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Abstract

The serotonergic system plays a key modulatory role in the brain and is the target for many drug

treatments for brain disorders either through reuptake blockade or via interactions at the 14

subtypes of 5-HT receptors. This review provides the history and current status of radioligands

used for positron emission tomography (PET) and single photon emission computerized

tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter

(SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the

5-HT system in humans include antagonists for the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4

receptors, and for SERT. Here we describe the evolution of these radioligands, along with the

attempts made to develop radioligands for additional serotonergic targets. We describe the

properties needed for a radioligand to become successful and the main caveats. The success of a

PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in

humans, and the number of research sites using it relative to its invention date, and so these

aspects are also covered. In conclusion, the development of PET and SPECT radioligands to

image serotonergic targets is of high interest, and successful evaluation in humans is leading to

invaluable insight into normal and abnormal brain function, emphasizing the need for continued

development of both SPECT and PET radioligands for human brain imaging.

Keywords

5-HT; PET; SPECT; radioligand

© 2011 Wiley Periodicals, Inc.

Correspondence to: Gitte M. Knudsen, Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging,
Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark, gitte@nru.dk.
Louise M. Paterson and Birgitte R. Kornum contributed equally to this manuscript.

This review was produced as part of the remit of the METPETS (Measuring endogenous neurotransmitters with PET and SPECT)
consortium.

NIH Public Access
Author Manuscript
Med Res Rev. Author manuscript; available in PMC 2014 October 07.

Published in final edited form as:
Med Res Rev. 2013 January ; 33(1): 54–111. doi:10.1002/med.20245.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



1. INTRODUCTION

The serotonergic (5-HT) system plays a key modulatory role in many central nervous system

(CNS) functions. Multiple serotonergic receptor subtypes and region-specific innervations

from the dorsal and medial raphe nuclei within the brainstem result in a complex pattern of

modulatory control over various physiological, emotional, and cognitive processes. These

processes include control of mood and sleep, regulation of cognitive performance, learning

and memory, modulation of ingestive behavior, and influence on reward circuits that

mediate, for example, motivation.1–4 Serotonergic dysfunction has been implicated in the

etiology of many psychiatric disorders including depression,5 anxiety,6 schizophrenia,7 and

other neurological disorders such as Alzheimer’s disease,8,9 and epilepsy.10 Although our

basic understandings of the serotonergic system are derived from animal models, the

development of noninvasive brain imaging techniques, such as positron emission

tomography (PET) and single positron emission computerized tomography (SPECT),

increasingly allows the study of the serotonergic system in the human brain.11

This review covers the history and current status of the development of PET and SPECT

radioligands for imaging serotonergic targets within the brain. First, we briefly introduce the

serotonergic system and the uses of PET and SPECT imaging in general. A more detailed

description of the different radioligands follows.

A. 5-HT Targets for PET and SPECT

The 5-HT receptors are among the most diverse group of neurotransmitter receptors in the

human genome and the 5-HT system is also one of the phylogenetically oldest systems.

Currently, 14 structurally and pharmacologically distinct mammalian 5-HT receptor

subtypes have been described. Based on their structure, affinity for different ligands, and

second messenger pathway, they are assigned to one of the seven families, 5-HT1–7.12 All 5-

HT receptors, except the 5-HT3 receptor, are G-protein coupled seven transmembrane

spanning receptors (GPCRs). The 5-HT3 receptor is a ligand-gated sodium ion channel. In

addition, the 5-HT transporter (SERT) responsible for 5-HT reuptake and 5-HT synthetic

enzymes, especially tryptophan hydroxylase, are also targets for tracer development. Even

though much still needs to be elucidated, it is known that each of these targets has its own

distinct pattern of distribution and function in the brain.1,13–15 The 5-HT targets and their

characteristics are summarized in Table I.

2. IN VIVO BRAIN IMAGING

In vivo brain imaging is an important and widely used tool for the study of the living brain.

For in vivo pharmacology, PET and SPECT are most often used for quantification of brain

receptor concentrations, and since the first PET study was published in 1983,16 this neuro-

receptor mapping technique has been used to study various neurotransmitter systems in

health and disease.17–20 In brain, PET has also been widely used to study glucose

metabolism,21–24 blood–brain barrier transport,25–28 and neurotransmitter release.29,30 PET

and SPECT imaging are also useful for tracking pharmacokinetic and pharmacodynamic

properties of drugs, and can be used to determine the occupancy of therapeutic drugs, which

ultimately can be used to estimate the optimal doses to be used in Phase II studies. For
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example, it has been demonstrated that between 60 and 80% occupancy of D2 receptors is

required for anti-psychotic medication efficacy and that beyond this level, side effects are

likely to occur.31 Further, treatment with clinically effective doses of the selective serotonin

reuptake inhibitors (SSRIs) paroxetine or citalopram is associated with approximately 80%

occupancy of SERT.32 For that reason, the pharmaceutical industry has increasingly taken

advantage of these techniques to determine doses of new agents. SPECT is a more widely

accessible functional imaging tool than PET, due to its lower costs and use of radioligands

with longer half-lives. In spite of its lower sensitivity and resolution as compared to PET,

SPECT is widely used for brain imaging, and radioligands suitable for this technique are in

great demand.

Significant discoveries within the 5-HT system in human brain have been made following

the development of selective PET and SPECT radioligands, for example, that the 5-HT1A

receptor is reduced in social anxiety and panic disorder33,34 whereas the 5-HT2A receptor

may be increased in depressed individuals following treatment.35 However, the full potential

of 5-HT-related treatments cannot be realized before appropriate radioligands selective for

all target receptors and enzymes have been developed and validated, including those that

will allow endogenous 5-HT release and synaptic levels to be measured.30

A. The Principles of PET and SPECT

Radioisotopes that are typically used include 11C, 13N, 15O, 18F, and 76Br in PET and 99mTc

and 123I in SPECT. Permissive of the molecular structure, these can be incorporated into

potential tracers of interest. Radioligands for imaging brain neurotransmitter receptors and

transporters are based structurally on receptor antagonists or agonists. Since the radioligands

are targeted to work when administered in tracer doses (typically below 5 μg per injection

and with receptor occupancies of less than 5%), they should rarely elicit pharmacological

effects.

The vast majority of PET and SPECT radioligands available today are antagonists; there are

many more molecules and chemical series of antagonists available from pharmaceutical

drug discovery programs and they tend to be easier to develop. For GPCRs, antagonist

radiotracers label the whole population of receptors with the same affinity, thus providing a

good indication of total receptor number and higher Bmax, whereas agonist radioligands

preferentially label the high-affinity states of the receptor that are capable of eliciting

signalling events. Compared with the total number of receptors, the distribution of receptors

in the high-affinity state is predicted to be a more precise outcome in studies with a

functional aim36 or studies attempting to image the release or depletion of endogenous

agonist neu-rotransmitter.37,38 Agonist radioligands should also provide a better measure of

occupancy for new agonist pharmacological agents or any agent at the “functional”

proportion of the receptor. Because of these considerations, the interest in agonist

radioligands is increasing.

B. Overview of Successful Radioligand Properties

In order to generate quantifiable images of cerebral binding, radioligands must possess

certain qualities. Radioligands suitable for in vitro quantification by competition, saturation,
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or autoradiographical methodologies cannot necessarily be used in vivo. This is mainly

because of the need to penetrate the blood–brain barrier and not be excluded by pumps such

as P-glycoprotein (P-gp), but also due to problems arising from high non-specific binding or

issues with radiosynthesis, metabolism, or pharmacokinetics. The main properties necessary

for a radioligand to be useful for in vivo imaging are as follows.

Radiosynthesis should be as simple and fast as possible, especially with short-lived 11C,

giving a high specific radioactivity to avoid any significant pharmacological blockade of the

receptor in question with “cold” compound from the synthesis.

The radioligand must possess high affinity toward the target receptor, normally in the

nanomolar range, to maximize the target to background ratio. On the other hand, to achieve

suitable reversible receptor kinetics, the affinity must not be too high. The association rate

should be high, and the dissociation rate should be long enough to be measured, but short

enough for the washout phase to be appreciable within the time frame of scanning.

The radioligand must bind selectively to the target of interest. To obtain meaningful data for

target distribution studies, the binding potential measured by PET or SPECT using the

radioligand must be obtained from binding to the desired target only. Since the binding

potential is the product of the number of receptors available for binding (Bavail) and the

affinity (1/KD), these two factors must be considered when determining the selectivity of a

radioligand. Often the affinity of a radioligand, as 1/Ki, toward the desired target is

determined in a competition assay against a well-known ligand. This is then compared with

the affinities of the ligand toward a wide spectrum of other receptors and binding sites. Ki

values toward other targets that are more than 20–100 times higher than for the desired

target are normally acceptable. Acceptability, however, depends on Bavail for the binding

sites in question. If Bavail for the desired target is much higher than Bavail for non-targets,

then the binding potential will still selectively reflect the wanted target, and vice versa if a

non-target binding site is very abundant, since then even low affinity to this non-target will

influence the total signal. In order to address the selectivity of a radioligand one can perform

an in vivo blocking study, where the radioligand is co-administered with a known selective

antagonist that binds only to the target.

Generally, the radioligand should be moderately lipophilic to achieve adequate penetration

of the blood–brain barrier without incurring excessive non-specific binding to brain tissue or

very slow brain clearance. Moderate lipophilicity does not, however, guarantee brain entry.

For example, some moderately lipophilic compounds are substrates for efflux transporters at

the blood–brain barrier, such as P-gp, and these compounds are effectively excluded from

entry into brain.39

Plasma clearance rate of radioligand should also be considered. Rapid clearance results in

difficulties with accurate determination of the input curve, particularly at late time points

and this complicates the subsequent mathematical modelling with an arterial input function.

The metabolites produced should either be polar, so excluded from the brain, or unlabelled,

so as not to interfere with the signal obtained in brain.39 Interference from lipophilic
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radiometabolites can, however, be taken into account if it is possible to establish a bolus–

infusion design (e.g.,40) or if the radiometabolites do not have specific binding in the brain.

One thing that must be considered when designing and synthesizing potential PET

radioligands is the likelihood of being able to label them successfully without interfering

with their pharmacology. 11C-labelling is usually feasible because of the presence of carbon

atoms in all organic compounds. The introduction of the small electronegative 18F atom in

place of hydrogen or hydroxyl can be unpredictably beneficial or detrimental to the

pharmacological properties of the ligand in terms of its affinity and selectivity. Introduction

of a bulky123I atom in place of hydrogen generally affects pharmacology and will increase

ligand lipophilicity. The half-life of the radionuclide is an important consideration. The

relatively short half-life of 11C (t1/2 = 20.4 min) is suitable for following quite rapid

pharmacokinetics, and may permit more than one study session in the same subject in a

single day. However, the necessity to produce 11C-labelled radioligands on-site is a

logistical disadvantage. Longer-lived 18F (t1/2 = 109.8 min) for PET and 123I (t1/2 = 13 hr)

for SPECT do not require on-site production and are suitable for following slower

pharmacokinetics. Alternative labels are being investigated, such as the SPECT label 99mTc

(t1/2 = 6 hr), because of its relative safety and availability.

3. CURRENT RADIOLIGANDS FOR IMAGING THE 5-HT SYSTEM

A multitude of radioligands exist for in vitro studies of serotonergic targets, and over the last

decade, we have seen an impressive increase in the number of useful PET and SPECT

radioligands. With this review, we describe the PET and SPECT radioligands published to

date for imaging the serotonergic system. Table I summarizes the 5-HT targets, their brain

distribution, and density and availability of selective ligands. Table II summarizes the

development history of all published PET and SPECT ligands for those targets where tracer

development has been undertaken. In addition, since the relative success of a radioligand can

be estimated through its frequency of use and publication rate, these data are given in Table

III.

A. 5-HT1A Receptor Radioligands

The 5-HT1A receptor is one of the best characterized receptors in the serotonergic family.

This is especially due to its role as an inhibitory autoreceptor in the raphe nuclei and the

possible implications of this role for the treatment of depression and anxiety with serotonin

reuptake inhibitors and the potential for the treatment of learning and memory deficits.4,41,42

A number of reviews have detailed PET radioligands available for the study of 5-HT1A

receptors,43,44 and many have been summarized quite recently.45 Therefore, not all

radioligands will be described in detail here. Many of the 5-HT1A radioligands were based

on WAY-100635 (N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-

ylcyclohexane-carboxamide), which in its carbonyl-11C-labelled form is widely used for 5-

HT1A receptor imaging. In total, 39 potential PET 5-HT1A radioligands are described in

Kumar and Mann,45 but to date, only two of these ligands are in frequent use for

determining 5-HT1A receptor densities; [carbonyl-11C]WAY-100635 and [18F]MPPF (4-

[18F]fluoranyl-N-[2-[4-(2-methoxyphenyl)piper-azin-1-yl]ethyl]-N-pyridin-2-ylbenzamide).
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[18F]MefWAY (4-([18F]fluoranylmethyl)-N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-

N-pyridin-2-ylcyclohexane-1-carboxamide) and agonist ligands [11C]CUMI-101 ([O-

methyl-11C]2-(4-(4-(2-methoxyphenyl)-6-piperazin-1-yl)butyl)-4-methyl-1,2,4-

triazine-3,5(2H,4H)dione) and [18F]F15599 (3-chloro-4-[18F]fluorophenyl-(4-fluoro-4{[(5-

methyl-pyrimidin-2-ylmethyl)-amino]-methyl}-piperidin-1-yl)-methanone) seem to be

promising future radioligands.46–48 The agonists are of growing interest for this target

because of the functional differences between pre- and post-synaptic 5-HT1A receptors,

which may translate into differences in binding. Here we have chosen to describe these

radioligands and a few others that have been important for 5-HT1A receptor radioligand

development. A PET image of 5-HT1A brain receptors obtained in healthy volunteers using

[11C]CUMI-101 is shown in Figure 1.

B. 5-HT1A SPECT Radioligands

1. [123I]p-MPPI—[123I]p-MPPI (4-[123I]iodo-N-[2-[4-(2-methoxyphenyl)piperazin-1-

yl]ethyl]-N-pyridin-2-ylbenzamide) was initially a promising 5-HT1A SPECT radioligand.

In the rat, brain uptake was rapid and high, the maximum ratio of hippocampus to

cerebellum was 3.3 and specific binding was blocked by the 5-HT1A receptor ligands, 8-

OH-DPAT and WAY-100635.49 A similar profile was seen in the nonhuman primate brain,

suggesting [123I]p-MPPI could prove useful as a SPECT radioligand. Specific binding could

be blocked by pretreatment with 8-OH-DPAT or WAY-100635, as is seen both in ex vivo

and in vitro autoradiographic studies.50 By contrast, [123I]p-MPPI did not display specific

localization to 5-HT1A receptor-rich brain areas in humans. This may be due to rapid in vivo

metabolism causing breakdown of the amide bond, precluding its use in humans.51 Another

perhaps more likely possibility is that this radioligand was excluded from human brain by an

efflux transporter, such as P-gp, since close structural analogues, such as the fluoro-analogue

MPPF, are known to be P-gp substrates.52 This experience illustrates the difficulties

imposed by translating findings in other species to humans.

2. 99mTc-Labeled Radioligands—Several attempts to develop a 99mTc-labelled 5-HT1A

SPECT radioligand have also been reported. Progress was initially slow because of low

brain uptake for many early candidates, but more recent publications suggest that further

development could result in a successful radioligand for use in humans.53–58

C. 5-HT1A Antagonist PET Radioligands

1. [11C]WAY-100635—WAY-100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-

N-2-pyridinylcyclohexane-carboxamide) is a selective and high-affinity 5-HT1A receptor

antagonist (KD = 0.2–0.4 nM). It was originally found to have very low affinity for all other

tested binding sites,59 but recent evidence has suggested that it is also a potent D4 agonist

(KD = 2.4 nM60). The latter property is unproblematic for PET and SPECT imaging because

D4 receptors exist in brain at very low density relative to 5-HT1A receptors. The binding of

tritiated WAY-100635 to postmortem rodent and human brain has been mapped

autoradiographically61–63 and the binding of 11C-labelled WAY-100635 to living nonhuman

primate and human brain with PET.64,65 Regional binding densities obtained from

[11C]WAY-100635 PET studies have been compared with agonist and antagonist binding in
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human postmortem tissues62 and good correlations between the 5-HT1A receptor

distribution were found for autoradiography versus in vivo imaging.

The first radioligand tested with PET in human subjects was [O-methyl-11C]WAY-10063565

which, unfortunately, after systemic injection produced a lipophilic radiometabolite, [O-

methyl-11C]WAY-100634, that crossed the blood–brain barrier.66 To avoid this problem, the

position of the 11C- label was placed in the carbonyl position of WAY-100635 instead of the

methyl position, to give a new radioligand, [carbonyl-11C]WAY-100635. The new label

position improved the target to background radioactivity ratio in both nonhuman primate

and human PET studies,67 so this radiotracer is currently the most utilized for in vivo

imaging of cerebral 5-HT1A receptors (Table I). A database of 5-HT1A binding with PET in

normal volunteers was published in 2002.68 As reviewed by Kumar and Mann,45

[11C]WAY-100635 binding has been investigated in numerous studies of patients with

psychiatric or neurological disorders. Since 2007 more than 25 further PET studies using

[11C]WAY-100635 have been published to date, extending the list of human disorders

susceptible to changes in 5-HT1A receptor binding to panic disorder,34 bipolar depression,69

and anorexia nervosa70 among others.

One drawback with [11C]WAY-100635 is that it undergoes a fast systemic metabolism,

which makes kinetic modelling difficult, because the arterial input function is less well

determined at later time points.71 To circumvent this problem, reference tissue methods have

been used for quantification of [11C]WAY-100635 data. Receptor-poor cerebellar white

matter may serve as a reference region.72,73 However, this approach may also be associated

with some inaccuracy, since the rapid appearance of radiometabolites in plasma violates the

fundamental assumption that both the reference region and the pool of free tracer in the

binding regions continue to exchange significant quantities of tracer with the blood pool.74

2. [11C]CPC-222—CPC-222 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-

pyridinyl)-2-bicyclo-[2,2,2] octanecarboxamide) is a WAY-100635 derivative developed in

an attempt to improve its metabolic profile, and in particular its resistance to amide bond

hydrolysis. Initial PET studies were promising, demonstrating high hippocampal to

cerebellar radioactivity ratios in rats and humans.75,76 As predicted, the metabolism of

[11C]CPC-222 is slower than that of [11C]WAY-100635. However, [11C]CPC-222 gives

lower signal than [11C]WAY-100635 and there are no further studies published with this

radioligand.

3. [11C](R)-RWAY—The R-enantiomer of RWAY ((2R)-1-(azepan-1-yl)-4-[4-(2-

methoxyphenyl)piperazin-1-yl]-2-phenylbutan-1-one) was designed in another attempt to

provide a radioligand more resistant than WAY-100635 to amide bond hydrolysis. (R)-

RWAY is a high-affinity 5-HT1A receptor antagonist. This ligand is structurally quite

similar to WAY-100635, but the direction of its amide group is reversed. Because of this

feature, RWAY is less susceptible to amide hydrolysis in vivo. In PET studies of nonhuman

primate studies, [11C](R)-RWAY cerebral binding in 5-HT1A receptor-rich regions was high

and could be blocked by pretreatment with WAY-100635.77,78 In humans, although target to

background ratios were acceptable (up to 3), determinations of distribution volumes were

unstable, possibly due to the greater presence of a lipophilic radiometabolite in human
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plasma compared with that in primate.79 This limits the usefulness of [11C](R)-RWAY for

human brain imaging.

4. [11C]DWAY—[11C]Desmethyl-WAY-100635 ([11C]DWAY; [carbonyl-11C]N-[2-[4-(2-

hydroxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide) is a putative

low level radio-metabolite of [11C]WAY-100635.67 It has been shown that DWAY has very

similar pharmacology to WAY, and that [carbonyl-11C]DWAY exhibits favorable PET

characteristics. These include, higher brain uptake than [11C]WAY-100635 at equipotent

doses in human brain, suitable pharmacokinetics, and a radioactive signal comparable to that

of [11C]WAY-100635 in rat and monkey.80,81 However, further human studies utilizing this

ligand have not yet been forthcoming, perhaps due to the difficulty of setting up the

radiolabelling process. Despite attempts to improve the production methodology,

radiochemical yield has continued to be low.82

5. [18F]6FPWAY—In an attempt to design an alternative 5-HT1A receptor PET ligand with

a better metabolic profile and a longer radioactive half-life, bromo- and fluoro-analogues of

WAY-100635 were produced: 6FPWAY (N-(2-(1-(4-(2-methoxyphenyl)-

piperazinyl)ethyl))-N-(2-(6-fluoropyridinyl))-cyclohexanecarboxamide) and 6BPWAY (N-

(2-(1-(4-(2-methoxyphenyl)-piperazinyl)ethyl))-N-(2-(6-

bromopyridinyl))cyclohexanecarboxamide).83 The introduction of the halogen groups was

predicted to reduce the rate of metabolism and to provide opportunities for labelling

with 18F or 76Br. Both halogenated ligands were initially labelled with 11C in their carbonyl

positions for preliminary PET studies in nonhuman primates and were found promising.

Satisfactory radioactive yields were obtained. Both radioligands and especially

[11C]6FPWAY accumulated in brain areas according to 5-HT1A receptor density and gave

high target to background ratios. Metabolism of [11C]6BPWAY was reduced, as intended.

While the metabolism of [11C]6FPWAY was comparable with that of [11C]WAY-100635,

the radiometabolites were quite polar; therefore, 6FPWAY was subsequently labelled

with 18F84 and tested in monkey PET studies. [18F]6FPWAY demonstrated resistance to

defluorination, but only moderately high uptake in 5-HT1A receptor-rich regions.85

Therefore, this radio-ligand has not seen use in human subjects.

6. [18F]MPPF—[18F]MPPF is another successful 5-HT1A PET ligand.86 Its use in animal

and human PET studies, specifically in relation to its potential for measuring changes in

endogenous 5-HT, has recently been reviewed by Aznavour and Zimmer.87 Similar to

WAY-100635, MPPF acts as a reversible, competitive antagonist at 5-HT1A receptors, and it

has high 5-HT1A receptor affinity (KD = 0.3 nM) and selectivity.86,88 Optimization of

production methods has resulted in a simple one-step procedure giving high yield.89

[11C]MPPF displays low nonspecific binding in the human brain and its distribution matches

that of postmortem human brain 5-HT1A receptor distribution.90,91 [18F]MPPF is a P-gp

substrate in rats,52,92 and although it is still unknown whether this applies in humans, it has

not detracted from its clinical application. A number of [18F]MPPF studies in patients have

now been published, including in epilepsy,93 cognitive impairment, and Alzheimer’s

disease,94 migraine,95,96 and depression.97 A database of PET normative data with age- and

gender-related binding variables is also available,98 as well as test–retest data.99
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Although [18F]MPPF binding to 5-HT1A autoreceptors in the raphe nuclei seems sensitive to

endogenous 5-HT levels at least in some studies,100 it is still questionable if such sensitivity

applies elsewhere in the brain. Studies in healthy volunteers and depressive patients in

remission have concluded that [18F]MPPF binding is not sensitive to reductions in 5-HT

after tryptophan depletion.101,102 One study, however, reported an increase in several brain

regions in [18F]MPPF binding potential following sleep, which is presumed to reduce 5-HT

release.103 In a recent review, it was concluded that currently available 5-HT1A receptor

radioligands do not appear to be sensitive to endogenous 5-HT.30

In order to improve brain uptake, the desmethylated analogue [18F]DMPPF was synthesized

through a two-step radiochemical procedure. Brain uptake was indeed found to be higher,

and the compound showed better signal-to-noise ratio and a slower clearance in rats

compared to [18F]MPPF.104 This radioligand has to our knowledge not yet been tested in

vivo in humans.

7. [18F]FCWAY—A series of radioligands based on fluorocyclohexyl analogues of

WAY-100635 were developed by Lang et al.105 Following evidence of high target to

background ratios, several of these radioligands were further developed, and in particular

two proved to be potentially useful as PET ligands. [18F]FCWAY ([18F]trans-4-fluoro-N-2-

[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-(2-pyridyl)cyclohexanecarboxamide) was

demonstrated to possess high 5-HT1A affinity (Ki = 0.25 nM) and a high hippocampal to

cerebellar binding ratio and thus had potential for imaging 5-HT1A receptor density. [3-

cis-18F]FCWAY, which has a lower affinity (Ki = 1.2 nM) and consequently faster

pharmacokinetics, was proposed to be more useful for measuring dynamic changes in

receptors, e.g., competition with endogenous 5-HT.106,107

[18F]FCWAY has been used to image 5-HT1A receptors in epilepsy,108–111 panic

disorder,112 and post-traumatic stress disorder.113 However, defluorination of the parent

compound leads to high bone uptake of radioactivity, which interferes with optimal imaging

of superficial brain areas. Radiodefluorination in human subjects can be abolished by pre-

administration of disulfiram, resulting in enhanced receptor visualization.114,115 However,

the major defluorination issue with this radioligand may be the reason for its use not

expanding beyond a single PET centre.

So far, despite its slower defluorination, [3-cis-18F]FCWAY has not yet been utilized in

further PET studies, possibly due to its lower affinity.

8. [18F]MefWAY—[18F]MefWAY was developed in an attempt to produce an 18F-labelled

ligand that would be stable to defluorination in vivo.116 As an analogue of WAY-100635,

[18F]MefWAY has very comparable affinity and gives a higher target to background

radioactivity ratio than many other 5-HT1A radioligands, including [18F]MPPF. In

nonhuman primates, the signal is comparable with that obtained with

[carbonyl-11C]WAY-100635 and superior to [18F]MPPF.46 [18F]MefWAY appeared stable

to radiodefluorination in monkey. Although this radioligand seems very promising for

further evaluation in human subjects, none have yet been published.
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9. [11C]NAD-299—NAD-299 ([R]-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-

benzopyran-5-carbox-amide) has several promising characteristics: subnanomolar affinity

(KD = 0.17 nM), favorable lipophilicity, high selectivity in rat brain,117 and high specific

binding in postmortem human brain.118 In the nonhuman primate, [11C]NAD-299 displayed

good PET characteristics. These include rapid accumulation in brain and high uptake in 5-

HT1A-rich brain areas like frontal cortex (ratio of 3 to cerebellum) and raphe nuclei that was

displaceable by WAY-100635. The radiometabolites were more polar than the parent

radioligand, and slower to accumulate than those of WAY-100635.119 However, the study

of this radioligand in humans has not been reported.

D. 5-HT1A Agonist PET Radioligands

The development of a successful 5-HT1A agonist PET radioligand has proved difficult.

There are several examples based on the agonist 8-OH-DPAT,45 but only a couple have

been reasonably successful in vivo. [11C]MPT ([O-methyl-11C]2-(4-[4-(7-

methoxynaphthalen-1-yl)-piperazin-1-yl]butyl)-4-methyl-2H-[1,2,4]triazine-3,5-dione) gave

a good signal in the baboon brain, but slow washout and immeasurable plasma-free fraction

limit its utility,120 and [11C]MMT ([O-methyl-11C]2-(4-[4-(3-methoxyphenyl)piperazin-1-

yl]-butyl)-4-methyl-2H-[1,2,4]-triazine-3,5-dione) had impressive in vitro characteristics,

but PET studies in baboon failed because of low specific binding and fast clearance.121

1. [11C]CUMI-101—Further optimization of structure–activity relationship in MPT

analogues produced [11C]MMP (now known as [11C]CUMI-101) ([O-methyl-11C]2-(4-(4-

(2-methoxyphenyl)-piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione), a high

affinity partial agonist compound (Ki = 0.15 nM) with satisfactory radiochemical yield, and

which appeared superior to both [11C]MPT and [11C]MMT in terms of binding ratios and

wash out times.122 PET studies in baboons confirmed good 5-HT1A selectivity with high

specific binding that was displaceable by WAY-100635 and 8-OH-DPAT. [11C]CUMI-101

has polar radio-metabolites that do not cross the blood–brain barrier, and in vivo modelling

data in baboons have been published.48 Test–retest studies in the baboon were satisfactory

(8–13%) and it was suggested that this radioligand may be sensitive to endogenous changes

in 5-HT,123 although studies in rodents do not support this.124 In humans, [11C]CUMI-101

has promising features and may preferentially label the high affinity site (Fig. 1125), but it

remains to be seen whether it can be used to image endogenous 5-HT release in humans or

whether it will make a good in vivo radioligand in clinical populations.

2. Other 5-HT1A Agonist Radioligands—The development of other 5-HT1A agonists is

ongoing and several new leads have been investigated. F15599 is an agonist with a Ki of 2.2

nM, and over 1,000-fold selectivity with respect to a wide range of other receptors,

transporters, ion channels, and enzymes.126 It seems that F15599 preferentially activates

postsynaptic 5-HT1A receptors in rat frontal cortex.127 It contains fluorine in a way that is

compatible with 18F labelling, and the radiosynthesis and validation of [18F]F15599 as a

potential PET radioligand were recently reported.47 Using autoradiography, this study

reported similar receptor distributions using [18F]F15599 and [18F]MPPF in rat and cat

brain. In vivo microPET showed a rapid accumulation of the radioligand in rat brain but

with a cortex to cerebellum ratio of only 1.6. Similar results were obtained in the cat brain.
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The low target to background ratio augurs poorly for the usefulness of [18F]F15599 as a

radioligand for human 5-HT1A receptor PET studies.

S14506 (1-[2-(4-fluorobenzoylamino)ethyl]-4-(7-methoxy-naphthyl)piperazine) is another

high-affinity ligand (Kd = 0.79 nM) with reasonable selectivity demonstrated in in vitro and

ex vivo studies. It was recently labelled to produce [11C]S14506 and [18F]S14506 and tested

for its suitability as an in vivo tracer in rat and monkey PET studies.128 Unfortunately, due

to low uptake and low signal-to-background ratio neither tracer was deemed suitable for in

vivo imaging.

E. 5-HT1A Radioligands: Conclusions

In conclusion, there are three radioligands in current use for PET studies of the 5-HT1A

receptor in human subjects: [carbonyl-11C]WAY-100635, [18F]MPPF, and [18F]FCWAY. A

further two promising radioligands are emerging: [18F]MefWAY and [11C]CUMI-101.

[carbonyl-11C]WAY-100635 is the most widely used 5-HT1A receptor radioligand. It has

the advantage of a high target-to-background ratio and its distribution matches that of the 5-

HT1A receptors. Its only disadvantage is its fast metabolism in plasma and consequently,

there are difficulties with its accurate quantification. [18F]MPPF has the advantage of the

longer lived 18F-label, and it also selectively labels the 5-HT1A receptors with a low non-

specific binding. Its major disadvantage is its low brain uptake. [18F]FCWAY also benefits

from being 18F-labelled, and displays affinity and selectivity comparable to its analogue

WAY-100635 and also to [18F]MPPF. [18F]FCWAY is, however, prone to defluorination in

vivo, which severely compromises its use for some brain regions, especially cortex.

[18F]MefWAY is also analogous to WAY-100635, and its resistance to defluorination

makes it a promising radioligand. [11C]CUMI-101 is a high affinity 5-HT1A (partial) agonist

radio-ligand that displays high specific binding in the baboon and also appears suitable for

imaging the high affinity site within human brain.

F. 5-HT1B Receptor Radioligands

The evolution of the study of 5-HT1B receptors has been complicated because 5-HT1B

pharmacology was long confused with that of 5-HT1D receptors found in the rodent brain.

Initially, 5-HT1B and 5-HT1D were considered to be species homologues of the same

receptor, but it was later revealed that the human 5-HT1D receptor encompassed two

receptor sub-types, 5-HT1Dα and 5-HT1Dβ, encoded by separate genes; 5-HT1Dα became

what is now known as the 5-HT1D receptor and 5-HT1Dβ became the 5-HT1B receptor.15

Most studies suggest that in humans, the 5-HT1B receptor makes up the vast proportion of 5-

HT1B/D receptors in the brain.129,130

Interest in the receptor was enhanced by the discovery of sumatriptan and related 5-HT1B/D

agonist drugs for the treatment of migraine.131 The majority of 5-HT1B ligands have mixed

5-HT1B/1D pharmacology, but selective 5-HT1B ligands do exist and are now of interest due

to their emerging utility in the study of depression, aggression, and drug

reinforcement.132–134 Radioligands have been synthesized to facilitate in vitro studies of the

5-HT1B receptor and development of PET radioligands for the 5-HT1B receptor is ongoing.
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Recent interest has been sparked by the suggestion that even 5-HT1B antagonist ligands may

be sensitive to displacement by endogenous 5-HT.135

G. 5-HT1B PET Radioligands

1. [11C]AZ10419369—[11C]AZ10419369 (5-methyl-8-(4-[11C]methyl-piperazin-1-yl)-4-

oxo-4H-chromene-2-carboxylic acid(4-morpholin-4-yl-phenyl)-amide) has recently been

reported to be a selective 5-HT1B antagonist suitable for PET studies in nonhuman

primates136 and humans.137 [3H]AZ10419369 has high affinity (KD = 0.4 nM) and high

specific binding to the human 5-HT1B receptor,138 although its selectivity remains to be

documented. Initial [11C]AZ10419369 PET studies in nonhuman primates demonstrated a

high brain uptake and a regional brain distribution in line with that previously reported for

the 5-HT1B receptor, also correlating with autoradiographic images with [3H]AZ10419369.

Other promising characteristics included a relatively high in vitro target-to-background ratio

(cortex/cerebellum =2.3 in human tissue), displaceable binding by a 5-HT1B specific

antagonist AR-A000002, a slow metabolism, and no lipophilic radiometabolites. This ligand

may also demonstrate sensitivity to displacement by endogenous 5-HT in nonhuman

primates.135 The first human PET study with [11C]AZ10419369 suggested similarly good in

vivo characteristics.137 This radioligand displayed rapid uptake, a good target-to-

background ratio, no evidence of the formation of radiometabolites, and a binding

distribution that correlated with receptor autoradiographical studies and known 5-HT1B

densities. In addition, the binding potentials obtained with reference tissue modelling

correlated well with those arising from arterial input kinetic modelling. A PET image of 5-

HT1B brain receptors obtained in healthy volunteers using [11C] AZ10419369 is shown in

Figure 1.

2. [11C]P943—The development and validation of the 5-HT1B radioligand, [11C]P943

(R-1-[4-(2-methoxy-isopropyl)-phenyl]-3-[2-(4-methyl-piperazin-1-yl)benzyl]-pyrrolidin-2-

one), has very recently been reported, including modelling approaches for its quantification

in the human brain.139 P943 is a high affinity 5-HT1B antagonist (Ki = 1.2 nM), with

affinities for most other serotonergic receptors being more than 100-fold lower. It has some

affinity toward the 5-HT1D receptor (Ki = 12 nM), but only a very small fraction of

[11C]P943 was expected to bind to the 5-HT1D receptors due to their low abundance. This

has not yet been confirmed, since the only in vivo blocking study so far was done using the

mixed 5-HT1B/1D receptor antagonist, GR127935.140 A comparison between

autoradiography data and binding potentials measured in vivo by human PET, however,

shows a fairly good correlation and suggests that the signal is indeed specific to the 5-HT1B

receptor. Radiosynthesis of [11C]P943 is simple, and the substance is taken up slowly into

the brain with a peak after 20 min. On the contrary, the washout appears to be relatively fast.

Another promising characteristic is the slow metabolism of the radioligand with the

production of polar radiometabolites only. Cerebellar gray matter can be used as a reference

region, as this is devoid of 5-HT1B receptors,141 and reference tissue models could

potentially be used.139 Even though pharmacological displacement of [11C]P943 has not yet

been performed in humans to confirm the specificity of the radioligand, [11C]P943 appears

to be a promising radioligand for the quantification of 5-HT1B receptor densities in the
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human brain in vivo. The first patient studies are now emerging; the first in alcohol

dependence142 and another in depression.143

H. 5-HT1D, 5-ht1e, and 5-HT1F Radioligands

The distribution of 5-ht1e, 5-HT1D, and 5-HT1F receptors has been mapped in brain

tissue.144,145 However, a lack of selective ligands for these receptors has hampered research

into their function and potential for drug discovery. There are no reported selective ligands

of any kind for the 5-ht1e receptor. 5-HT1D and 5-HT1F receptors are of interest in migraine

treatment.146,147 There now exists a few selective ligands for the 5-HT1D receptor,147 and a

selective radioligand for in vitro characterization is available for the 5-HT1F receptor.148 To

date, no selective PET or SPECT radioligands for in vivo brain imaging of the 5-HT1D, or 5-

HT1F receptor have been developed.

I. 5-HT2A Receptor Radioligands

5-HT2A receptors and their mRNAs have been extensively mapped in the brain by auto-

radiography, in situ hybridization, and immunocytochemical techniques.149–152 There are

several selective 5-HT2A ligands available, and a review of certain 5-HT2 ligands, their

affinities, efficacies, and indications was published several years ago.153 5-HT2A receptors

are of interest for many reasons: they are a primary target of psychedelic compounds,

contribute to the efficacy of many antipsychotic medications, and are involved in the

etiology or treatment of various psychiatric disorders.17,153,154

The selective radioligands available for studying 5-HT2A receptors include [3H]RP62203

(fananserin, (N-[3-[4-(4-fluorophenyl)piperazin-1-y1]propyl]-1,8-naphthalenesultam)),

[3H]ke-tanserin (3-[2-[4-(4-fluorobenzoyl)piperidin-1-yl]ethyl]-1H-quinazoline-2,4-dione),

[3H]MDL 100,907 ((R)-4-(l-hydroxy-1-(2,3-dimethoxyphenyl)methyl)-N-2-(4-

fluorophenylethyl)piperidine), and [3H]altanserin (3-[2-[4-(4-fluorobenzoyl)piperidin-1-

yl]ethyl]-2-sulfanylidene-1H-quinazolin-4-one). Attempts have been made to label these

ligands for PET and/or SPECT imaging with mixed results, as described below. Only one

successful SPECT ligand for imaging of 5-HT2A receptors has so far been produced: [123I]-

R91150 (4-amino-N-[1-[3-(4-fluorophenox-y)propyl]-4-methyl-4-piperidinyl]-5-iodo-2-

methoxybenzamide), also termed [123I]-5-I-R91150. [11C]MDL 100,907 and especially

[18F]altanserin have both become successful PET ligands, among others that show promise.

A PET image of 5-HT2A brain receptors obtained in healthy volunteers using [18F]altanserin

is shown in Figure 1.

J. 5-HT2A SPECT Ligands

1. [123I]DOI—Scintigraphic images of 5-HT2 receptors in the human brain were obtained in

the 1970s, well before the first PET or SPECT studies emerged. Sargent and colleagues

demonstrated the preferential accumulation of radioactivity in brain after administration of

radio-labelled DOI (1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane) and DOB (1-(2,5-di-

methoxy-4-bromophenyl)-2-aminopropane).155,156 As these two drugs are routinely used to

test 5-HT2 receptor function in vivo, there is a plethora of data on their pharmacology and

kinetics.
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[125I]DOI is a radiolabelled non-selective 5-HT2 agonist, often used to detect 5-HT2A/2C

receptors in the brain with autoradiography.157,158 Very early imaging studies utilizing

racemic DOI with a brominated label were not particularly successful.155 However, it was

later revealed that the R-enantiomer displayed the highest affinity and selectivity,159 and

therefore [123I]R-DOI was synthesized for in vivo testing as a potential SPECT ligand in

rodents and baboon.160 [123I]R-DOI had good brain penetration, with high accumulation in

5-HT2A receptor-rich brain areas, but its low target-to-background ratio and its inability to

be displaced by ketanserin or cold DOI suggested a high nonspecific uptake and made the

ligand unsuitable for in vivo imaging by SPECT.

2. [123I]MSP—After the butyrophenones emerged as the foundation for 5-HT2A selective

antagonist ligands, F[11C]MSP (8-[3-(4-fluorobenzoyl)propyl]-1-methyl-1,3,8-

triazaspiro[4,5]decan-4-one) and [123I]MSP (8-[3-(4-iodobenzoyl)propyl]-1-methyl-1,3,8-

triazaspiro[4,5]decan-4-one) were developed as potential PET and SPECT ligands,

respectively.161 F[11C]MSP was quickly abandoned, due to problems with low specific

radioactivity. Nevertheless, in vivo pharma-cokinetic and brain binding characterization of

[123I]MSP in mice suggested sufficient uptake and retention in the brain, with regional

accumulation corresponding to known 5-HT2A receptor distribution. Binding in frontal

cortex (target-to-background ratio of 3.5) could be partly blocked by pre-treatment with

ritanserin and IMSP but not by ketanserin. No further studies with [123I]MSP have been

published.

3. [123I]-R91150—The SPECT radioligand [123I]-R91150 has several different names in

the literature. Originally, it was called either [123I]-5-I-R91150162 or [123I]-R93274,163 but it

is now often named [123I]-R91150, even though R91150 originally was used to designate the

noniodinated analogue of 5-I-R91150. For simplicity, we will refer to it as [123I]-R91150.

125I-labelled R91150 was originally synthesized by Mertens et al.164 and further

characterized by Terrière et al.165 It has high affinity (KD = 0.11 nM) and selectivity for 5-

HT2A receptors in vitro, and preferential retention in rat frontal cortex in vivo with a target-

to-background ratio of 10. Preliminary SPECT studies in baboons using [123I]-R91150 were

also promising.163 Target-to-background ratios were lower than in rats (1.3–1.5 in cortical

areas), and kinetics and metabolism were faster. Only polar radiometabolites were seen and

binding could be blocked by administration of ketanserin (5-HT2 antagonist) but not by

raclopride (D2 antagonist). In humans, frontal cortex-to-cerebellum ratios reached values of

1.4, and remained stable, probably due to a slow dissociation rate of [123I]-R91150.162

In early human studies, a single bolus injection of [123I]-R91150 was used to calculate the

specific uptake ratio using the simple tissue ratio method at pseudoequilibrium. A later study

validated this method against full kinetic compartmental analysis and found a good

correlation between compartmental modelling with arterial plasma input and the tissue ratio

method.166 Catafau et al.167 further evaluated the in vivo properties of [123I]-R91150 by

conduction of a dose-dependent displacement of [123I]-R91150 binding with ketanserin.

Despite the lower signal-to-noise ratio of [123I]-R91150 compared with the available PET

radioligands, the widespread availability of SPECT facilities made [123I]-R91150 quite
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popular. A string of publications appeared, based on [123I]-R91150-SPECT determined in

vivo 5-HT2A receptor occupancy by various ligands168–170 and changes in 5-HT2A density

involved in disease states including cognitive decline,171 suicidal behavior,172,173 and

anorexia nervosa.174,175 The influence of age and gender on binding potential in healthy

subjects has also been determined.176 Due to its success, R91150 was also labelled with 18F

and evaluated as a potential PET radioligand. Ex vivo data from mice were promising, but

the six-step radiosynthesis prevents a more widespread use of this radioligand.177

4. [123I]-3-I-CO—Fu et al.178 developed a series of halogenated novel compounds based on

common structural features of altanserin and MDL 100,907 to provide a new series of 4′-

substituted phenyl-4-piperidinylmethanol and benzoyl-4-piperidine derivatives. Affinity for

the 5-HT2A receptor was determined and the compounds were further evaluated for

selectivity for 5-HT2A versus 5-HT2C, 5-HT6, and 5-HT7, as well as dopamine D2 and

adrenergic α1 and α2 receptors. Several promising compounds were reported, of which three

have been labelled with 123I and evaluated as potential SPECT ligands179–181: [123I]-(4-

fluorophenyl)(1-[2-(2-iodophenyl) ethyl]piperidin-4-yl)methanone, [123I]-(4-fluorophenyl)

(1-[2-(4-iodophenyl)ethyl]piperidin-4-yl) methanone, and [123I]-(4-fluorophenyl)[1-(3-

iodophenethyl)piperidin-4-yl]methanone ([123I]-3-I-CO). Of these [123I]-3-I-CO was the

most promising ligand with its high affinity (Ki = 0.51 nM) and selectivity toward 5-HT2A

receptors. In vivo, it readily entered the rat brain and its binding was displaceable by

ketanserin. In addition, in rats no radiometabolites entered the brain. However, target-to-

background ratio was low, and it is possible that [123I]-3-I-CO is a substrate for P-gp.182

K. 5-HT2A PET Radioligands

1. [11C]Ketanserin and [18F]FEK—The first mention of a PET study specifically aiming

at imaging 5-HT2 receptors in the brain utilized [11C]ketanserin183 based on its known

favorable in vitro and in vivo characteristics, although it also displays high histamine sub-

type-1 (H1) receptor affinity and lower affinities for the α1-adrenoceptor and the 5-HT2C

receptor. Here, preferential accumulation in frontal cortex relative to cerebellum was

described, and the binding could be blocked by pretreatment with unlabeled chlorpromazine.

However, the target-to-background ratio was low in the human brain, and the radiotracer

metabolized fast.183 An analogue to ketanserin, [18F]fluoroethylketanserin ([18F]FEK) was

subsequently developed. It had better PET properties184 at least in the baboon, where the

frontal cortex-to-cerebellar ratio was 2.5, and pretreatment with ketanserin blocked the

specific binding. Despite these initial promising observations, further [18F]FEK human

studies have not been published.

2. [11C]NMSP—[11C]NMSP (N-methylspiperone, 8-[4-(4-fluorophenyl)-4-oxobutyl]-2-

methyl-4-phenyl-2,4,8-triazaspiro[4.5]decan-1-one) is a dual D2/5-HT2 ligand. Although

NMSP has high affinity for both receptors, the majority of the specific binding in neocortex

is due to 5-HT2 receptor binding, since D2 receptors are only present at low density in

cortex, thus justifying its use as a 5-HT2 radioligand in this area.185,186

[11C]NMSP has been used primarily as an imaging tool to visualize D2 receptor binding in

striatum, but was also used in early PET studies to estimate changes in cortical 5-HT2
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receptor binding in, for example, aging,187 schizophrenia,188 and 5-HT2 receptor occupancy

by antipsychotic medications such as risperidone,189 clozapine,190,191 MDL 100,907,192 and

flupentixol.193 At that time, the more selective PET radioligands, [18F]setoperone and

[18F]altanserin, had yet to be fully characterized.

3. [11C]MBL—The radiolabelled LSD derivative, N1-([11C]-methyl)-2-Br-LSD ([11C]-

MBL), has also been tested as a PET radioligand.194,195 MBL has high 5-HT2A receptor

affinity in vitro (Ki = 0.5 nM), eight-fold lower affinity for D2 receptors, high affinity for 5-

HT2C receptors,196 and weak α1-adrenoceptor and 5-HT1 receptor interactions.195

Nonetheless, initial studies in baboons suggested that [11C]-MBL selectively labelled

cortical regions and was blocked by ketanserin, and human studies suggested the same;

highest labelling in frontal, temporal, and parietal cortex (cortical-to-cerebellar ratios: 1.7–

2.7) with lower levels observed in caudate and putamen and lowest in cerebellum. The lack

of further PET imaging papers could be indicative of its nonselective pharmacological

profile combined with the emergence of better radiotracers for imaging the 5-HT2A

receptors.

4. [18F]Setoperone—The structure of setoperone is related to that of ketanserin.

[18F]setoperone (6-[2-[4-(4-[18F]fluorobenzoyl)piperidin-1-yl]ethyl]-7-methyl-2,3-dihydro-

[1,3]thiazolo[3,2-a]pyrimidin-5-one) in vivo showed high binding in baboon brain in areas

known to be rich in 5-HT2A receptors such as cerebral cortex, but also high binding in

striatum.197 The target-to-background ratio was 3 in cortex and binding could be blocked by

pretreatment with spiperone and ketanserin. In striatum, radioligand binding was fully

prevented by spiperone but only partly by ketanserin suggestive of a significant contribution

from dopamine D2 receptors. In humans, pretreatment with ketanserin, sulpiride, and

prazosin confirmed that the [18F]setoperone signal was due to 5-HT2 receptors in frontal

cortex, to D2 receptors in striatum and that no significant α1-adrenoceptor binding was

evident.198 In vivo, [18F]setoperone produced radiometabolites, but these were less

lipophilic than the parent compound. Due to the differential localization of the 5-HT2A

relative to D2 receptors, [18F]setoperone became a relatively successful 5-HT2A PET ligand

despite its affinity for D2 receptors. It has been used to estimate the occupancy of 5-HT2A

receptors by antipsychotics199–201 and to assess possible changes in 5-HT2A density in

diseases such as Alzheimer’s disease, migraine, stroke, and depression, and in response to

electro-convulsive shock therapy.202–207

5. [18F]Altanserin—Altanserin, like setoperone, is a fluorobenzoyl derivative structurally

related to ketanserin. Its Ki for 5-HT2A receptors is 0.13 nM, so given its α1-adrenoceptor

affinity of 5 nM and D2 affinity of 62 nM, the majority of the signal can be attributed to 5-

HT2A receptor binding. The first [18F]altanserin study was published in 1991,208 and today,

[18F]altanserin is the most frequently used 5-HT2A receptor PET radioligand (Table II and

Fig. 1).

The potential of [18F]altanserin as a PET radioligand was first demonstrated in the rat brain

where the frontal cortex-to-cerebellum ratio is 11, and its binding can be blocked by

pretreatment with ritanserin, ketanserin, and setoperone, and only to a minor degree by D2

ligands.208 In a follow-up study in humans, the synthesis methodology was improved,209
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ketanserin pretreatment blocked [18F]altanserin binding in the human brain,210 and

displaced [18F]altanserin binding.40 Although [18F]altanserin produces radiometabolites,

these were initially considered not to interfere with binding characteristics.211 Later, it was

realized that the radiometabolites of [18F]altanserin contributed to the nonspecific binding,

and thus quantification required complex kinetic modelling.212,213 To simplify the

quantification and to take into account the lipophilic radiometabolite, a bolus–infusion

approach was developed. Initially, 6 hr of infusion were required to obtain equilibrium

measurements,214 but a later study showed that this time could be reduced to 2 hr, making

infusion studies more feasible.40 The bolus–infusion paradigm with [18F]altanserin was later

shown to have excellent test–retest reliability, particularly in large brain regions with high

binding.215

Following the positive validation studies, [18F]altanserin was used to determine changes in

5-HT2A receptor density in relation to aging,216–219 depression,220,221 anorexia nervosa/

bulimia,222,223 obsessive–compulsive disorder,224 cognitive decline,225,226 Tourette’s

syndrome,227 risk or onset of schizophrenia,228–231 and in relation to the personality trait

neuroticism.232,233 A database of 5-HT2A binding in healthy volunteers has been

published,218 and it has been reported that binding in healthy subjects correlates with body

mass index234 but does not vary with gender.235 Furthermore, twin studies have shown that

[18F]altanserin binding has a strong genetic component.236

6. [18F]Deuteroaltanserin—The significant advantages of [18F]altanserin include its

specific brain uptake, kinetics that allow for bolus–infusion schedules, a high target-to-

background ratio, and a high reproducibility. Prior to the development of suitable bolus–

infusion regimes, formation of lipophilic radiometabolites from [18F]altanserin was

considered a major disadvantage because of the resulting complex quantification methods in

data analysis. Development of a PET radioligand based on [18F]altanserin, which did not

give rise to radiometabolites crossing the blood–brain barrier, led to the synthesis of

[18F]deuteroaltanserin.237 The two deuterium atoms, which are present in place of hydrogen

atoms, were hypothesized to retard metabolism. This was indeed the case, and

[18F]deuteroaltanserin was reported to have better brain uptake in baboon and humans

compared with [18F]altanserin, using a bolus–infusion paradigm. In humans, cortical-to-

cerebellar ratio was increased by 26% above that observed previously for [18F]altanserin,

suggesting it might be a superior PET radioligand.237 In a subsequent study by the same

group, the test–retest reliability was also quite good.238

Staley et al.239 directly compared [18F]altanserin and [18F]deuteroaltanserin in baboons

under equilibrium receptor binding conditions. They demonstrated 5-HT2A specificity of

both tracers by injecting the 5-HT2A antagonists ketanserin and SB46349B, and they

concluded that [18F]deuteroaltanserin was essentially equivalent to [18F]altanserin for 5-

HT2A receptor imaging in the baboon.

Since then, only two further studies have been published using [18F]deuteroaltanserin in

humans; one to demonstrate that oestrogen replacement therapy increases prefrontal 5-HT2A

receptor density240 and the other suggesting that 5-HT2A receptors are reduced in cortical
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regions in Alzheimer’s disease.241 It remains to be seen whether this ligand will become as

successful as its predecessor.

7. [18F]RP62203—Although [18F]setoperone and especially [18F]altanserin are both

successful PET radio-ligands, they both display somewhat mixed pharmacology, as

described above, which could limit their utility. [3H]RP62203 was shown to be a 5-HT2A

antagonist with very high affinity (Ki = 50.0 pM) and a good selectivity profile in rat

cerebral cortex,242 without any significant D2 and α1 receptor affinity. Subsequent in vivo

binding characteristics of 18F-labelled RP62203 ([18F]RP62203) revealed specific binding

that correlated with the known 5-HT2A receptor distribution in the rat brain. Binding was

four times higher in cortical regions than cerebellar regions and was abolished by prior

dosing with ritanserin. This suggested that [18F]RP62203 might make a good PET

radioligand.243 Shortly after, this was confirmed in rat studies by a different group244 who

found that [3H]RP62203 gave a cortex-to-cerebellum activity ratio in rats in vivo of 9.

However, the radiosynthesis of [18F]RP62203 is multi-step and therefore probably too

demanding for regular implementation. For this reason and perhaps also because of the

subsequent emergence of [11C]MDL 100,907, no further reports on [18F]RP62203 have

been seen.

8. [11C]MDL 100,907—MDL 100,907 is a reversible, highly selective 5-HT2A ligand with

subnanomolar affinity (KD = 0.14–0.19 nM).245 Despite differences in their in vitro

selectivity profiles, the binding of [18F]altanserin and [3H]MDL 100,907 to the 5-HT2A

receptor is quite comparable.246 [11C]MDL 100,907 showed promise in nonhuman primates

where it accumulated in 5-HT2A receptor-rich regions, with a neocortex-to-cerebellum ratio

of 4.5 that was abolished after injection of ketanserin.247 Later, radioligand binding and

autoradiography studies using [3H]MDL 100,907 and [11C]MDL 100,907 confirmed its

selectivity and high specific binding in rat, nonhuman primate, and human

brain,152,245,248,249 making it the first truly selective 5-HT2A receptor ligand. In parallel,

favorable PET characteristics for [11C]MDL 100,907 were reported in humans.250 MDL

100,907 has moderate lipophilicity and the binding potential is 4–6 times higher in

neocortex than cerebellum, where binding is low.

Further studies have validated the methodology for modelling [11C]MDL 100,907 binding in

PET studies, and find that a two-tissue compartment model using arterial input is superior to

reference tissue models.251,252 This somewhat complicates the use of [11C]MDL 100,907,

since compartment modelling requires the metabolite-corrected arterial plasma radioactivity

concentration to be determined during each scan. A recent study suggests that noninvasive

graphical analysis (NIGA) is comparable with the two-tissue compartment model,253 which

greatly enhances the applicability of [11C]MDL 100,907. [11C]MDL 100,907 has so far only

been used in a limited number of clinical studies including determination of 5-HT2A

receptor binding in patients recovered from depression35 and in patients with obsessive–

compulsive disorder.254

9. [18F]MH.MZ and (R)-[18F]MH.MZ—The advantages of [11C]MDL 100,907 over

[18F]altanserin include its lack of radio-metabolites, and its higher 5-HT2A receptor

selectivity. Its disadvantages include the short half-life of the 11C label. To combine the
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favorable properties of each ligand, Herth et al.255 developed MH.MZ (FE1-MDL 100,907)

((3-fluoro-ethoxy-2-methoxyphenyl)-1-[2-(4-fluoro-phenyl)ethyl-4-piperidine-methanol), by

replacing an O-methyl group within MDL 100,907 with a labelled fluoroethyl moiety.

MH.MZ has a lower affinity for the 5-HT2A receptor than MDL 100,907 and altanserin (Ki

= 3 nM), but its visualization by autoradiography was good, nonspecific binding was low,

and competition studies suggested relatively high 5-HT2A selectivity. The high specificity

was later confirmed, as it was shown that [18F]MH.MZ has very high Ki values for a whole

range of other receptors including all other serotonergic receptors (the lowest being for 5-

HT2C where Ki = 71 nM).256 Following this [18F]MH.MZ was evaluated in vivo and it was

found that the radioligand readily entered rat brain and gave a cortex-to-cerebellum ratio of

2.7. It was observed that [18F]MH.MZ undergoes extensive first-pass metabolism, which

significantly reduced its bioavailability. Further, its time–activity curves showed a very slow

washout from the rat brain. One polar radiometabolite was found in ex vivo homogenates

from rat brain, but this was considered to be contamination from blood still located in

vessels in the brain rather than from brain gray matter tissue.256 To further improve

selectivity and increase affinity, a new series of similar compounds was developed including

the enantioselective derivative, (R)-[18F]MH.MZ.257 This compound demonstrated higher

affinity (Ki = 0.72 nM), lower nonspecific binding, and higher target-to-background ratio

(ratios of between 3.3 and 3.9 in cortex relative to cerebellum), as demonstrated by PET in

rats.258 Whether [18F]MH.MZ or (R)-[18F]MH.MZ has better characteristics than the 5-

HT2A radioligands already used in human PET still remains to be settled.

10. [11C]CIMBI Compounds—As mentioned above, agonist tracers could potentially

enable imaging of the active, high-affinity state of receptors, which may provide a more

meaningful assessment of membrane-bound receptors. The first radiolabelled high-affinity

5-HT2A receptor agonist was 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-[11C-O-

methyl]methoxybenzyl)ethanamine ([11C]Cim-bi-5). In the pig brain, [11C]Cimbi-5 showed

a cortex-to-cerebellum binding ratio in the same order of magnitude as [18F]altanserin, and it

was displaceable by ketanserin in both rats and pigs.259 Subsequently, the in vivo validation

of an additional nine novel 5-HT2A receptor agonist PET tracers in the pig brain has been

presented,260 and of these, [11C]Cimbi-36 had the most favorable kinetics and the highest

target-to-background ratio. This series of compounds seem to be the first promising

radioligands for the investigation of 5-HT2A agonist binding in the living human brain.

L. 5-HT2A Radioligands: Conclusions

Five of the above described radioligands for the 5-HT2A receptor have successfully been

used in human studies; the SPECT radioligand [123I]-R91150, and the PET radioligands

[18F]setoperone, [18F]altanserin, [18F]deuteroaltanserin, and [11C]MDL 100,907.

[123I]-R91150 displays a lower signal-to-noise ratio compared to the available PET

radioligands, but the widespread availability of SPECT facilities makes it a practical

imaging tool for, e.g., drug occupancy studies, in spite of the lower resolution provided by

SPECT.
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Of the PET radioligands [18F]altanserin has continued to be most widely used, despite its

lipophilic radiometabolite. This use is especially due to its longer lived 18F-label, which

enables the application of a bolus/infusion paradigm. Imaging data obtained from

[18F]altanserin binding in the human brain are highly reproducible and the large number of

publications based on this radioligand provides a convenient reference for new findings. The

radioligand [18F]setoperone is less selective than [18F]altanserin and is being used less and

less. [11C]MDL 100,907 is a more selective 5-HT2A ligand than [18F]altanserin in vitro, but

is much less widely used as a 5-HT2A radioligand for in vivo studies than [18F]altanserin

(Table III). The reason for this could be that the modelling issues make [11C]MDL 100,907

less attractive and only time will tell whether the quantification of [11C]MDL 100,907 with

NIGA will change this. Similarly, it will be interesting to see whether (and how) imaging 5-

HT2A receptors with agonist radioligands differs from that of antagonist radioligands.

M. 5-HT2B Radioligands

The 5-HT2B receptor is predominantly expressed in peripheral tissues such as cardiac and

intestinal tissue. 5-HT2B mRNA and protein has been detected in human brain, but only in a

few discrete nuclei.261 Although only low levels of 5-HT2B receptors are present in the

brain,262 certain selective compounds have started to emerge that may permit further

investigation of their function.263 However, no selective radioligands have been developed

so far.

N. 5-HT2C Radioligands

Very high levels of the 5-HT2C receptor are found in the epithelial cells of the choroid

plexus, but they are also present in gray matter.264–266 Due to the lack of selective

radioligands, this receptor is less well studied than its pharmacologically related 5-HT2A

receptor. Selective nonlabelled ligands for the 5-HT2C receptor exist, but currently all the

labelled 5-HT2C radioligands have shared pharmacology with other receptors (e.g. Hamedah

et al.267), and none have been developed for SPECT or PET imaging. This is disappointing

given the potential role of this receptor in feeding behavior and mood. Many atypical

antipsychotics are potent 5-HT2C antagonists,268 which has been suggested to relate to their

propensity to cause weight gain and the new antidepressant agomelatine is thought to act in

part by blocking 5HT2C receptors so elevating noradrenaline and dopamine levels in

cortex.269

O. 5-HT3 Receptor Radioligands

The 5-HT3 receptor is unique among 5-HT receptors in being a ligand-gated ion channel. Its

structure consists of a pentamer of subunits that come together to form a cation channel.

Five different subunits have been identified: 3A–E. The 3A subunits have been shown to

form functional homomers, the others form hetero-oligomeric pentamers, with the inclusion

of a 3A subunit being necessary for functional integrity.270 Located on both central and

peripheral neurons, the highest brain levels are found in the dorsal vagal complex of the

brain stem, with low levels found in the forebrain.271–274

Growth in the availability of selective ligands for the 5-HT3 receptor came about once the

anti-emetic properties of 5-HT3 receptor antagonists were established and is still of interest
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as an emerging targets in irritable bowel syndrome and alcohol abuse.275,276 Several

selective agonists and antagonists are available, of which some have been labelled with 3H

or 125I for in vitro studies (e.g. Hewlett et al.277). In all, eight potential PET ligands have

been tested in the attempt to create a successful radioligands for 5-HT3 receptors. Six were

unsuccessful due to a lack of specific binding and two because of poor brain uptake.

P. 5-HT3 SPECT Radioligands

1. Zacopride Derivatives—Ebert and co-workers developed a series of zacopride

derivatives as potential high-affinity 5-HT3 antagonists radiolabelled with 125I.277 Most of

these failed due to various reasons such as low 5-HT3 receptor affinity or a mixed

pharmacology. One promising analogue [125I]DAIZAC ((S)-5-chloro-3-iodo-2-methoxy-N-

(1-azobicyclo-[2.2.2]oct-3-yl)benzamide) displayed high affinity and very high selectivity

for the 5-HT3 receptor over a wide range of other CNS receptors tested. Zacopride is a well-

known mixed 5-HT3 receptor antagonist and 5-HT4 agonist, but DAIZAC showed a

selectivity for 5-HT3 over 5-HT4 receptors >120 times that of (S)-zacopride. Despite these

promising features, the ligand has not yet been further developed for SPECT imaging.

Q. 5-HT3 PET Radioligands

1. [11C]MDL 72222—The first candidate PET ligand for imaging the 5-HT3 receptor was

[11C]MDL 72222 ((8-methyl-8-azabicyclo[3.2.1]octan-3-yl)3,5-dichlorobenzoate), a

selective 5-HT3 receptor antagonist. In the rat brain and baboon brain an initial study

showed that [11C]MDL 72222 rapidly crossed the blood–brain barrier and was distributed

throughout the brain. Prior treatment with unlabelled MDL 72222 did not displace

[11C]MDL 72222 in brain areas with 5-HT3 receptors, suggesting a lack of specific binding,

probably due to a combination of its high lipophilicity and the relatively low density of 5-

HT3 receptors.278

2. [11C]YM060, [11C]Y-25130, and [11C]KF17643—Ishiwata et al.279,280 radiolabelled

several specific 5-HT3 receptor antagonists: Y-25130 (azasetron): N-(1-

azabicyclo[2.2.2]oct-3-yl)-6-chloro-4-methyl-3-oxo-3,4-dihydro-2H-1, 4-benzoxazine-8-

carboxamide), YM060: (R)-5-[1-methyl-3-indolyl)carbonyl]-4,5,6,7-tetra-hydro-1H-

benzimidazole, and KF17643: endo-8-methyl-8-azabicyclo[3.2.1]oct-3-yl 2-(n-

propyloxy)-4-quinolinecarboxylate for PET imaging. [11C]Y-25130 and [11C]YM060 brain

uptake in mice was low for both compounds, possibly due to low lipophilicity of

[11C]Y-25130, or ionization of the tertiary amine or both. In contrast to [11C]Y-25130 and

[11C]YM060, [11C]KF17643 exhibited high uptake in mice and appeared metabolically

stable. However, no specific binding to the 5-HT3 receptor was detected in mice.

3. [11C]S21007—[11C]S21007 (5-(4-benzylpiperazin-1-yl)4Hpyrrolo[1,2-a]thieno[3,2-

e]pyrazine), a 5-HT3 partial agonist with nanomolar affinity, has also been evaluated as a

potential PET ligand in rat and baboon.281,282 [11C]S21007 failed to give a specific binding

signal from the 5-HT3 receptor in the baboon since blocking with unlabelled S21007 was

not associated with any changes in [11C]S21007 binding. Despite favorable kinetics, brain

penetration, lack of contamination by labelled metabolites, high affinity, and selectivity
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[11C]S21007 failed in detecting the 5-HT3 receptors, and this points to the difficulty in

measuring the rather low levels of 5-HT3 receptors in the brain.

4. [18F]MR18445—After the failure of the first arylpiperazine derivative, [11C]S21007,

MR18445 (4-[4-(4-fluor-obenzyl)piperazino]-7-methoxypyrrolo[1,2-α]quinoxaline) was

synthesized and examined as a PET radioligand for 5-HT3 receptor imaging, this time with

an 18F label. [18F]MR18445 uptake in rat brain was rapid and high, and there was no

evidence of radiometabolites. However, neither autoradiography in rats nor PET studies in

baboons revealed any specific binding.283

5. [11C]NMQ—N-[methyl-11C]Methylquipazine ([11C]NMQ, (2-[1-(4-methyl)-

piperazinyl]quinoline)), a derivative of quipazine, was examined for suitability as a PET

radioligand in rat and nonhuman primate.284 In rat brain uptake and wash-out were very

rapid. In the nonhuman primate brain kinetics were similar; initial rapid accumulation was

followed by a slower decrease with all regions approaching that of nonspecific binding.

Binding was high in 5-HT3 receptor-rich regions, and although prior treatment with cold

quipazine decreased binding in the medulla compared to the cerebellum, nonspecific binding

was also high. Overall, this suggests that if the specific binding signal could be further

improved, an arylpiperazine derivative might become a better radioligand for PET studies of

the 5-HT3 receptor than those previously reported.

R. 5-HT3 Radioligands: Conclusions

Despite a number of research centres undertaking a concerted effort to develop 5-HT3

selective PET and SPECT tracers, it seems that the very discrete localization and relatively

low levels of 5-HT3 receptors in the brain makes it a very difficult target to image in vivo.

Ligands with even higher affinity and/or specific activity and lower nonspecific binding are

required if this is to happen. More recently, several new benzoxazole derivatives have been

synthesized with a view to PET radioligand development,285 but these have yet to be tested

in vivo.

S. 5-HT4 Receptor Tracers

5-HT4 receptors are involved in learning and memory and are potential targets for the

treatment of Alzheimer’s disease.286 Positively coupled to adenylate cyclase, downstream

functions include regulation of GABA-A currents in cortical neurones, and enhancement of

neurotransmitter release (e.g. Ach, DA, 5-HT, GABA). Various radioligands have been used

to map them in brain tissue, showing that they are predominantly found in the mesolimbic

and nigrostriatal system with highest densities in the caudate nucleus, putamen, nucleus

accumbens, globus pallidus, and substantia nigra.287–289 Potential PET ligands are

beginning to emerge. So far, only one PET ligand, [11C]SB207145 (8-amino-7-chloro-(N-

[11C]methyl-4-piperidylmethyl)-1,4-benzodioxan-5-carboxylate), has been successfully

evaluated in humans.290,291 A PET image of 5-HT4 brain receptors obtained in healthy

volunteers using [11C]SB207145 is shown in Figure 1.
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T. 5-HT4 Radioligands

1. [123I]SB207710—In parallel with the development of the very high affinity 5-HT4

antagonist [3H]GR113808, Brown et al.292 reported the binding characteristics of another

potent, selective 5-HT4 radioligand [125I]SB207710 ([125I](1-butylpiperidin-4-yl)methyl-8-

amino-7-iodo-2,3-dihy-drobenzo[b][1,4]dioxine-5-carboxylate), and soon after its

distribution was mapped by autoradiography in rat brain,293 confirming its potency,

selectivity, and correlation with [3H]GR113808 labelled sites. Pike et al.294 characterized its

efficacy as a radioligand in vivo, with the perspective of creating a SPECT ligand. In rats,

[125I]SB207710 entered the brain but had a rapid clearance rate. Radioactive accumulation

correlated with the known in vitro 5-HT4 receptor distribution, with a striatum-to-

cerebellum ratio of 3.4. [123I]SB207710 was then examined by SPECT in nonhuman

primates. The tracer readily accumulated in 5-HT4 receptor-rich areas, i.e., striatum with a

target-to-background ratio of 4. The binding was displaceable by the antagonist SB204070,

and cerebellum showed no specific binding. These results indicated that [123I]SB207710

might become a suitable candidate for SPECT studies in humans, but further studies have

not yet been published.

2. [11C]SB207145—The 5-HT4 receptor antagonist SB207145 was radiolabelled with 11C

by Gee et al.295 and evaluated for its potential as a PET radioligand for 5-HT4 imaging. The

first preliminary in vivo data showed that the radioligand readily entered the brain and was

distributed according to known 5-HT4 receptor distribution, and it was further shown that

binding was sensitive to prior treatment with cold SB207145 or with the structurally

dissimilar 5-HT4 antagonist SB207040. A later study confirmed the promising

characteristics of the radioligand in the pig brain, and further explored radioligand

metabolism and binding kinetics. [11C]SB207145 proved to have slow but reversible

kinetics in high-binding brain regions, and using cerebellum as a reference region, the

simplified reference tissue model was found to be the model of choice in the pig brain.296

[11C]SB207145 was subsequently successfully evaluated in the human brain290 (Fig. 1).

Here a binding potential of 3.1 was reported in caudate nucleus and binding was

displaceable by the selective 5-HT4 receptor inverse agonist piboserod (SB207266). In this

study, a comprehensive quantification of the binding of [11C]SB207145 to cerebral 5-HT4

receptors in the human brain in vivo was further provided. Estimation of distribution

volumes and binding potentials of [11C]SB207145 showed good test–retest reproducibility

and time-stability. The blocking study with piboserod confirmed that the cerebellum is a

suitable reference region devoid of specific binding, and that non-specific binding is

constant across brain regions. Subsequently, it was shown that [11C]SB207145 is not

displaceable by increased levels of endogenous 5-HT.291 Together this shows that

[11C]SB207145 can be used for quantitative PET measurements of 5-HT4 receptors in the

human brain.

U. 5-ht5 Radioligands

Two genes for the 5-ht5 receptor have been described: A and B. The 5-ht5a receptor is

expressed in human brain, e.g. in the suprachiasmatic nucleus (SCN), but low levels of

expression have made characterization very difficult. There are no selective agonists, but

two selective antagonists have recently become available,297 one of which has been shown
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to alter circadian function in vivo.298 Only mRNA for the 5-ht5b receptor has so far been

found in humans and it is thought that no functional protein is produced due to stop

codons.299,300 There are no available radioligands for either of the 5-ht5 receptors.

V. 5-HT6 Radioligands

5-HT6 receptors are found exclusively in the CNS and are predominantly expressed in the

striatum, limbic system, and cortex.301,302 They are of particular interest because of their

involvement in learning and memory.4 Selective radioligands for in vitro studies are

available, such as [125I]SB258585, but its development as an in vivo imaging tool was

hampered due to poor brain penetration.303 More recently, radioligands for PET imaging of

the 5-HT6 receptor have been developed by GSK, of which [11C]GSK215083 3-[(3-

fluorophenyl)-sulfonyl]-8-(4-[11C]methyl-1-piperazinyl)quinoline is the most promising.

1. [18F]12ST05—Based on the selective 5-HT6 antagonist SB271046 a novel series of

compounds was developed. The specificities of these compounds toward the 5-HT6 receptor

were tested.304 This lead to the evaluation of [18F]12ST05 ([18F]-N-[2-(1-[(4-

fluorophenyl)sulfonyl]-1H-indol-4-yloxy)ethyl]-N,N-dimethylamine) as the first potential 5-

HT6 PET radioligand.305 Synthesis technique, specific activity, and uptake kinetics were all

found to be satisfactory, with the radioligand showing excellent brain penetration in rat and

cat brain. In vitro, it had high affinity, and ex vivo autoradiography demonstrated high

labelling in regions known to contain 5-HT6 receptors, which to some extent was

displaceable by unlabelled 12ST05 and SB258585. However, the initial evaluation in vivo in

cat did not reveal any specific binding to the cerebral 5-HT6 receptors, and does not seem to

have been further developed for PET.305

2. [11C]GSK215083—Recent conference proceedings identified two novel compounds

that might be suitable for PET studies of the 5-HT6 receptor. Based on the 3-

benzenesulfonyl-8-piperazine-1-yl-quinoline scaffold, [11C]GSK215083 and

[11C]GSK224558 (8-(4-[11C]methyl-1-piperazinyl)-3-[(2-

(trifluoromethoxy)phenyl)sulfonyl]quinoline) were both investigated in pig brain306,307 and

[11C]GSK215083, the more superior ligand, subsequently showed promise in a human PET

study.308 It has high affinity for 5-HT6 (in vitro Ki, 0.16 nM), but also has high 5-HT2A

affinity (in vitro Ki, 0.79 nM). However, the differential localization of 5-HT2A and 5-HT6

receptors (predominantly cortical and striatal respectively) combined with the ~5-fold

difference in affinity meant that it was still possible to discriminate between these two

receptor types in vivo. A recent study in nonhuman primates demonstrated this;

[11C]GSK215083 binding was preferentially blocked by unlabelled GSK215083 within

striatum relative to cortex, suggesting an ~8-fold difference in affinity in vivo. Concerns of a

possible mass dosing effect were also addressed. Although BP values are relatively low,

[11C]GSK215083 represents the only available 5-HT6 PET radioligand to date.309

W. 5-HT7 Radioligands

5-HT7 receptors are found in several brain regions such as hippocampus, thalamus, and

hypothalamus, especially the SCN, where they are thought to be involved in circadian

rhythm, sleep, and mood regulation.310,311 Three different splice variants of the human 5-
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HT7 receptor have so far been found, but they do not seem to differ markedly in their

pharmacological profile.312,313 Several potent and selective ligands for the 5-HT7 receptor

have been developed, but so far only [11C]DR4446 has been prepared and evaluated in vivo

as a potential 5-HT7 PET radioligand, which was unsuccessful. A recent attempt to produce

a fluorinated radioligand also failed; the lead compound demonstrated very low specific

binding in ex vivo autoradiography.314

1. [11C]DR4446—DR4446 (1-methyl-2a-[4-(4,5,6,7-tetrahydrothieno[3,2-c]pyridin-5-

yl)butyl]-2a,3,4,5-tetrahydro-1H-benz[cd]indole-2-one) was shown to possess moderate

affinity (Ki = 9.7 nM) and high selectivity for 5-HT7 receptors over other 5-HT receptors.315

[11C]DR4446 was therefore synthesized and tested in the nonhuman primate brain,316

revealing good brain penetrability, metabolic stability, but a minimal specific binding

component. No reports on [11C]DR4446 in humans have been published.

X. SERT Tracers

SERT is the serotonin reuptake transporter and is one of three monoamine reuptake

transporters in the brain, along with transporters for dopamine (DAT) and noradrenaline

(NET).317,318

Because of the interest in SERT generated by the success of its inhibitors in the treatment of

depression and anxiety disorders, successful imaging of SERT in living human brain was for

a long time the topic of intensive investigation, and several PET and SPECT ligands have

been developed for this purpose. A recent, very detailed review of SERT imaging by PET

and SPECT can be found in Huang et al.319 so the whole spectrum of radioligands available

will not be discussed at great length here.

Many of the ligands initially tested as PET and SPECT radioligands were labelled

derivatives of successful antidepressant drugs like the SSRI paroxetine,320 the SNRI venla-

faxine,321 and the tricyclics imipramine322 and cyanoimipramine.323 These radiotracers

were, however, unsuccessful in vivo, mainly due to insufficient specific to nonspecific

binding in the human brain.

Initially, better images of SERT in the human brain came from the cocaine derivative

SPECT ligand [123I]β-CIT, and later with the selective but kinetically irreversible PET

ligand [11C](+)McN5652. Today, the most successful line of SERT radioligands are those

developed from diarylsulfides such as [123I]ADAM, and especially [11C]MADAM, and

[11C]DASB. A PET image of 5-HT transporter binding obtained in healthy volunteers using

[11C]DASB is shown in Figure 1.

Y. SPECT Radioligands for SERT

1. β-[123I]CIT and Nor-β-[123I]CIT—β-[123I]CIT (2-β-carbomethoxy-3-β-(4-

iodophenyl)tropane) is a nonselective monoamine transporter SPECT ligand that has

approximately equal affinity for all three transporters. It was developed to improve the

metabolic instability of the PET ligand [11C]cocaine, and was evaluated as a SPECT ligand

in both nonhuman primates324 and in humans.325 Despite its nonselectivity, β-[123I]CIT has

been used for imaging both DAT and SERT, by taking advantage of the differential
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localization of these transporters (striatum and midbrain, respectively) and the different

tracer kinetics in these regions. Various analogues of β-[123I]CIT have been made through

modest modifications of the structure, such as labelling at different positions and creation of

fluoroalkyl analogues to decrease the time to reach pseudoequilibrium,326 but these efforts

were mainly directed at improving its effectiveness for imaging the dopamine reuptake

transporter (DAT). The development of nor-β-[123I]CIT (2-β-carbomethoxy-3-β-(4-

iodophenyl)nortropane)327,328 produced a radioligand with supposedly increased specific

binding for SERT over DAT in humans, but it remains controversial whether nor-β-

[123I]CIT is a better radioligand for SERT than β-[123I]CIT.329

Today, several hundred publications (Table II shows publications only related to SERT)

using β-[123I]CIT demonstrate the level of success this radioligand has enjoyed especially

for measuring the dopamine transporter. β-[123I]CIT and nor-β-[123I]CIT have been used to

image SERT density in human midbrain in a number of conditions such as

depression,330,331 generalized anxiety disorder,332 obsessive–compulsive disorder,333 panic

disorder,334 and Parkinson’s disease,335 among others. The disadvantage of these SPECT

ligands is their inability to selectively image SERT.

2. Diarylsulfides—The diarylsulfides are a class of potent SSRIs that so far have given

rise to three potential SPECT ligands: [123I]IDAM,336–338 [123I]ODAM,339 and

[123I]ADAM.340,341

3. [123I]ADAM—The most successful of the diarylsulfide SPECT radioligands listed above

is [123I]ADAM (2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine), which has

been shown to be potent, selective, and have a high target-to-background ratio in human

studies.340–343 It has been used for estimating SERT occupancy of SSRIs344–348 and to

demonstrate changes in SERT binding density in depression,349 migraine,350 borderline

personality disorder,351 and night eating syndrome.352 Quantification of the SERT binding

with [123I]ADAM SPECT is most often done with a ratio method, based on data acquired

from 200 to 240 min. This has, however, been shown to overestimate the specific binding by

about 10%. The most reliable outcome is based on a 0–120 min SPECT acquisition followed

by Logan noninvasive modelling.343

Z. PET Radioligands for SERT

1. [11C]McN5652—The first selective PET radioligand for imaging SERT in the human

brain was [11C](+) McN5652 (trans-1,2,3,5,6,10-β-hexahydro-6-[4-

(methylthio)phenyl]pyrrolo-[2,1-a]isoquino-line).353 Its use has been limited by a relatively

low target-to-background ratio in vivo, as well as a slow brain uptake and irreversible

kinetics that complicate quantification in high binding regions.354,355 Despite this, [11C]

(+)McN5652 PET has been used to investigate SERT binding in ecstasy use,356 impulsive

aggression,357 and depression.358 In a series of experiments, the fluoromethyl analogue of

[11C](+)McN5652 was developed and evaluated as a 18F-labelled PET radioligand359 and it

was concluded that [18F](+)-FMe-McN5652 has better features than [11C](+)McN5652 for

SERT imaging with PET. No further studies using [18F](+)-FMe-McN5625 have been

forthcoming, perhaps because of the subsequent success of the diarylsulfides.
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2. Diarylsulfides—Many PET radioligands for measuring SERT have been developed

from the diarylsulfide series including [11C]ADAM,360 [18F]ADAM,361,362 [11C]S-Me-

ADAM,363 [11C]DAPA,364 [11C]AFM,360 [11C]AFA,365 [11C]EADAM,366 [11C]DAPP,367

[11C]AFE,368 [11C]MADAM,369 and [11C]DASB.370 All these ligands demonstrated

selectivity for SERT, with varying target-to-background ratios and brain kinetics. Following

a comparison between [11C]ADAM, [11C]DASB, [11C]DAPA, and [11C]AFM in reference

to [11C]McN5652, [11C]DASB emerged as a favourite due to its ability to measure SERT

binding within a short scan time.360 Today [11C]DASB and [11C]MADAM have become the

most popular SERT PET radioligands.

3. [11C]DASB—[11C]DASB (3-amino-4-(2-dimethylamino-methyl-phenylsulfanyl)-

benzonitrile) is one of a series of 11C-labelled arylthiobenzylamines developed by Wilson

and Houle.371 [11C]DASB displayed good selectivity (negligible affinity for more than 40

other receptors) and high affinity. Ex vivo studies further demonstrated saturable binding in

rats.370 PET studies of [11C]DASB in humans showed that the uptake distribution matched

that expected for SERT and binding kinetics could be quantified with reference tissue

models.367,372

It was quickly realized that [11C]DASB was a superior PET ligand to [11C](+)McN5652,

both in baboons373 and in humans354 but also superior to several other promising new PET

ligands.360 Furthermore, test–retest data showed high reproducibility and reliability.374

[11C]DASB PET has since been used to measure SERT occupancy at clinical doses of

fluoxetine, citalopram, sertraline, duloxetine, and venlafaxine.32,375–377 These were

followed by patient studies, investigating a multitude of conditions including MDMA

use,356 depression,378–380 schizophrenia,381 obsessive–compulsive disorder,382

alcoholism,383 and bipolar disorder.384 [11C]DASB binding has further been investigated in

healthy individuals in relation to personality traits,385 seasonal changes,386 and familial risk

for mood disorders.387

4. [11C]MADAM—After demonstrating promising characteristics in nonhuman primate

PET studies,369 [11C]MADAM (N,N-dimethyl-2-(2-amino-4-

methylphenylthio)benzylamine) was tested in humans.388 The brain accumulation pattern

was consistent with human postmortem SERT binding with [3H]MADAM389 as well as

[3H]imipramine, [3H]paroxetine, and [3H]citalopram.390,391 In a test–retest study,

[11C]MADAM had excellent reproducibility when done several weeks apart.392 Since then,

[11C]MADAM has been used to estimate relative SERT occupancy of citalopram and

escitalopram393 and to investigate the relationship between 5-HT1A and SERT binding in

healthy young men and women.394–397

5. [18F]ADAM—The 18F-labelled form of ADAM, 4-[18F]ADAM (N,N-dimethyl-2-(2-

amino-4-[18F]fluor-ophenylthio)benzylamine) has been synthesized and a synthesis

methodology suitable for PET imaging has been reported.398,399 With microPET and

autoradiography, [18F]ADAM has a rapid brain uptake and high target-to-background ratios

and the specific signal was displaceable by paroxetine.400 Further studies in rat and monkey

PET confirmed that bio-distribution, dosimetry, and toxicity data support its investigation in

human subjects.401
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AA. SERT Radioligands: Conclusions

Several SERT radioligands are available and among these the most successful are

[123I]ADAM, [11C]DASB, and [11C]MADAM. The most widely used PET SERT

radioligand is [11C]DASB because of its good selectivity, high reproducibility, and simple

quantification. The primary reason why new radioligands are still being developed is that the

low density of SERT binding sites in neocortex is challenging for accurate measurement.

[11C]AFM with its high target-to-background ratio might show improved detection of

cortical SERT density, and thus be a valuable addition to the existing SERT radioligands. It

would also be valuable to have an 18F-labelled SERT radioligand, and [18F]ADAM shows

promise in this respect.

BB. 5-HT Synthesis Radiotracers

Some effort has been devoted toward developing PET tracers for probing presynaptic 5-HT

synthesis. 5-HT in the brain is synthesized from dietary tryptophan, and tracer candidates

should thus be analogues of tryptophan and follow the 5-HT synthesizing pathway. α-[11C]-

methyl-L-tryptophan ([11C]AMT or α[11C]MTrp) and 5-hydroxy-L-[β-11C]tryptophan

([11C]HTP) are substrates in the first and second enzymatic steps in the biosynthesis of 5-

HT, and have both been tested for their ability to determine 5-HT synthesis rate in the

human brain. A PET image of sites of 5-HT synthesis within brain using [11C]AMT in

healthy volunteers is shown in Figure 1.

1. [11C]AMT—[11C]AMT is a 11C-labelled methyl analogue of tryptophan and a substrate

for tryptophan hydroxylase. [11C]AMT is not used for protein synthesis and is not

catabolized by the monoamine oxidases, and is thus trapped by the 5-HT synthesis

pathway.402 The use of [11C]AMT to measure 5-HT synthesis rate was evaluated ex vivo403

and also in vivo in animals.404,405 The first study in humans showed that uptake values were

stable within an individual, which was taken as an indication of the potential of [11C]AMT

to serve as an index of individual 5-HT synthesis capacity.406 Furthermore, changes in the

uptake with age and gender were found to be consistent with previously reported

biochemical measurements of 5-HT in brain tissue.407 There are, however, several caveats

with the use of [11C]AMT. The signal-to-noise ratio is rather low, there is a time delay

between uptake and conversion of the radiotracer,405,408 and in some elegant nonhuman

primate studies it has been found that [11C]AMT binding seems to be primarily driven by

blood–brain barrier exchange, rather than 5-HT synthesis rate.409 Further, under pathologic

conditions, [11C]AMT is metabolized by means of the kynurenine pathway and the

measurements thus reflect both pathways.410

Clinically, [11C]AMT has been used to determine changes in the 5-HT synthesis rate during

acute changes in mood411 and during antidepressant treatment,412 but its main use is now in

the study of pathological conditions such as epilepsy and endocrine tumors where uptake

can be marked so it assists in diagnoses.

2. [11C]HTP—Conversion of tryptophan to 5-hydroxytryptophan (5-HTP) is the rate-

limiting step in 5-HT synthesis, but neither tryptophan hydroxylase nor amino acid

decarboxylase is saturated in the process of 5-HT synthesis. Therefore, in principle,
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measurement of either enzymatic step may be used to determine the rate of 5-HT synthesis.

Further, since the endogenous level of 5-HTP in the brain is normally very low, the rate of

decarboxylation to 5-HT is most probably equal to its formation. This has lead to the use of

[11C]HTP in PET as a measure of 5-HT synthesis rate.413 In vivo nonhuman primate brain

studies showed that following injection of [11C]HTP, the accumulation of its

radiometabolite decreases following co-injection with unlabelled 5-HTP414 and increases

after co-administration of vitamin B6,415 a cofactor for the decarboxylase, indicating that the

radiotracer is sensitive to pharmacological challenges. In humans, [11C]HTP utilization rates

were shown to be region-dependent and could be altered by serotonergic pharmacological

challenges,416 suggesting that data from PET studies using [11C]HTP might be interpreted

as a measure of brain 5-HT turnover. A later study showed that human PET data from this

tracer could be reliably modelled when using a model that included irreversible trapping of

the tracer.417 As for [11C]AMT, the majority of studies using [11C]HTP are in diagnostic

investigations in pathological conditions rather than investigating 5-HT synthesis per se.

[11C]AMT and [11C]HTP binding were found to correlate in some postmortem

studies,417,418 but not in a head-to head comparison study in rhesus monkeys.419 More in

vivo validation studies are required if firm conclusions are to be drawn about the suitability

of these tracers for estimating 5-HT synthesis.

4. CONCLUSIONS

Currently, well-validated radiotracers for imaging the 5-HT system exist as antagonist

radioligands for the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors, and for SERT.

Three radioligands are currently used for PET studies of the 5-HT1A receptor:

[11C]WAY100635, [18F]MPPF, and [18F]FCWAY. There are four suitable tracers for the 5-

HT2A receptor: the SPECT tracer [123I]5-I-R91150, the nonselective PET tracer

[18F]setoperone, and the selective tracers [18F]altanserin and [11C]MDL 100,907. Several

SERT radioligands exist and among these the most successful are [123I]ADAM,

[11C]DASB, and [11C]MADAM.

Several promising radioligands are currently emerging. Of these, the two 5-HT1B ligands

[11C]AZ10419369 and [11C]P943, the 5-HT4 receptor radioligand [11C]SB207145, and the

5-HT6 receptor radioligand [11C]GSK215083 are the only ones where successful evaluations

in humans have been published so far.

Unfortunately, despite significant investment and many failed attempts, there are currently

no PET or SPECT radioligands for the study of 5-HT3 receptor in humans. In the past, a

lack of selective ligands appears to be the reason for the lack of radioligand development

programs for 5-HT1D/e/F, 5-HT2B/C, 5-HT5, and 5-HT7 receptors. However, there are now a

number of selective ligands available for many of these targets, which should facilitate

renewed effort to tracer development at these targets. Emerging functions for these receptors

make them interesting targets for future study with in vivo brain imaging.

From the present review it is clear that development of radioligands for in vivo brain

imaging in humans is a long process of trial and error. Despite substantial effort to predict
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the usefulness of a potential radioligand for in vivo brain studies, most radiotracers fail

during tracer development. Among the main reasons for this are insufficient blood–brain

barrier passage, too high nonspecific binding, inability to displace the binding of the

radioligand with an unlabelled target-specific ligand, production of lipophilic

radiometabolites, or kinetic properties that complicate quantification. Preclinical evaluations

in both rats and larger species are useful for selecting the best candidates, but often species

differences make it difficult to directly translate results from animals to the human

situation.28 Therefore, one cannot firmly conclude on the suitability of a radioligand for

human studies before a thorough evaluation in humans has been performed, including

blocking, modelling, and test–retest studies.

It is also evident from this review that once a radioligand for imaging of a serotonergic

target has been successfully evaluated, the interest in using the radioligand for studies of a

whole range of human conditions and for establishing receptor occupancy from clinical

doses of drug compounds is huge. In addition, the potential use of agonist tracers for

imaging “functional” receptors in vivo may provide us with additional information that

cannot be obtained using antagonist tracers. They may also be more susceptible to changes

in endogenous neurotransmitter, a property that may provide new avenues to understanding

disease. With this in mind we strongly encourage the continuing efforts to develop

radioligands for imaging of serotonergic targets.
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Figure 1.
Six PET radioligand brain images in healthy control individuals, taken with different

serotonergic markers. Transverse, sagittal, and coronal sections are shown. (A) 5-

HTsynthesis. Normalized [11C]AMT Trapping (K*), average image from 60 healthy

controls. Image courtesy of P. Gravel, M. Leyton, M. Diksic and C. Benkelfat, McGill

University Health Center (MUHC), Montreal, Canada. (B) 5-HT1A receptor. HRRTPET

image of [11C]CUMI-101brain distribution, from Center for Integrated Molecular Brain

Imaging (Cimbi), Copenhagen, Denmark. (C) 5-HT1B receptor. Fused MR and PET images

of [11C]AZ10419369 brain distribution. Average images from 3 to 93 min after injection.

Image courtesy of K. Varnäs, C. Halldin and L. Farde, Karolinska Institutet, Dept of Clinical

Neuroscience, Stockholm, Sweden. (D) 5-HT transporter (SERT). HRRT PET image of

[11C]DASB brain distribution, from Center for Integrated Molecular Brain Imaging (Cimbi),

Copenhagen, Denmark. (E) 5-HT2A receptor. HRRT PET image of [18F]altanserin brain

distribution, from Center for Integrated Molecular Brain Imaging (Cimbi),Copenhagen,

Denmark. (F) 5-HT4 receptor. HRRTPET image of [11C]SB207145 brain distribution, from

Center for Integrated Molecular Brain Imaging (Cimbi),Copenhagen, Denmark.
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