statistical guarantees as those based on the smooth-sensitivity method, while

being more efficiently computable.

Related Work

Differential privacy was proposed by (Dwork et al., 2006b), and has been used since in

many works on privacy (e.g., Blum et al., 2005; Barak et al., 2007; Nissim et al., 2007;

McSherry & Mironov, 2009; Chaudhuri et al., 2011). It has been shown to have strong

semantic guarantees (Dwork et al., 2006b) and is resistant to many attacks (Ganta et al.,

2008) that succeed against some other definitions of privacy.

Dwork & Lei (2009) is the first work to identify a connection between differential privacy

and robust statistics; based on robust statistical estimators as a starting point, they provide

differentially private algorithms for several common estimation tasks, including interquartile

range, trimmed mean and median, and regression.

In further work, Smith (2011) shows how to construct a differentially private approximation

 to certain types of statistical estimators T, and establishes asymptotic normality of his

estimator provided certain conditions on T hold. We in contrast focus on finite sample

bounds, with an aim towards characterizing the statistical properties of estimators that

determine how closely they can be approximated with differential privacy. Lei (2011)

considers M-estimation, and provides a simple and elegant differentially-private M-

estimator which is statistically consistent.

Finally, work on the sample requirement of differentially private algorithms include bounds

on the accuracy of differentially private data release (Hardt & Talwar, 2010), and the sample

complexity of differentially private classification (Chaudhuri & Hsu, 2011).

2. Preliminaries

The goal of this paper is to examine the conditions under which we can find private

approximations to estimators. The notion of privacy we use is differential privacy (Dwork et

al., 2006b;a).

Definition 1—A (randomized) algorithm  taking values in a range  is (α, δ)-

differentially private if for all S ⊆ , and all data sets D and D′ differing in a single entry,

where Pr [·] is the distribution on  induced by the output of  given a data set.

A (randomized) algorithm  is α-differentially private if it is (α, 0)-differentially private.
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Here α > 0 and δ ∈ [0, 1] are privacy parameters, where smaller α and δ imply stricter

privacy.

A general approach to developing differentially private approximations to functions is to add

noise, either to the sensitive data, or to the output of a non-private function computed on the

data. This work explores what properties statistical functionals need to have so that they can

be accurately approximated with differential privacy.

Let  denote the space of probability distributions on a domain . A statistical functional T:

 → ℝ is a real-valued function of a distribution F. The plug-in estimator of θ = T (F) is

given by θn:= T (Fn), where Fn is the empirical distribution corresponding to an i.i.d. sample

of size n drawn from F.

A common measure of the robustness of a statistical functional is the influence function,

which measures how a functional T (F) responds to small changes to the input F.

Definition 2—The influence function IF(x, T, F) for a functional T and distribution F at x ∈

 is:

where δx denotes the point mass distribution at x.

It is a well-established result in theoretical statistics (see, e.g, Wasserman, 2006) that if T is

Hadamard-differentiable, and if [IF(x, T, F)2] is bounded, then T (Fn) converges to T

(F) as n → ∞.

A related notion is that of gross error sensitivity, which measures the worst-case value of the

influence function for any x ∈ .

Definition 3—The gross error sensitivity GES(T, F) for a functional T and distribution F

is:

We also define the notions of influence function and gross error sensitivity at a fixed scale ρ

> 0:

In this work, the data domain  will be a subset of ℝ. We overload notation and use F to

denote a distribution as well as its cumulative distribution function. For two distributions F

and G, we use dGC(F, G): = supx∈ℝ |F (x) − G(x)| to denote the Glivenko-Cantelli distance
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between F and G. For a distribution F from a family  and a radius r > 0, let (F, r)

denote the set of distributions G ∈  such that dGC(F, G) ≤ r. Finally, we use dTV(F, G) to

denote the total variantion distance between F and G.

A statistical functional T is B-robust at F if GES(T, F) is finite. B-robustness has been

studied in the robust statistics literature (Hampel et al., 1986; Huber, 1981), and plug-in

estimators for B-robust functionals are considered to be resistant to outliers and changes in

the input.

3. Lower Bounds

We begin by establishing lower bounds on the convergence rate of any differentially private

approximation to a statistical functional T (F).

3.1. Lower Bounds based on Gross Error Sensitivity

We first show a lower bound on the error of any (α, δ)-differentially private approximation

to T in terms of the gross error sensitivity of T at a distribution F.

Theorem 1—Pick any  and . Let  be the family of all distributions

over , and let  be any (α, δ)-differentially private algorithm. For all n ∈ ℕ and all F ∈ ,

there exists a radius  and a distribution G ∈  with dTV(F, G) = ≤ ρ, such

that either

Several remarks are in order. First of all, the form of Theorem 1 is slightly unconventional

in the sense that applies not to particular distributions, but to a set of distributions. In

particular, the bound states that either the convergence rate of F is high, or the convergence

rate of some G close to F is high. Observe that for a fixed distribution F, it is trivial to

construct a differentially private approximation to T (F) that is accurate for F – ignore any

sensitive input data, and simply output T (F). This algorithm provides a perfectly accurate

estimate when the input is drawn from F, but performs poorly otherwise; thus any lower

bound that applies to all differentially private algorithms will have a similar form. On the

other hand, the differentially private estimators in Theorem 1 have few restrictions: they are

only expected to be accurate for distributions lying in a small neighborhood of F, and may

be extremely inaccurate in general.

Second, for fixed n, ρ is a function , which decreases to zero as n → ∞;

provided GESρ(T, F) remains the same as ρ diminishes, the lower bound grows weaker with

increasing n. The lower bound thus does not rule out the existence of consistent private

estimators.

Finally, we observe from the proof of Theorem 1 that  need not be the family of all

distributions over ; the theorem will still apply if for every F ∈ , and for all x ∈ , (1 −
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ρ)F + ρδx also lies in the family ; for example if  is the set of all discrete distributions

over .

While Theorem 1 is very general, we present below an example that illustrates an

implication of the theorem.

Example 1—Let  = [0, a], and let  be the set of all discrete distributions over . Let T

(F) be the mean of F.

Cosnider a fixed F ∈ , and a fixed n. Let ρ = ρ(n) as in Theorem 1. For any F,

. It can be shown that for any G ∈ (F, ρ(n)), Var [G] ≤ Var [F] + ρ(1 −

ρ)a2. Thus, the expected errors of the (non-private) plug-in estimators are bounded as

 and

 for all G ∈ (F, ρ(n)). On the

other hand, Theorem 1 shows that for every differentially private estimator , at least one of

[| (Fn) − T (F)|] and [| (Gn) − T (G)|] is Ω(ρa); this quantity is higher than the

corresponding quantity for the non-private estimator so long as .

Proof of Theorem 1: Let x* be the x ∈  that maximizes |IFρ(x, T, F)|. Let γ > 0, and let

, and let G:= (1 − ρ)F + ρδx*. Observe that dTV(F, G) ≤ ρ and IFρ(x*, T, F) = (T

(G) − T (F))/ρ.

Consider the following procedure for drawing n samples from G. First, draw a random

sample Fn of size n from F (we overload the notation Fn to refer to both a random sample

and its empirical distribution). Next, for each i = 1, 2, …, n, independently toss a biased coin

with heads probability ρ; if the coin turns up heads, replace the i-th element of Fn by x*;

otherwise, do nothing. This procedure constructs a random sample Gn of size n from G, and

in the process constructs a coupling between samples of size n from F and G. In what

follows, we will use this coupling to calculate the quantity

Let Fn be any randomly drawn sample of size n from F, and let Gn be a corresponding

sample from G as drawn from the coupling procedure. Call a pair (Fn, Gn) ρ-close if they

differ in at most n entries. As the median of Binomial(n, ρ) is ≤ ⌈ρn⌉ = ρn, the probability

that at most ρn of the elements of Fn are converted to x* by the coupling process is at least

1/2.

In other words,

(1)
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For any ρ-close pair (Fn, Gn), we can apply Lemma 31 with the parameters t:= T (F), t′:= T

(G), γ:= 1/4, and

the lemma implies, for any ρ-close pair (Fn, Gn),

Therefore, conditioned on Fn, we have

by (1). Taking a final expectation over Fn ~ F,

The theorem follows.

3.2. Lower Bounds as a Function of Range

Is the bound in Theorem 1 tight? In other words, if T has bounded GES, can we compute

accurate differentially private approximations to T (F) for all distributions F over a domain?

We next show that at least for (α, 0)-differential privacy, Theorem 1 is not tight; if we wish

to compute differentially private and accurate estimates of T (F) for all distributons F in a

family, where T (F) can take any value in a range [λ, λ′], then the sample size must grow as

a function of λ′ − λ.

Theorem 2—Let  be a family of distributions over , and let  be any (α, 0)-

differentially private algorithm. Suppose for all τ ∈ [λ, λ′], there exists some Fτ ∈  such

that T(Fτ) = τ. Then there exists some F ∈  such that

1See Appendix A for omitted lemmas.
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Example 2—For any γ ∈ ℝ, let Uγ be the uniform distribution on [γ − 1, γ + 1], and let 

be the family  = {Uγ: γ ∈ [−R, R]}. Let T (F) be the median of F. For every F ∈ , the

non-private estimator T (Fn) converges to T (F) at a rate proportional to , independent

of R. However, Theorem 2 shows that for every differentially private estimator , there is

some F ∈  such that | (Fn) − T (F)| grows with R.

Proof of Theorem 2: Let  and . For each i = 1, 2, …, Γ, let Fi be a

distribution in  such that ; such distributions are guaranteed to exist by

assumption. Also, for each i = 1, 2, …, Γ, let  be an iid sample of size n from Fi, and

define the half-open interval Ii:= [λ + (i −1)r, λ + ir). Observe that the intervals Ii are

disjoint. To prove the theorem, let us assume the contrary:

(2)

This, along with a Markov’s inequality on , implies that

. Therefore, for any i,

where the first step follows by assumption, the second step follows because the intervals {Ij}

are disjoint, and the third step from Lemma 2 and the fact that for any i and j, any  and 

differ in at most n entries. Rearranging, the inequality becomes Γ ≤ 1 + eαn, which is a

contradiction since Γ = ⌊(λ′ − λ)/r⌋ > 1 + eαn. Therefore (2) cannot hold, so the theorem

follows.

4. Upper Bounds

In this section, we show that bounded GES and bounded range are sufficient conditions for

the existence of an (α, δ)-differentially private approximation to T. Our approximation uses

the smooth-sensitivity method of Nissim et al. (2007), for which we provide a new statistical

analysis in Section 4.1 (Theorem 3). We also provide a specific analysis for the case of

linear functionals in Appendix B.

Let dH(D, D′) denote the Hamming distance between D and D′ (the number of entries in

which D and D′ differ), and recall the following definitions from Nissim et al. (2007).

Definition 4—The local sensitivity of a function ϕ: ℝn → ℝ at a data set D ∈ ℝn, denoted

by LS(ϕ, D), is
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For β > 0, the β-smooth sensitivity of ϕ at D, denoted by SSβ(ϕ, D), is

Throughout, we assume D ∈ ℝn is an i.i.d. sample of size n drawn from a fixed distribution

F, and Fn is the empirical CDF corresponding to this sample. For a statistical functional T,

we use the overloaded notation SSβ(T, Fn) to denote the β-smooth sensitivity of T (Fn) at the

data set Fn = D.

4.1. Estimator Based on Smooth Sensitivity

For a statistical functional T, let  be the randomized estimator given by

(3)

where  and Z is an independent random variable drawn from the standard

Laplace density pZ (z) = 0.5e−|z|.  essentially computes T (Fn) and adds zero-mean noise,

with the scale determined by the privacy parameters and the smooth sensitivity. Computing

SSβ(α, δ)(T, Fn) in general can be computationally challenging –see Nissim et al. (2007); our

result thus demonstrates an upper bound.

The following guarantee is due to Nissim et al. (2007).

Proposition 1—  is (α, δ)-differentially private.

To give a statistical guarantee for , we begin with a standard tail bound based on the

simple fact that PrZ [|Z| > t] ≤ e−t.

Proposition 2—For any t > 0,

It follows that the convergence rate of  depends on the β-smooth sensitivity of T at Fn,

which can be bounded under the following conditions on T.

Condition 1 (Bounded range)—There exists a finite R > 0 such that the range of T is

contained in an interval of length R.

Condition 2 (Bounded gross error sensitivity)—The sequence (Γn) given by
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is bounded.

Even for non-private estimation, the robustness of an estimator depends not just on the

influence functions at the target distribution F, but also on these quantities in a local

neighborhood around F (Huber, 1981, p. 72). For convenience, Condition 2 is stated in

terms of Glivenko-Cantelli distance, but can be easily changed to any distance under which

Fn converges to F as n → ∞ with suitable modifications in the analysis.

We now state our main statistical guarantee for .

Theorem 3—Assume Condition 1 and Condition 2 hold. Pick any η ∈ (0, 1/4). With

probability ≥ 1–2η, the estimator  from (3) satisfies

where R is the quantity in Condition 1, and Γn is the quantity in Condition 2.

Proof: Follows from Proposition 2, Lemma 1, a union bound, and the triangle inequality.

The first term in the bound, |T (Fn) − T (F)|, is the error of the non-private plug-in estimate T

(Fn). If T is Hadamard-differentiable, then T (Fn) − T (F) converges in distribution to a zero-

mean normal random variable with variance n−1 ∫ IF(x, T, F)2dF (x); in this case, T (Fn)

converges to T (F) at an asymptotic n−1/2 rate (Wasserman, 2006). Non-asymptotic rates can

also be established in terms of other specific properties of T and F (see Appendix B for an

example).

The second term in the bound from Theorem 3 is roughly the larger of

(for constant η), can be compared to the lower bounds from Section 3. The lower bound

from Theorem 1 is close to A1 as long as GESρ(T, F) ≈ Γn for . This hold for

sufficiently large n when limn→∞ Γn = GES(T, F). The lower bound from Theorem 2

decreases as R·exp(−Ω(αn)), which is a little better than A2, but is otherwise qualitatively

similar in terms of its dependence on the range R2.

2Appendix E shows how this discrepancy can be reduced with a stronger condition.
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Example 3—If T (F) is the median of F, and := {Uγ: γ ∈ [−R, R]} is the family of

uniform distributions on unit length intervals [γ − 1, γ + 1] from Example 2, then Γn = 1/2,

and the bound in Theorem 3 reduces to

4.2. Bounding the Smooth Sensitivity

The proof of Theorem 3 (see Appendix C) is based on the following lemma, which

establishes a high-probability bound on SSβ(T, Fn) under Conditions 1 and 2.

Lemma 1—Assume Condition 1 and Condition 2 hold. With probability ≥ 1 − η,

where R is the quantity in Condition 1, and Γn is the quantity in Condition 2.

5. Differentially-Private M-Estimation

We now provide a procedure for constructing differentially private approximations to M-

estimators that satisfy certain conditions. Unlike our estimators in Section 4.1, these

estimators are computationally efficient; however they only apply to a more restricted class

of estimators.

5.1. M-Estimators

An M-estimator Tψ(Fn) is given as the solution θn ∈ ℝ to the equation

for some function ψ: ℝ × ℝ → ℝ. For a CDF G and θ ∈ ℝ, define

so Ψ (Fn, Tψ(Fn)) = 0. The derivative of Ψ with respect to its second argument, which is

assumed to exist, is denoted by Ψ′. Throughout, we will assume ψ satisfies the following

condition.

Condition 3 (Bounded ψ-range and monotonicity)—There exists a finite K > 0 such

that the range of ψ is contained in [−K, K], and ψ is non-decreasing in its second argument.
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Under this condition, the gross error sensitivity of Tψ at F can be bounded as

(4)

Previous works (Chaudhuri et al., 2011) and (Rubinstein et al., 2009) have provided

differentially private and computationally efficient algorithms for M-estimation under

assumptions that are very similar to Condition 3. The algorithm in Rubinstein et al. (2009),

and one of the algorithms in Chaudhuri et al. (2011) are based on the sensitivity method,

while the main algorithm in Chaudhuri et al. (2011) is based on an objective perturbation

method. While both algorithms are computationally efficient, both require explicit

regularization. This is problematic in practice because determining the regularization

parameter privately through differentially-private parameter-tuning requires extra data – for

a more detailed discussion of this issue, see Chaudhuri et al. (2011). In contrast, our

algorithm is based on the Exponential Mechanism, and does not have an explicit

regularization parameter; instead we assume that Ψ′ is smooth, and our guarantees depend

on the value of the derivative Ψ′ (F, Tψ(F)).

5.2. Exponential Mechanism for M-Estimation

Fix a density μ on ℝ, and let  be the randomized estimator whose output has probability

density

This estimator is derived from the exponential mechanism of McSherry & Talwar (2007),

where the “cost” function is taken to be |Ψ(Fn, ·)|/K. In many M -estimators of interest,

particularly those involving data lying in a bounded range, a prior knowledge of K is

reasonable.

If it is known that Tψ (F) is contained in some interval, then one can take the prior density μ

to be uniform over this interval. If no such prior knowledge is available, then μ can be taken

to be a density with full support on ℝ such as the standard Cauchy density.

The privacy guarantee for  follows easily from known properties of the exponential

mechanism (McSherry & Talwar, 2007).

Proposition 3—  is (α, 0)-differentially private.

The accuracy guarantee for  relies on the following smoothness condition on Ψ at F.

Condition 4 (Smoothness)—There exist r1 > 0, r2 > 0, Λ1 > 0, and Λ2 > 0 such that
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whenever dGC(G, F) ≤ r1 and |θ − Tψ(F)| ≤ r2.

Also, for ε > 0 and η ∈ (0, 1), define Nε,η:=min n ∈ ℕ: PrFn~F [|Tψ (Fn) − Tψ (F)| > ε] ≤ η to

be the minimum sample size such that, with probability ≥ 1 − η, the non-private estimator

Tψ(Fn) lies within distance ε of Tψ(F).

Theorem 4—Assume Condition 3 and Condition 4 hold. Let ε1:= min{r1, |Ψ′(F,

Tψ(F))|/(6Λ1)}, ε2:= min{r2/2, |Ψ′(F, Tψ(F))|/(6Λ2)}, and Γ:= K/|Ψ′(F, Tψ(F))|. Pick any η ∈

(0, 1) and ε ∈ (0, ε2). Suppose

(5)

and one of the following holds:

1. the range of Tψ is contained in an interval I of length R, μ is the uniform density on

I, and

2.  is the standard Cauchy density, and

With probability at least 1 – 3η, the estimator  satisfies

The proof of Theorem 4 is in Appendix D. The condition in (5) required by Theorem 4

essentially states that the sample size n should be large enough for Fn and Tψ(Fn) to be in the

neighborhoods of F and Tψ(F), respectively, where Ψ′ is locally Lipschitz-smooth.

It is straightforward to generalize the results to other prior densities μ. Observe that in the

case the range of Tψ is [−R, R] for some unknown R, using the standard Cauchy density as μ

yields a similar dependence on R (via log |Tψ(F)| ≤ log R) as what is obtained when μ is

uniform over [−R, R]. The more probability mass μ assigns around Tψ(F), the better the

bounds are.
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Also note that the main scaling factor of Γ = K/|Ψ′(F, Tψ(F))| in the sample size bound is

precisely the bound on GES(Tψ, F) from (4). A dependence on GES(Tψ, F) is to be

expected as per Theorem 1.

6. Conclusions

The finite sample analysis reveals a concrete connection between differential privacy and

robust statistics, The main results shown here suggest using B-robustness as a criterion for

designing differentially-private statistical estimators, and also highlight the obstacles that

even robust estimators face when the parameter space is very large or unbounded.

While our lower bounds may seem pessimistic, they apply to estimators that succeed for a

wide class of distributions. One way of avoiding our lower bounds would be by using priors

that allow an estimator to perform well on some input distributions but not-so-well on

others; a future research direction is to investigate how this can help design better

differentially private estimators.
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A. Lemmas from Section 3

Lemma 2

Let  be any (α, δ)-differentially private algorithm, and let D ∈  and D′ ∈  be two data

sets which differ by ≤ k entries. Then, for any S,

Proof

Let D = D0, D1, …, Dk = D′ be a sequence of data sets such that for any i, Di differs from

Di+1 by a single entry. From Definition 1, for any S,

(6)

Composing Equation (6) k times, we get:

The lemma follows from noting that .

Lemma 3

Let D ∈  and D′ ∈  be two datasets that differ in the value of at most Δ entries, and let

 be any (α, δ)-differentially private algorithm. For all , and for all τ and τ′, if

, and if , then
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Proof

Without loss of generality, assume that: τ < τ′ and let . Let I = (τ − t, τ + t), and I′

= (τ′ − t, τ′ + t). Then I and I′ are disjoint. We first show that under the conditions of the

lemma,

(7)

Suppose this is not the case. Then,

Here, the first step follows by assumption, the second step follows from the disjointedness

of I and I′, the third step from Lemma 2, and the fourth step by assumption and the condition

on δ. Now, as , the quantity on the right hand side of the above equation is at

least

for . This is a contradiction, and thus Equation 7 holds. Using Equation 7, we can

write:

The lemma now follows from the observation that .

B. Linear Functionals

A functional Ta of the form Ta(F) = ∫ a(x)dF (x) is called a linear functional. The influence

function (at all scales ρ) of Ta and F is

and therefore the gross error sensitivity is
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Note that the range of Ta has diameter bounded by (twice) the gross error sensitivity.

The estimator  from (3) with δ = 0 (so β(α, 0) = 0) has the following statistical guarantee.

Theorem 5

Pick any linear functional Ta and η ∈ (0, 1). Let σ2 := ∫IF(x, Ta, F)2dF (x). With probability

≥ 1 − 2η, the estimator  from (3) satisfies

Proof

Follows from Bernstein’s inequality, Proposition 2, Lemma 4 (below), a union bound, and

the triangle inequality.

Example 4

If T (F) = ∫xdF(x) is the mean of F (and therefore a linear functional with a(x) = x), and the

data domain is  = [−R/2, R/2], then Γn = R. Therefore, the bound in Theorem 5 reduces to

 where σ2 is the variance of F.

Lemma 4

If Ta is a linear functional, then

Proof

Observe that , where the first

supremum is over empirical distributions Gn and  for data sets differing in one entry. By

the triangle inequality, this is at most 2 supx ∈ |a(x) − T (F)|/n = 2GES(Ta, F)/n.
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C. Proof of Lemma 1

Proof

Recall that the DKW inequality (Dvoretzky et al., 1956; Massart, 1990) implies PrFn~F

[dGC(Fn, F) ≤ rn] ≥ 1 − η for . Since , the triangle

inequality and Condition 2 imply that, with probability ≥ 1 − η,

(8)

for all CDF G with dGC(Fn, G) ≤ rn. Henceforth assume the bound in (8) holds.

Now pick any D1 ∈ ℝn. It suffices to show that e−βdH(D,D1). LS(T, D1) ≤ max{2Γn/n, R

exp(−β(n · rn − 1))} for all such D1.

Suppose for now that (dH(D, D1) + 1)/n ≤ rn. Fix D2 ∈ ℝn such that dH(D1, D2) = 1. Let j ∈

{1, 2, …, n} be the index at which D1 and D2 differ, and D3 ∈ ℝn−1 be the database

obtained from D1 by removing the j-th entry of D1. Finally, for i ∈ {1, 2, 3}, let Gi be the

empirical CDF w.r.t. Di. By the triangle inequality, dGC(Fn, G3) ≤ dGC(Fn, G1) + dGC(G1,

G3) ≤ (dH(D, D1)+1)/n ≤ rn. Therefore the bound in (8) implies GES1/n(T, G3) ≤ Γn. Let x1

be the j-th entry of D1, and x2 be the j-th entry of D2. Then, by the definitions of IF1/n and

GES1/n,

Because this holds for all choices of D2, it follows that LS(T, D1) ≤ 2Γn/n, and therefore

e−βdH(D, D1). LS(T, D1) ≤ 2Γn/n.

Now suppose instead that (dH(D, D1) + 1)/n > rn. By Condition 1, LS(T, D1) ≤ R. Therefore,

we have e−βdH(D, D1). LS(T, D1) ≤ R · e−β(n·rn−1).

D. Proof of Theorem 4

The proof of Theorem 4 is based on the following lemmas, which characterize the prior

density μ and the exponential mechanism density p (Fn) around Tψ(F) and Tψ(Fn).

Lemma 5

Let μ be the uniform density on an interval I ⊂ ℝ of length R. If θ ∈ I, then μ([θ − ε, θ+ ε]) ≥

ε/R for any ε > 0.
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Proof

If θ ∈ I, then the length of I ∩ [θ − ε, θ+ ε] is at least ε, and hence has mass at least ε/R under

μ.

Lemma 6

Let μ be the standard Cauchy density . For any θ ∈ ℝ,

 for any ε > 0.

Proof

By Taylor’s theorem and the fact (a + b)2 ≤ 2(a2 + b2),

Lemma 7

Assume Condition 3 and Condition 4 hold. For 0 < ε ≤ min{r2/2,|Ψ′ (F, θ*)|/(6Λ2)},

where θ* = Tψ (F), θn = Tψ(Fn), cμ,ε = μ([θn − ε/6, θn + ε/6]), and Egood is the event in which

Proof

Define

By the monotonicity of Ψ due to Condition 3, we have |Ψ (Fn, θ)| ≥ sbad for all θ ∉ [θn − ε,

θn + ε]. Also, define
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Then,

Therefore, it remains to show that sbad − sgood ≥ 0.25|Ψ′ (F, θ*)|ε assuming the event Egood

holds.

Pick any θ ∈ [θn − ε, θn + ε]. By Taylor’s theorem and the fact Ψ(Fn, θn) = 0, there exists

some θ̃ ∈ [θn − ε, θn + ε] such that

(9)

Since ε ≤ min{r2/2, |Ψ′(F, θ*)|/(6Λ2)}, the triangle inequality and the event Egood imply

and therefore

(10)

by Condition 4. Because the event Egood also implies dGC(Fn, F) ≤ min{r1, |Ψ′(F, θ*)|/

(6Λ1)}, we have

(11)

also by Condition 4. Therefore, using the triangle inequality and those from (10) and (11) in

the equation (9) gives the bound

(12)

and, similarly,
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(13)

Note that (12) implies the lower-bound

It remains to derive an upper-bound on sgood. Define θ0 := inf{θ ∈ ℝ: Ψ(Fn, θ) ≥ − |Ψ′(F,

θ*)|ε/4} and θ1 := sup{θ ∈ ℝ: Ψ(Fn, θ) ≤ |Ψ′(F, θ*)|ε/4}. By monotonicity of Ψ from

Condition 3, we have that if,

then θ ∈ [θ0, θ1], and vice versa. Now take any θ ∈ [θn − ε/6, θn + ε/6]. Note that by (12),

so θ ≥ θ0, and by (13),

so θ ≤ θ1. Therefore [θn − ε/6, θn + ε/6] ⊆ [θ0, θ1], and hence sgood ≤ 0.25|Ψ′(F, θ*)| ε. The

claim is proved by combining the bounds on sbad and sgood.

We now prove Theorem 4.

Proof of Theorem 4

Let Egood be the event in which

By the DKW inequality, the definition of Nε2,η, the bound on the sample size n, and a union

bound, we have

By Lemma 7, conditioned on the event Egood, we have
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where we have used either Lemma 5 or Lemma 6 (with the fact |Tψ(Fn) −Tψ(F)| ≤ ε2 in the

event Egood) and the bound on the sample size n. A union bound and the triangle inequality

completes the proof.

E. Alternative to Condition 2

Consider the following alternative to Condition 2.

Condition 5 (Bounded gross error sensitivity with exponent p)

The sequence (Γp,n) given by

is bounded for some p ∈ [0, 1/2].

Condition 2 (roughly) corresponds to exponent p = 1/2, which is the weakest condition

among all p ∈ [0, 1/2].

By essentially the same proof as that of Lemma 1, it follows that under Condition 1 and

Condition 5, we have with probability ≥ 1 − η,

Using this in place of Lemma 1, the bound in Theorem 3 becomes
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