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Abstract

New algorithms are continuously proposed in computational biology. Performance evaluation of novel methods is
important in practice. Nonetheless, the field experiences a lack of rigorous methodology aimed to systematically and
objectively evaluate competing approaches. Simulation studies are frequently used to show that a particular method
outperforms another. Often times, however, simulation studies are not well designed, and it is hard to characterize the
particular conditions under which different methods perform better. In this paper we propose the adoption of well
established techniques in the design of computer and physical experiments for developing effective simulation studies. By
following best practices in planning of experiments we are better able to understand the strengths and weaknesses of
competing algorithms leading to more informed decisions about which method to use for a particular task. We illustrate the
application of our proposed simulation framework with a detailed comparison of the ridge-regression, lasso and elastic-net
algorithms in a large scale study investigating the effects on predictive performance of sample size, number of features, true
model sparsity, signal-to-noise ratio, and feature correlation, in situations where the number of covariates is usually much
larger than sample size. Analysis of data sets containing tens of thousands of features but only a few hundred samples is
nowadays routine in computational biology, where ‘‘omics’’ features such as gene expression, copy number variation and
sequence data are frequently used in the predictive modeling of complex phenotypes such as anticancer drug response.
The penalized regression approaches investigated in this study are popular choices in this setting and our simulations
corroborate well established results concerning the conditions under which each one of these methods is expected to
perform best while providing several novel insights.
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Introduction

Computational biology thrives on a continuous flux of newly

proposed algorithms. Methodological developments to solve new

problems or improve well established algorithms lie at the heart of

the field. Nonetheless, we observe a serious lack in rigorous

methodology to objectively and systematically evaluate the

performance of competing algorithms. Simulation studies are

frequently used to show that a particular method outperforms

another. In this context, simulation studies usually involve the

generation of a large number of synthetic data sets followed by

application and performance comparison of competing methods in

each one of the simulated data sets. In principle, this strategy can

be used to determine the specific conditions under which a given

method outperforms a competing one, and can help guide a user

to select an appropriate method based on characteristics of the

data. However, in practice, simulation studies often fail to

incorporate basic principles of design recommended in the planing

of experiments.

In this paper we advocate the use of sound experimental design

principles when outlining a simulation study. We adapt well

established design techniques, originally developed in the context

of physical [1] and computer experiments [2,3], to simulation

studies. As we explain in the detail in the Methods section, a

simulation experiment represents a middle ground between

computer and physical experiments, and requires the adoption

of design techniques from both fields. We denote the Design Of

Simulation Experiments by DOSE. We illustrate an application of

DOSE to a large scale simulation study comparing ridge [4], lasso

[5], and elastic-net [6] regression in situations where the number

of features, p, is larger than the number of samples, n.

There are two main motivations for this particular choice of

methods. First, predictive modeling in the ‘‘large p, small n’’

setting [7] is an important practical problem in computational

biology, with relevant applications in the pharmacogenomics field,

where genomic features such as from gene expression, copy

number variation, and sequence data have been used, for

example, in the predictive modeling of anticancer drug sensitivity

[8,9]. The availability of data sets with large numbers of variables
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but comparatively small sample sizes has increased the interest in

penalized regression models as tools for prediction and variable

selection. Standard approaches such as ridge-regression and lasso

are commonly used in the analysis of such data sets, and the

development of novel approaches, such as elastic-net, have been

motivated by applications in the genomic sciences, were the ‘‘large

p, small n’’ paradigm is routine.

Second, while these methods are widely used in practice, and

their behavior under different conditions is relatively well

understood (for instance, the predictive performance of lasso is

expected to be better than of ridge-regression in sparse situations,

while the reverse is true when the true model is saturated),

simulation studies comparing their performance have been

limited, focusing on a small number of variables [5,6]. These

characteristics make comparison of regularized regression methods

particularly well suited for illustrating DOSE, since we would

expect our designed experiment to be able to detect well known

behaviors, while also providing novel insights.

As an example of a limited, yet typical, simulation study,

consider a fictitious experiment whose objective is to compare the

predictive ability of two penalized regression methods, A and B.

Suppose that method A has some theoretical properties that

suggest it should outperform method B in sparse situations. To

empirically test this hypothesis, a researcher designs two simula-

tion experiments. In the first, she/he generates data from 50

correlated covariates and a single response variable associated with

all covariates. In the second, the researcher again simulates data

from 50 correlated covariates, but with the response variable

affected by only 10 covariates. In both simulation studies, he/she

fixes the values of the non-zero regression coefficients to 2, sets the

residual variance to 1, and generates the covariates from a

multivariate normal distribution with mean 0 and correlation

matrix with entries given by 2{Di{jD, where i and j indexes the rows

and columns, respectively. For each simulation experiment, she/

he generates 100 separate training and test data sets of sample size

300. The researcher optimizes the method’s tuning parameters in

the training set using 10-fold cross-validation, and evaluates the

prediction mean squared error (MSE) using the test set. Finally,

suppose that, as a matter of fact, method A outperformed method

B in the sparse setting, whereas the reverse holds in the saturated

setting.

No doubt the above simulation result provides some evidence

that method A outperforms method B in sparse situations, but can

the researcher claim that this simulation demonstrates that method

A works better than B in sparse conditions? In this paper, we

argue he/she can not. Because the researcher tested only single,

fixed values for the correlation structure among covariates, sample

size, residual error, and non-zero regression coefficients, it is not

possible to make claims about the relative performance of A and B

for parameter regimes not tested in the simulation study. All the

researcher can say is that for that particular choice of sample size,

signal-to-noise ratio, etc, method A outperforms B in sparse

settings. It is possible the researcher could have observed a

different result if she/he had chosen a different combination of

simulation parameter values. In other words, the effect of sparsity

on the predictive performance, as measured by the difference in

MSE of methods A and B, cannot be teased apart from the effects

of the other simulation parameters.

To circumvent this problem, we: (i) select simulation parameter

values spread as uniformly as possible over the entire parameter

space (so that our simulations gather information about all

portions of the parameter space); and (ii) generate each simulated

data set with a unique combination of simulation parameters. In

other words, we adopt a space filling design [2] in our simulations

(see Methods section for details). Note that by spreading out the

parameter values homogeneously across the parameter space, a

space filling design achieves near orthogonality and keeps

confounding to a minimum.

In the next section we present the results from our simulation

study. See the Methods section for: (i) a brief background on the

penalized regression methods studied in this paper; (ii) a

comparison of the similarities and differences between computer

and simulation experiments; (iii) a description of the space filling

experimental design and stochastic data generation process used to

generate the simulated data; (iv) details on model fitting and

performance evaluation; and (v) a description of the statistical tools

used in the analysis of simulation results.

Results

In order to investigate the absolute and relative predictive ability

of penalized regression methods we designed a simulation study

focusing on the effects of five distinct simulation parameters,

namely: (i) sample size, n; (ii) number of covariates, p; (iii) the

saturation parameter, w, that specifies the probability that a

covariate enters the regression model; (iv) signal-to-noise ratio, g,

defined as the average of the absolute values of the non-zero

regression coefficients divided by the residual variance; and (v)

correlation, r, controlling the correlation structure of random

blocks of covariates. We concentrate our simulations on situations

where the number of covariates (up to 40,000) is usually much

larger than the sample size (up to 1,000), since this is usually the

case in genomic applications. To the best of our knowledge the

present study represents the largest and most systematic simulation

experiment comparing regularized regression approaches.

In the Methods section we provide details on simulation

parameter ranges and the stochastic data generation process

employed in the generation of the simulated data sets. Figure 1

presents a graphical model representation and overview of the

data generation process. In total, we generated 10,000 distinct

simulated data sets according to a space filling design.

Figure 2 presents scatter plots of the MSEs of ridge-regression,

lasso and elastic-net. Overall, ridge showed smaller MSE than

lasso in 90.46% of the simulations (panel a). This result is not

unexpected since the maximum number of covariates that can be

selected by lasso cannot be larger than the sample size, and in

95.24% of the simulations the true model contained more than n
covariates. Most of the cases were lasso outperformed ridge-

regression (below diagonal dots) correspond to the simulations

where the sample size was larger than the number of covariates in

the true model; that is, where the true model was sparse (see Figure

S1a in the Supplement for further details).

The comparative performance of elastic-net and ridge-regres-

sion was quite balanced (panel b), with elastic-net outperforming

ridge in 52.74% of the simulations, and most of the simulations

showing close MSE values (note the concentration of points along

the diagonal red curve). The simulations where elastic-net

performed considerably better than ridge, i.e., the points dispersed

to the lower right of the diagonal, correspond to sparse true models

(see Figure S1b for details).

Elastic-net outperformed lasso in 86.80% of the simulations

(panel c). Again, this is not an unexpected result since, as described

above, the performance of lasso is compromised when the number

of covariates in the true model is larger than sample size, whereas

elastic net can select more than n covariates [6]. In the next

subsections we investigate in detail the absolute and relative

predictive performances of these three penalized regression

methods.

Design of Simulation Experiments
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Ridge-regression
In this section, we investigate the effect of the simulation

parameters on the mean squared error of the ridge model (MSER).

Figure 3 presents the response distributions for each one of the five

simulation parameters across their respective ranges (represented

by 10 equally spaced bins). The red horizontal line represents the

median of the response distribution. Inspection of the plots shows

clear shifts in location and/or spread for the number of features,

correlation, and sample size parameters, but practically constant

distributions across the binned groups for the saturation parameter

and (slightly less so) for the signal-to-noise parameter. Permutation

tests for the equality of group distributions null hypothesis (using

distance component analysis [10] - see the ‘‘Data analysis’’

subsection on Methods for details) presented in Table 1, confirm

that the group differences are highly significant (p-value v0:001)

for the number of features, correlation, and sample size

parameters (note the high values of the observed test statistics),

but non-significant for saturation, and marginally significant for

the signal-to-noise parameter. Table 1 also shows highly signifi-

cant interactions for number of features vs correlation, sample size

vs number of features, and sample size vs correlation. Figure 4

shows the respective interaction plots.

As expected, Figure 3 shows improvement in predictive

performance as the sample size increases, the number of features

decreases and the amount of correlation increases (panels a, b, and

e, respectively). Furthermore, the interaction plots in Figure 4

show synergistic effects of these parameters, with larger improve-

ments in performance achieved by combinations of larger sample

sizes with smaller number of features and with larger correlation

values. Note that the strong decrease in MSE as a function of the

amount of correlation among the features is expected since ridge-

regression is highly effective in ameliorating multi-collinearity

problems (the purpose for which it was originally developed). The

lack of influence of the saturation parameter on the predictive

performance is expected for ridge-regression, whereas the mar-

ginal influence of the signal-to-noise parameter is investigated in

more detail in Text S1.

Lasso
For lasso, Figure 5 shows strong shifts in location and/or spread

for all parameters, except for the signal-to-noise. The permutation

tests (Table 2) confirms these results, and shows that even the

much weaker group differences for the signal-to-noise parameter

are statistically significant. Highly significant interaction terms

Figure 1. Plate representation of the stochastic data generation process employed in the generation of the simulation study data.
Circles represent stochastic variables. Double circles represent functions of the stochastic variables. For each simulation, s, we generate n samples
(Xi1, . . . ,Xip,Yi), i~1, . . . ,n. For each sample, i, we simulate p correlated features, Xij , conforming to a covariance matrix S parameterized according

to the correlation parameter, r. The response, Yi , is generated from a linear regression model with residual variance, s2 , set to 1. The indicator
variables, 11bj

, control which features influence the response, according to the inclusion probability w (which controls the saturation of the model).

The regression coefficients, bj , are obtained by re-scaling the b�j values, in order to control the signal-to-noise ratio, g. See the Methods section for

details, including the distributional assumptions associated with these quantities.
doi:10.1371/journal.pone.0107957.g001

Figure 2. Scatter plots comparing the MSE scores produced by ridge-regression, lasso, and elastic-net. Panel a shows the comparison
of ridge-regression vs lasso, panel b compares ridge-regression vs elastic-net, and panel c compares lasso vs elastic-net.
doi:10.1371/journal.pone.0107957.g002

Design of Simulation Experiments
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included: sample size vs number of features, number of features vs

saturation, number of features vs correlation, sample size vs

saturation, and sample size vs correlation. Figure 6 shows the

respective interaction plots.

Figure 5 shows improvement in predictive performance as the

sample size increases, the number of features decreases, the

saturation decreases, and the amount of correlation increases

(panels a, b, c, and e, respectively). Once again, the interaction

plots in Figure 6 show synergistic effects of these parameters, with

larger improvements in performance achieved by combinations of

larger sample sizes with smaller number of features, smaller

saturation and with larger correlation values. For lasso too, we

observe a considerable decrease in MSE as a function of the

amount of correlation in the features (although not as strong as in

ridge-regression) corroborating empirical observations that al-

though lasso can combat multi-collinearity problems it is not as

effective as ridge-regression. On the other hand, and contrary to

ridge-regression that is insensitive to the influence of the saturation

parameter, we clearly observe an improvement in MSE as a

function of decreasing saturation values for the lasso. The

marginal influence of the signal-to-noise parameter is again

investigated in more detail in Text S1.

Elastic-net
For elastic-net, Figure 7 shows clear shifts in location and/or

spread for all parameters, except for the signal-to-noise. Table 3,

confirms these results, and shows that even the much weaker

group differences for the signal-to-noise parameter are statistically

significant. Table 3 also shows highly significant interactions for

sample size vs number of features, number of features vs

saturation, number of features vs correlation, sample size vs

saturation, and sample size vs correlation. Figure 8 shows the

respective interaction plots.

As expected, Figure 7 shows improvement in predictive

performance as the sample size increases, the number of features

decreases, the saturation decreases, and the amount of correlation

increases (panels a, b, c, and e, respectively). Furthermore, the

interaction plots in Figure 8 show, once again, synergistic effects of

these parameters with larger improvements in performance

achieved by combinations of larger sample sizes with smaller

number of features, smaller saturation and with larger correlation

values. For elastic-net, we observe a strong decrease in MSE as a

function of the amount of correlation in the features (comparable

to ridge-regression) corroborating empirical observations that

elastic-net can be as efficient as ridge-regression in the combat

multi-collinearity problems. Furthermore, and similarly to lasso,

we clearly observe improvement in MSE as a function of

Figure 3. Distributions of the absolute performance response for ridge-regression, across 10 equally spaced bins of the parameters
ranges. The x-axis show the parameter ranges comprised by each of the 10 bins. The y-axis shows the absolute performance response MSER. The
red horizontal line represents the median of the response distribution. The dotted line is set at zero.
doi:10.1371/journal.pone.0107957.g003
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decreasing saturation values for the elastic-net. The marginal

influence of the signal-to-noise parameter is investigated in detail

in Text S1.

Ridge-regression versus lasso
In order to compare the predictive performance of ridge-

regression against lasso we defined the response as

WLR~MSEL{MSER. Note that positive values of the response

represent the simulations where ridge-regression outperforms

lasso, and vice-versa. Figure 9 presents the response distributions

Table 1. Ridge-regression.

par. obs. stat. p-value

sample size (n) 76.980 ,0.001

number of features (p) 450.212 ,0.001

saturation (w) 0.651 0.939

signal-to-noise (g) 1.354 0.098

correlation (r) 141.839 ,0.001

sample size vs number of features (n : p) 20.778 ,0.001

sample size vs saturation (n : w) 0.559 0.998

sample size vs signal-to-noise (n : g) 0.593 0.998

sample size vs correlation (n : r) 3.785 ,0.001

number of features vs saturation (p : w) 0.553 1.000

number of features vs signal-to-noise (p : g) 1.139 0.207

number of features vs correlation (p : r) 27.951 ,0.001

saturation vs signal-to-noise (w : g) 0.760 0.952

saturation vs correlation (w : r) 0.677 0.980

signal-to-noise vs correlation (g : r) 0.727 0.965

Permutation tests for equality of the group distributions using distance components analysis (lines 2 to 6), and permutation F-tests for the presence of 2-by-2
interactions (lines 7 to 16). Results based on 999 permutations.
doi:10.1371/journal.pone.0107957.t001

Figure 4. Interaction plots for ridge-regression. The values of the interaction test statistics are shown on the top of the figures.
doi:10.1371/journal.pone.0107957.g004
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for each one of the five simulation parameters. Inspection of the

plots shows clear shifts in location and/or spread for the number of

features, correlation, saturation, and sample size, but practically

constant distribution across the bins for the signal-to-noise

parameter. Permutation tests for the equality of group distributions

null hypothesis, presented in Table 4, confirm that the group

differences are highly significant (p-value v0:001) for the number

of features, correlation, saturation, and sample size parameters

(note the high values of the observed test statistics), but non-

significant for signal-to-noise. Table 4 also shows highly significant

interactions for number of features vs saturation, sample size vs

saturation, and sample size vs number of features. Figure 10 shows

the respective interaction plots.

Comparison of ridge-regression against lasso corroborate two

well known results, namely: (i) that lasso outperforms ridge when

the true model is sparse, whereas the converse holds true for

saturated models (Figure 9c); and (ii) for highly correlated features,

ridge tends to dominate lasso in terms of predictive performance

(Figure 9e). More interestingly, our simulations also detected a

couple of less appreciated patterns. First, Figure 9a shows that the

average advantage of ridge-regression over lasso tends to increase

as the sample size gets larger. Nonetheless, the interaction plots in

Figures 10b and c show that this advantage is larger in moderate

to highly saturated models, but that lasso tends to outperform

ridge-regression when sample size is large, but number of features

and saturation are small. Second, Figure 9b shows an interesting

pattern for the number of features, where the advantage of ridge-

regression over lasso tends to increase at first, and then decreases

as the number of covariates increases further. Figure 10a provides

an explanation for this curious trend. Lasso is clearly better for

small number of features if the saturation is also small, but ridge is

better if the saturation is moderate to large. The advantage of

ridge decreases with the number of features (for moderate or large

saturation). With small saturation, increasing the number of

features makes ridge more competitive, since at some point the

number of features entering the model (i.e. pw, on average)

become larger than the sample size.

Ridge-regression versus elastic-net
For the comparison of ridge-regression against elastic-net we

defined the response as WER~MSEE{MSER, so that positive

values show the simulations where ridge-regression outperforms

elastic-net, and vice-versa. Figure 11 shows clear shifts in location

and spread of the boxplots for saturation, number of features,

sample size, and correlation, but considerably constant distribution

for the signal-to-noise parameter. Overall, we see that the

predictive performances of ridge and elastic-net tend to be closer

to each other than the performances of ridge and lasso (note the

Figure 5. Distributions of the absolute performance response for lasso, across 10 equally spaced bins of the parameters ranges. The
x-axis show the parameter ranges comprised by each of the 10 bins. The y-axis shows the absolute performance response MSEL . The red horizontal
line represents the median of the response distribution. The dotted line is set at zero.
doi:10.1371/journal.pone.0107957.g005

Design of Simulation Experiments

PLOS ONE | www.plosone.org 6 October 2014 | Volume 9 | Issue 10 | e107957



small spread of most of the boxplots, and the closeness of the

boxplot medians to 0). The permutation tests (Table 5) detected

highly significant differences in group distributions for saturation,

number of features, sample size, and correlation, and marginally

significant differences for signal-to-noise. Highly significant inter-

action terms included: number of features vs saturation, sample

size vs saturation, and sample size vs number of features. Figure 12

shows the respective interaction plots.

Comparison of ridge-regression against elastic-net corroborates

the well known result that elastic-net tends to show much better

performance than ridge-regression when the true model is sparse,

while these methods tend to be comparable for saturated models

(Figure 11c). Novel insights uncovered by our simulations include

that: (i) ridge tends to outperform elastic-net when sample size is

small, but the reverse is true for larger sample sizes (Figure 11a).

Furthermore, the interaction plots in Figure 12 show that the

better performance of elastic-net is accentuated when sample size

is large but number of features and saturation are small; (ii) elastic-

net tends to outperform ridge when number of features is small,

but both methods tend to become comparable (with ridge being

slightly better) for larger number of features (Figure 11b). This

pattern is explained by a strong interaction between number of

features and saturation (Figure 12a), which shows that the elastic-

net performs much better than ridge when the number of features

is small and the true model is sparse; and (iii) elastic-net tends to

perform slightly better than ridge when the covariates are highly

correlated (Figure 11e).

Lasso versus elastic-net
For the comparison of lasso against elastic-net we defined the

response as WEL~MSEE{MSEL. Hence, positive values of the

response show the simulations where lasso outperforms elastic-net,

and vice-versa. Figure 13 shows clear distribution differences for

the number of features, correlation, sample size, and saturation

parameters, but practically no differences for signal-to-noise.

Table 6 corroborates these findings showing a non-significant p-

value for signal-to-noise, but highly significant results for all other

parameters. The permutation tests also detected highly significant

interactions for: number of features vs saturation, sample size vs

number of features, number of features vs correlation, sample size

vs saturation, and sample size vs correlation.

Comparison of lasso versus elastic-net also corroborates the well

established results that: (i) lasso and elastic-net show comparable

performances when the true model is sparse, whereas elastic-net

outperforms lasso when the true model is saturated; and (ii) elastic-

net outperforms lasso when the covariates are highly correlated.

Furthermore, our simulations generated a couple of new insights.

First, the advantage of elastic-net over lasso increases as the sample

size gets larger (Figure 13a). Figures 14b, d and e, show that this

advantage of elastic-net is more accentuated: for smaller number

of features (red curve in Figure 14b); for moderate to larger

saturations (green and blue curves in Figure 14d); and for larger

correlations (blue curve in Figure 14e). Together, these results

explain the larger spread of the boxplots on Figure 13a as sample

size gets larger. Second, Figure 13b shows that, relative to number

of features, the advantage of elastic-net tends to increase at first,

but then starts to decrease as the number of features increases.

Figures 14a and 14c provide an explanation for this curious trend.

Figure 14a shows that elastic-net is clearly better than lasso for

smaller number of features, if saturation is moderate or large, but

lasso becomes more competitive when saturation is small, and that

the advantage of elastic-net decreases with the number of features.

Figure 14c shows that, when the correlation is high, the advantage

of elastic-net tends to increase rapidly (as the number of features

reaches approximately 8,800), before it starts to decrease with

increasing number of features.

Discussion

In this paper we propose running simulation studies as designed

experiments. We argue that, when comparing the performance of

alternative methods in a simulation study, it is important to use

well established design principles and follow best practices in

Table 2. Lasso.

par. obs. stat. p-value

sample size (n) 38.094 ,0.001

number of features (p) 328.013 ,0.001

saturation (w) 50.773 ,0.001

signal-to-noise (g) 2.379 ,0.001

correlation (r) 34.313 ,0.001

sample size vs number of features (n : p) 20.147 ,0.001

sample size vs saturation (n : w) 3.777 ,0.001

sample size vs signal-to-noise (n : g) 0.864 0.813

sample size vs correlation (n : r) 1.600 ,0.001

number of features vs saturation (p : w) 19.349 ,0.001

number of features vs signal-to-noise (p : g) 1.222 0.092

number of features vs correlation (p : r) 11.155 ,0.001

saturation vs signal-to-noise (w : g) 0.963 0.581

saturation vs correlation (w : r) 0.569 0.999

signal-to-noise vs correlation (g : r) 0.620 0.997

Permutation tests for equality of the group distributions using distance components analysis (lines 2 to 6), and permutation F-tests for the presence of 2-by-2
interactions (lines 7 to 16). Results based on 999 permutations.
doi:10.1371/journal.pone.0107957.t002
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planning of experiments, such as choosing relevant simulation

parameters, adopting realistic ranges of parameter values, and

making use of pilot studies to improve the design of the actual

simulation experiment (see subsection ‘‘Choice of simulation

parameters and parameter ranges’’ in Methods for details).

We illustrate the application of DOSE in a large scale

simulation study comparing the relative performance of popular

penalized regression methods as a function of sample size, number

of features, model saturation, signal-to-noise ratio, and strength of

correlation between groups of covariates organized in a blocked

structure. We restricted our simulations to the case where the

Figure 6. Interaction plots for lasso. The values of the interaction test statistics are shown on the top of the figures.
doi:10.1371/journal.pone.0107957.g006
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number of features is larger than the number of samples, since this

is the usual setting in the analysis of real genomic data. Our

simulations corroborated all well-established results concerning the

conditions under which ridge-regression, lasso, and elastic-net are

expected to perform best, but also provided several novel insights,

described in the Results section.

In the present work we adopted MSE as the scoring metric since

it is widely used in practice and is the metric adopted in the

original papers proposing the lasso and elastic-net approaches.

Nonetheless, it is important to point out that the results presented

in this paper could be metric dependent, as alternative metrics

might rank competing models differently. Interesting alternatives

to the MSE metric include: concordance correlation coefficient

[11], Pearson correlation, and mean absolute error. We point out,

however, that an in-depth robustness investigation of our results

with respect to alternative scoring metrics is out of the scope of the

present paper, and is left as an interesting future research project.

The incorporation of experimental design techniques in

simulation studies can be useful in computational biology for

three main reasons. (1) First, it provides increased objectivity and

thoroughness in the assessment of competing methods/algorithms.

(2) Second, it might improve our ability to select existing methods

based on characteristics of a given data set. For instance, suppose

that a researcher is working in a pharmacogenomics data set,

aiming to perform predictive modeling of drug response sensitivity.

Suppose further that comparison of ridge-regression and lasso

model fits shows a better predictive performance by ridge (as is

often the case in pharmacogenomic data sets [12,13]). Next the

researcher needs to decide between ridge-regression and elastic-

net. At this point, instead of running elastic-net, a computationally

expensive approach which requires performing cross-validation for

two tuning parameters, the researcher can guide his/her choice

based on readily observable characteristics of the data set, such as,

sample size, number of features, and amount of correlation among

the features (or assumptions about unobserved characteristics, such

as underlying model sparsity). For instance, if her/his data has a

small number of samples and a large number of weakly correlated

features, our simulations suggest (see panels a, b, and e, on

Figure 11 and Figure 12) that ridge-regression is more likely to

outperform elastic-net than the converse. (3) Third, the adoption

of design techniques improves our ability to demonstrate the

strengths of a method under specific conditions. This point is

important, since it is unrealistic to expect any given method to

outperform its competitors across a large panel of data sets, with

diverse characteristics such as different sample sizes, amount of

signal, correlation structures, etc. A more realistic goal is to

demonstrate the improved performance of the given method

Figure 7. Distributions of the absolute performance response for elastic-net, across 10 equally spaced bins of the parameters
ranges. The x-axis show the parameter ranges comprised by each of the 10 bins. The y-axis shows the absolute performance response MSEE . The
red horizontal line represents the median of the response distribution. The dotted line is set at zero.
doi:10.1371/journal.pone.0107957.g007
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under specific conditions, i.e., in a subspace of data set

characteristics.

This third point closely resonates with the celebrated No Free

Lunch (NFL) theorems [14–16], which can be interpreted as a

formalization of David Hume’s critique of the inductive method in

science. More formally, in the context of supervised learning with

zero-one loss, Wolpert [15] shows that, if we don’t make any

assumptions (or, have no prior information) about the target input-

output relationship we are trying to learn, than for any two

algorithms A and B there are as many targets for which A

outperforms B as vice versa. Extensions of NFL theorems for other

loss functions are discussed in [16], which provides analogous

(although weaker) NFL-type theorems applicable to the quadratic

loss function. The NFL theorems address ‘‘the mathematical

‘skeleton’ of supervised learning, before the ‘flesh’ of particular

priors’’ (i.e., assumptions) concerning the target input-output

relationship are introduced [15]. As pointed out in [17], the

practical consequence of the NFL theorems is that every

demonstration that the generalization performance of one

algorithm is better than another in a given suite of test data sets,

is also an implied demonstration that it is worse on an alternative

suite. In short, empirical success in supervised learning is always

due to problem selection. So, even though it is tempting to

interpret good generalization performance as a characteristic of

the algorithm, in reality it only means that the algorithm was well

matched to the suite of test data sets. In this sense, the DOSE

framework can be seen as a principled approach to empirically

investigate which combinations of data set characteristics are best

matched (in a statistical sense) by specific algorithms.

Note that we do not observe an approximately balanced

proportion of simulations in which one of the methods outper-

formed the other, as might seem to be implied by the NFL

theorem. This is because, even though our simulations encompass

a broad range of data set characteristics, they did not induce a

uniform distribution over the space of target input-output

relationships (i.e., the linear predictor in our case). For instance,

the proportion of simulations where the linear predictor involved

fewer features than the number of samples was highly skewed by

our focus in the ‘‘large p, small n’’ setting. In other words, the very

fact that we chose the parameter ranges for our simulations based

on values observed in real genomic data sets imposes strong

assumptions over the distribution of targets investigated in our

simulations, skewing it away from a uniform distribution.

In the statistical analyses of the simulation results, we divided

the ranges of the simulation parameters into ten equally spaced

bins, and applied distance component analysis to test for

differences in the response distributions of the groups, and

permutation F-tests to detect the presence of 2-by-2 interactions

between simulation parameters. Although our choice of 10 groups

was arbitrary, we repeated our analyses using 5 and 15 groups as

well (see Supplementary Tables in Text S5), and observed

qualitatively similar results, suggesting that our analyses were

robust to the number of bins used.

As pointed out in the Methods section, a simulation experiment

represents a middle ground between computer and physical

experiments. In particular, given the stochastic nature of the data

generation process, replication might be a beneficial technique in

the context of simulation experiments. However, because of

limitations in time and computational resources, a question arises

about whether is it better to adopt a single large design with, say,

10,000 input points or to run the simulations on 10 replicates of a

smaller design with only 1,000 input points. In this work we choose

to allocate our resources to a more detailed exploration of the

experimental region by adopting a larger space filling design at the

expense of performing replications.

The ability to clearly evaluate the relative merits of sophisticated

statistical methods and machine learning algorithms in systematic

and unbiased manner should be of broad utility to the

computational biology community. In this paper, we proposed

the use of DOSE as a general framework for the comparison of

distinct algorithms used to solve a common machine learning

problem and illustrate its application with the comparison of three

widely used methods, whose predictive performance behavior is

relatively well known. By showing that our simulations were able

Table 3. Elastic-net.

par. obs. stat. p-value

sample size (n) 92.070 ,0.001

number of features (p) 393.980 ,0.001

saturation (w) 18.031 ,0.001

signal-to-noise (g) 1.882 0.006

correlation (r) 97.958 ,0.001

sample size vs number of features (n : p) 16.881 ,0.001

sample size vs saturation (n : w) 2.235 ,0.001

sample size vs signal-to-noise (n : g) 0.776 0.927

sample size vs correlation (n : r) 2.176 ,0.001

number of features vs saturation (p : w) 9.345 ,0.001

number of features vs signal-to-noise (p : g) 1.245 0.076

number of features vs correlation (p : r) 8.518 ,0.001

saturation vs signal-to-noise (w : g) 1.014 0.445

saturation vs correlation (w : r) 0.605 0.997

signal-to-noise vs correlation (g : r) 0.665 0.994

Permutation tests for equality of the group distributions using distance components analysis (lines 2 to 6), and permutation F-tests for the presence of 2-by-2
interactions (lines 7 to 16). Results based on 999 permutations.
doi:10.1371/journal.pone.0107957.t003
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to provide new insights and recover expected behaviors, we

demonstrate the value of adopting experimental design principles

for the study of penalized regression models. A demonstration of

the practical usefulness of DOSE in the comparison of a larger

number of competing algorithms for regression (or classification)

problems is, nonetheless, yet to be done.

Methods

Brief background on the methods under comparison
Ridge-regression [4] is a continuous shrinkage method that

minimizes the residual sum of squares subject to a bound on the

L2-norm of the coefficients. In ill defined problems, where the

Figure 8. Interaction plots for elastic-net. The values of the interaction test statistics are shown on the top of the figures.
doi:10.1371/journal.pone.0107957.g008
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number of covariates, p, is larger than the sample size, n, or where

the covariates suffer from strong multi-collinearity, ridge-regres-

sion can be used to regularize the regression estimates, achieving

better prediction accuracy through a bias-variance trade-off.

Nonetheless, ridge-regression does not set any coefficients to 0

and does not produce an easily interpretable model.

The lasso [5] circumvents this problem by minimizing the

residual sum of squares constrained to a bound on the L1-norm of

the coefficients. The lasso penalty allows both continuous

shrinkage and automatic variable selection to happen at the same

time. However, it has been pointed out [6] that the lasso has three

important limitations. First, when pwn, the lasso can select at

most n variables before it saturates. Second, if there is a group of

covariates that are highly correlated the lasso tends to select a

single variable. Third, when pvn and the covariates are highly

correlated, it has been shown empirically [5] that the predictive

performance of the lasso is dominated by ridge-regression.

The elastic-net addresses these three problems by minimizing

the residual sum of squares constrained by a penalty term that is a

convex combination of the L1- and L2-norms, and thus is capable

of performing automatic variable selection by setting some

coefficients to 0, but can also select groups of correlated variables,

and no longer suffers from the saturation issue that plagues the

lasso.

Computer experiments versus simulation experiments
Computer experiments [2,3] are routinely used as a substitute

for physical experiments when the latter are too expensive,

unethical or infeasible. In computer experiments, a program is

used to generate a response value associated with a set of input

values. The program is deterministic, i.e., we obtain identical

answers if we run the computer experiment twice using the same

set of inputs. A consequence of this deterministic nature is that

strategies employed in the design and analysis of computer

experiments differ from the ones used in traditional physical

experiments. For instance, well established practices in physical

experiments such as replication, randomization and blocking are

irrelevant in computer experiments. (In a computer experiment, a

single observation at a given set of inputs gives us perfect

information about the response at that particular set of inputs,

hence replication is irrelevant. Furthermore, all experimental

factors are known and randomization and blocking are not

needed, since there are no uncontrolled variables that might affect

the response in a systematic fashion, or might create uncontrolled

heterogeneity.)

A simulation experiment represents a middle ground between

computer and physical experiments. In simulation experiments,

the inputs (simulation parameters) are used in the generation of the

simulated data sets to which we apply and evaluate the

Figure 9. Distributions of the relative performance response in the ridge-regression vs lasso comparison, across 10 equally spaced
bins of the parameters ranges. The x-axis show the parameter ranges comprised by each of the 10 bins. The y-axis shows the relative
performance response WLR~MSEL{MSER. The red horizontal line represents the median of the response distribution. The dotted line is set at
zero.
doi:10.1371/journal.pone.0107957.g009
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performance of competing algorithms. The response variable is

generally defined as a measure of relative performance of the

competing methods, and our interest is to model the response as a

function of the simulation parameters. Because the simulated data

sets are generated from probability distributions, simulation

experiments are not deterministic. Hence (and similarly to physical

Table 4. Ridge-regression vs lasso.

par. obs. stat. p-value

sample size (n) 28.003 ,0.001

number of features (p) 99.312 ,0.001

saturation (w) 78.062 ,0.001

signal-to-noise (g) 0.949 0.541

correlation (r) 85.745 ,0.001

sample size vs number of features (n : p) 3.948 ,0.001

sample size vs saturation (n : w) 8.321 ,0.001

sample size vs signal-to-noise (n : g) 1.002 0.482

sample size vs correlation (n : r) 0.996 0.490

number of features vs saturation (p : w) 41.886 ,0.001

number of features vs signal-to-noise (p : g) 1.023 0.426

number of features vs correlation (p : r) 1.393 0.017

saturation vs signal-to-noise (w : g) 1.017 0.443

saturation vs correlation (w : r) 0.570 1.000

signal-to-noise vs correlation (g : r) 0.695 0.986

Permutation tests for equality of the group distributions using distance components analysis (lines 2 to 6), and permutation F-tests for the presence of 2-by-2
interactions (lines 7 to 16), in the comparison of ridge-regression vs lasso. Results based on 999 permutations.
doi:10.1371/journal.pone.0107957.t004

Figure 10. Interaction plots for the ridge-regression vs lasso comparison. The values of the interaction test statistics are shown on the top
of the figures.
doi:10.1371/journal.pone.0107957.g010
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experiments) the use of replications might be helpful. On the other

hand (and similarly to computer experiments) randomization and

blocking are still irrelevant since all uncontrolled variables are

represented by random noise associated with the generation

process employed in the production of the simulated data sets, and

cannot affect the response in any systematic fashion.

Similarly to both physical and computer experiments, where the

scientific question to be answered determines the characteristics of

the designed experiment, the types of statistical methods and

algorithms to be compared dictate the specifics of the experimental

design for a simulation study. Hence, the choice of simulation

parameters (the inputs of the computer experiment) and the ranges

of values investigated in the simulation study are case specific.

Design of simulation experiments (DOSE)
Space filling design. In the context of design and analysis of

computer experiments [2], an experimental design consists of a

matrix of input values, with columns indexing the input types, and

each row storing the input values for each simulation run. The

region comprising the input values we want to study is called the

experimental region. A multi-dimensional point in the experi-

mental region corresponds to a specific set of input values. In

situations were we don’t know a priori the true relation between

input values and the response variable under study, it is reasonable

to adopt a design that provides information about all portions of

the experimental region. Space filling designs are a popular choice

in this context since they attempt to spread out the input values as

evenly as possible across the entire experimental region. Further-

more, because of the deterministic nature of computer experi-

ments, space filling designs use a single observation at any set of

inputs so that each simulation is run with a unique combination of

parameter values. (We point out, however, that in the context of a

simulation experiment, it makes sense to have replications of the

parameter value combinations, due to the stochastic nature of the

simulated data.)

For our simulation study, we adopted a space filling design

composed of 10,000 5-dimensional input points representing

sample size, number of covariates, true model sparsity, signal-to-

noise ratio, and correlation. Among the several available strategies

to create a space filling design [2], we adopted a Latin hypercube

design (LHD) optimized according to the maximin distance

criterium [18], since it is relatively simple to draw samples from

Latin hypercubes and there are robust and publicly available

implementations of Latin hypercube samplers (namely, the lhs

Figure 11. Distributions of the relative performance response in the ridge-regression vs elastic-net comparison, across 10 equally
spaced bins of the parameters ranges. The x-axis show the parameter ranges comprised by each of the 10 bins. The y-axis shows the relative
performance response WER~MSEE{MSER. The red horizontal line represents the median of the response distribution. The dotted line is set at
zero.
doi:10.1371/journal.pone.0107957.g011
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and DiceDesign R packages [19,20]). Furthermore, LHD

possess attractive properties under marginalization [2], making

LHDs one of the most popular designs for computer experiments.

In a nutshell, a LHD in d dimensions and N points is generated

in the ½0,1�d experimental region by dividing each one of its d

dimensions into N intervals, and selecting each one of the N points

Table 5. Ridge-regression vs elastic-net.

par. obs. stat. p-value

sample size (n) 42.231 ,0.001

number of features (p) 61.468 ,0.001

saturation (w) 82.652 ,0.001

signal-to-noise (g) 1.515 0.023

correlation (r) 6.099 ,0.001

sample size vs number of features (n : p) 2.335 ,0.001

sample size vs saturation (n : w) 6.994 ,0.001

sample size vs signal-to-noise (n : g) 1.049 0.365

sample size vs correlation (n : r) 0.675 0.996

number of features vs saturation (p : w) 30.782 ,0.001

number of features vs signal-to-noise (p : g) 1.239 0.075

number of features vs correlation (p : r) 1.685 ,0.001

saturation vs signal-to-noise (w : g) 1.417 0.009

saturation vs correlation (w : r) 0.539 1.000

signal-to-noise vs correlation (g : r) 0.739 0.967

Permutation tests for equality of the group distributions using distance components analysis (lines 2 to 6), and permutation F-tests for the presence of 2-by-2
interactions (lines 7 to 16), in the comparison of ridge-regression vs elastic-net. Results based on 999 permutations.
doi:10.1371/journal.pone.0107957.t005

Figure 12. Interaction plots for the ridge-regression vs elastic-net comparison. The values of the interaction test statistics are shown on the
top of the figures.
doi:10.1371/journal.pone.0107957.g012
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Table 6. Lasso vs elastic-net.

par. obs. stat. p-value

sample size (n) 78.683 ,0.001

number of features (p) 123.014 ,0.001

saturation (w) 26.688 ,0.001

signal-to-noise (g) 0.804 0.781

correlation (r) 115.291 ,0.001

sample size vs number of features (n : p) 6.341 ,0.001

sample size vs saturation (n : w) 2.212 ,0.001

sample size vs signal-to-noise (n : g) 0.771 0.932

sample size vs correlation (n : r) 1.821 ,0.001

number of features vs saturation (p : w) 9.788 ,0.001

number of features vs signal-to-noise (p : g) 0.652 0.991

number of features vs correlation (p : r) 6.168 ,0.001

saturation vs signal-to-noise (w : g) 0.735 0.971

saturation vs correlation (w : r) 1.233 0.084

signal-to-noise vs correlation (g : r) 0.544 0.999

Permutation tests for equality of the group distributions using distance components analysis (lines 2 to 6), and permutation F-tests for the presence of 2-by-2
interactions (lines 7 to 16), in the comparison of lasso vs elastic-net. Results based on 999 permutations.
doi:10.1371/journal.pone.0107957.t006

Figure 13. Distributions of the relative performance response in the elastic-net vs lasso comparison, across 10 equally spaced bins
of the parameters ranges. The x-axis show the parameter ranges comprised by each of the 10 bins. The y-axis shows the relative performance
response WEL~MSEE{MSEL. The red horizontal line represents the median of the response distribution. The dotted line is set at zero.
doi:10.1371/journal.pone.0107957.g013

Design of Simulation Experiments

PLOS ONE | www.plosone.org 16 October 2014 | Volume 9 | Issue 10 | e107957



in the experimental region such that, when projected onto any of

the marginal dimensions, exactly one point is in each of the

intervals for that dimension. In spite of this desirable marginal-

ization property, a LHD will not necessarily represent a space

filling design. Therefore, the usual practice in the design of

computer experiments is to use a second criterium in order to

select a LHD with good space filling properties [2]. Here, we

adopt the maximin distance criterium which attempts to maximize

the minimal distance between any two points in the design.

Figure 14. Interaction plots for the lasso vs elastic-net comparison. The values of the interaction test statistics are shown on the top of the
figures.
doi:10.1371/journal.pone.0107957.g014
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In the present study, we generated over 20 distinct design

matrices using the maximin Latin hypercube sampler implement-

ed in the lhs package (due to its computational efficiency and

scalability), and selected the one with the best space filling

properties measured according to the coverage and maximin

distance metrics provided by the DiceDesign R package. The

coverage criterion is defined as

coverage~
1

�zz

1

N

XN

i~1

(zi{�zz)2

" #1=2

,

where zi is the minimal distance between point i and the other

points in the design, and measures the deviation of the design from

a regular mesh (with smaller coverage values indicating more

regular designs). The mindist criterium is defined as

mindist~ mini zi, where zi represents the minimal distance

between the point i and the other points of the design. Higher

mindist values correspond to more regular scaterring of design

points. After we generated a space filling design on the ½0,1�d
hypercube, we transformed the design points to the range of

parameter values we are actually interested in studying.

A note on alternative designs involving categorical

simulation parameters. The construction of the maximin

Latin hypercube design adopted in this paper depends on a

measure of distance between the input points. Therefore, it cannot

be directly applied when some of the simulation parameters are

categorical variables. In situations where all the simulation

parameters are categorical we can use a full multifactorial

experiment with crossed factors as an alternative to a space filling

design. By adopting such a balanced full factorial design we ensure

the orthogonality of the factors and protection against confound-

ing of the simulation parameter effects on the relative performance

response. The problem with such an approach is that the number

of combinations of the crossed factors might be forbiddingly high

even for a moderate number of simulation parameters and

parameter levels. For instance, with 5 simulation parameters, and

10 levels per parameter, we would need to perform 105 simulations

in order to sample each one of the possible parameter level

combinations. Hence, full factorials are only feasible when the

number of levels per parameter is small. When this is not the case,

a fractional factorial design might be used.

In situations where some of the parameters are categorical, while

others are continuous, we have a few options. For instance, if we are

willing to consider a factorial design with a small number of levels,

we can divide the range of the continuous parameters into a small

number of equally spaced discrete values, and treat the resulting

ordinal variables as categorical factors in a full factorial design. For

instance, if the range of a given continuous simulation parameter is

[0, 3] we can divide this range into 3 equally spaced bins, ½0,1),
½1,2), and ½2,3), and use the midpoints 0.5, 1.5, and 2.5 as

‘‘categorical’’ parameter values in the simulation study. Alterna-

tively, we can combine a space filling design generated from the

continuous variables, with all possible level combinations of the

categorical variables. For example, suppose we have two categorical

inputs with two levels each, and three continuous parameters. We

can generate N points from a space filling approach, using the three

continuous parameters, in order to generate a N|3 design matrix

D, and then create a combined design, D�, with 4N rows and 5

columns where each row of D, is combined with each one of the

four combinations of the two categorical parameters levels in order

to generate four rows in the design D�.
Choice of simulation parameters and parameter

ranges. An important step in the design of a simulation

experiment is the choice of the relevant input simulation

parameters, and the careful selection of the ranges of the

simulation parameters to be investigated in the simulation study.

Any characteristic of a data set that might impact the performance

of a computational algorithm should be considered in the

simulation study. For penalized regression models it is reasonable

to expect that the sample size, the number of features, the sparsity

of the true model generating the data, the amount of signal, the

residual noise, and the amount of correlation between features,

might affect the methods performance. For some of these

parameters, it might be more natural to consider the ratio of

two simulation parameters than each of the parameters on their

own. For example, it is reasonable to expect the signal-to-noise

ratio to capture the information provided by the signal and the

noise parameters separately. In other cases, it is not completely

clear whether the ratio would capture all the information provided

by each of the parameters separately. For instance, even though

we are frequently most interested in the number of features by

sample size ratio, it is not clear whether the performance of the

prediction algorithms would be the same in a data set containing

300 features and 100 samples, as in a data set containing 3,000

features and 1,000 samples. In these situations it is often advisable

to run a pilot simulation study to investigate the issue. In the

Supplement (Text S2) we present such a study, showing that, in

fact, we can safely replace the signal and noise parameters by their

ratios, whereas we should keep the number of features and sample

size parameters separate.

Once we decide which parameters should be used as inputs in

the simulation study, we need to carefully determine the

experimental region to be explored in the study. Our approach

was to select the parameter ranges to be as realistic and consistent

as possible with observed ranges in real genomic data applications.

For each one of the five inputs in our simulation study, we selected

the parameter value ranges as follows:

1. Sample size, n, was selected in the discrete range

f100,101, . . . ,1000g. Note that sample sizes in genomic

studies in the ‘‘large p, small n’’ setting, using high

throughput ‘‘omics’’ data sets, typically comprise a few

hundred samples, with few studies having more than

1,000 samples.

2. Number of features, p, was selected in the discrete range

f1001,1002, . . . ,40000g. The upper limit on this range

encompasses the number of probes generally sampled in

RNA microarrays. Even though some technologies, such

as SNP arrays, can produce much larger number of

genomic features, it is often the case that some filtering is

applied to screen out non-informative features, so that

the selection of 40,000 as an upper bound for the range of

p, is still a realistic choice.

3. Saturation parameter, w, that specifies the probability

that a covariate enters the regression model, was selected

in the continuous interval ½0:005,0:995�. This choice

ensures we are able to simulate from highly sparse to

highly saturated models.

4. Signal-to-noise parameter, g, was selected in the

continuous range ½0:1,10�, with one half of the simula-

tions in the ½0:1,1� interval addressing the cases where the

noise was higher than the signal, and the other half in the

interval [1,10] addressing the cases where signal was

higher than the noise. This range cover cases where the

signal is 10 times lower to 10 times higher than the noise.
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5. Feature correlation parameter, r, was selected in the

continuous range ½0:1,0:9�. This parameter controls the

amount of correlation between feature blocks according

to a Toeplitz structure (see next section for further

details). This range covers the full spectrum from weak to

strong correlation structures.

As described previously, we first generated a maximin LHD in

the ½0,1�5 hypercube, and then mapped the values in the ½0,1�
intervals back to the range of each of the simulation parameters we

are interested to study. For w and r we adopted a simple linear

transformation

x~u (bu{bl)zbl , ð1Þ

where x represents the transformed parameter value, u represents

the original value in the ½0,1� scale, and bu and bl represent,

respectively, the upper and lower bounds of the parameter range

of interest. For n and p, we adopt the same linear transformation

with the additional step of rounding the transformed parameter

value to an integer. For g we apply the following transformation

x~½2 u (1{bl)zbl � 11fuƒ0:5gz½2 u (bu{1)z2{bu� 11fuw0:5g,

where 11 represents the indicator function. Observe that this

transformation maps u~f0,0:5,1g into x~f0:1,1,10g. The

transformed simulation parameter values are then combined into

the experimental design matrix, D, with columns indexing the

simulation parameters, and rows indexing the input sets for each

simulation.

Stochastic data generation process. After we generated

the experimental design, D, as explained in the previous sections,

we generated the response and covariates data sets, for each

simulation, as follows (see Figure 1 for a graphical model

representation of our data generation process):

1. Given the values of n, p, and r, in a particular row of the

design D, we simulate the covariate data matrix,

Xn|p~(Xn|p1
, . . ., Xn|pK

), as K separate matrices,

Xn|pk
, generated independently from N pk

(0,Sk) distri-

butions, where the covariance matrix was generated

according to a Toeplitz structure with Sij,k~1, for i~j,

and Sij,k~rDi{jD, for i=j. The number of covariates, pk, in

each of these matrices were randomly chosen between 20

and 300 under the constraint that p~
PK

k~1 pk.

2. Given the values of p, w, and g, we computed each

regression coefficient, bj , j~1, . . . ,p, as bj~(b�j 11bj
g
P

j

11bj
)=(
P

j 11bj
Db�j D), where b�j *N (0,1), and 11bj

*
Bernoulli(w). Note that, by defining bj as above, we

guarantee that the signal-to-noise ratio (defined as the

average signal, h~
P

j Dbj D=
P

j 11bj
, divided by the

residual noise, set to 1, in this case), is equal to the

sampled value of g, and that, on average, wp regression

coefficients will be non-zero.

3. Finally, given the computed covariates matrix and

regression coefficients vector, we computed the indepen-

dent variable vector, Yn|1, as Y~Xbzse, where en|1 is

a vector of standard normal error variables, and s is set to 1.

Each simulated data set was composed of the independent

variable vector, and the matrix of covariates. Each data set was

split in two parts, generating independent training and testing data

sets (we actually simulated data-sets of size 2n, so that the training

and testing data sets had n samples, ranging from 100 to 1000).

Both response and covariates were centered and scaled. Finally,

we would like to point out that we generate the covariates data

using the blocked correlation structure described in item 1 above

for two reasons: (i) blocked structures are often seen in real data

sets, where variables are usually grouped in blocks with different

sizes; and (ii) it is computationally more efficient to simulate the

covariate data as blocks of correlated variables, since data

generation from a multivariate normal distribution involves

performing a Choleski decomposition of the associated covariance

matrix, a computationally challenging task for large matrices

(recall that covariance matrices dimensions would range from

1,001 to 40,000 in our simulations). At this point, a natural

question is whether the blocking structure in addition to the

strength of the correlation (as measured by the simulation

parameter r) can affect predictive performance of the methods

under study. To address this question we performed a pilot

simulation study (see Text S3 in the Supplement for details). We

found out that blocking has a minor effect on the predictive

performance of ridge-regression, lasso, and elastic-net, but no

effect in their relative performance, as measured by differences in

MSE scores. In view of these findings, we decided to leave the

blocking structure as an uncontrolled variable, and randomly

select the block sizes (as described in item 1 above) in a range

where the Choleski decomposition can be performed efficiently.

Model fitting and performance evaluation details
The lasso and elastic-net fits were performed with the glmnet R

package [21]. Following the parametrization of the elastic-net

penalty in [21], al
Pp

j~1 Dbj Dz0:5(1{a)l
Pp

j~1 b2
j , we adopted the

default l grid of 100 values generated automatically by the

cv.glmnet function (for both the lasso and elastic-net), and an a
grid given by the sequence 0.001, 0.01, 0.10, 0.15, 0.20,…, 0.95, for

the elastic-net. (For the lasso we set a~1.) The ridge regression

model fit was performed with a modified version of the ridge.lm
function from the MASS R package [22], and the determination of

the tuning parameter grid for its penalty is described in Text S4 on

the Supplement. For all methods we optimized the tuning

parameters in the training data set using 10-fold cross-validation,

and evaluated their predictive ability in the testing data set, using the

MSE, (Ytest{Xtest b̂b)’(Ytest{Xtest b̂b)=ntest, where Ytest and Xtest

represent the response and covariate testing data, and b̂b is estimated

from the training data. Because we scale the response variables, the

predictions from an intercept-only model (which contains no features

and, therefore, completely ignores the information contained in the

input variables) will generate a MSE score close to 1.

Data analysis
In order to understand how the simulation parameters affect the

absolute performance of a given method A we adopted

WA~MSEA as the response (output variable), and the simulation

parameters as the input variables. For the relative performance

comparison of any two distinct methods, we again used the

simulation parameters as the input variables but defined the

response, WAB, as WAB~MSEA{MSEB. In both cases we

assume that the response is affected by an unknown error term, E,
such that E(E)~0 and Var(E)~y, and is related to the covariates

(i.e, our simulation parameters) by a function, f (:), according to

W~f (n,p,w,g,r)zE. For the examples presented in the Results

section we observed that the simulation parameters and the

response values were related in a non-linear fashion (see Figures 3,

5, 7, 9, 11, and 13). Furthermore, the distribution of our response
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variables is not Gaussian (Figure S2 in the Supplement). Therefore,

assuming a linear model with Gaussian errors is inadequate.

In order to account for non-linearity and lack of normality, we

discretize the ranges of simulation parameters into a number of

equally spaced groups, and assess the statistical significance of

trends observed in the data using distance components analysis

(DISCO) [10]. While standard one-way ANOVA tests the null

hypothesis that the group means are zero, DISCO tests the more

general null that the groups distributions are equal,

H0 : F1~ . . . ~FK , versus the composite alternative Fj=Fk for

some 1ƒjvkƒK , where K represents the number of groups and

Fk the distribution function of the kth group. While ANOVA is

only able to detect shifts in mean, DISCO can detect changes in

the dispersion of the groups as well. The DISCO test statistic is a

function of powered Euclidean norms between all pairs of sample

elements, for any power a [ (0,2�. In the special case of a~2 the

DISCO test statistic reduces to the usual ANOVA F-statistic

(which measures dispersion by considering squared distances of

sample elements from the sample mean). P-values for the DISCO

null hypothesis are computed via a permutation test, and hence is

a non-parametric test. DISCO is implemented in the energy R

package [25], and we adopted a~1 in our analyzes.

Except for the signal-to-noise parameter, Figures 3, 5, 7, 9, 11,

and 13 show a fair amount of variation in the shapes of the

boxplots across the binned parameter ranges. This heterogeneity

in the distributional form of the response variable suggests the

presence of parameter interactions [23]. Although DISCO

analysis readily generalizes to the analysis of multifactorial-

ANOVA with interactions [10], the current R implementation

only handles one-way models. In order to test for the presence of

2-by-2 interactions we adopted permutation tests based on the

two-way ANOVA interaction F-statistic to check whether the

curves in an interaction plot are parallel.

Following reference [24], the permutation p-values for our non-

parametric interaction tests (and for DISCO as well) are computed as

p̂p~
1z

PB
k~1 11fTk§tog

1zB
,

where B represents the number of permutations, Tk represents the

test statistic computed at permutation k, and to represents the

observed test statistic. Observe that the assumption of exchangeability

of observations under the null (required by the permutation tests)

seems reasonable in our context.

Data and code availability
Given the scale of our study, the simulations were performed with

cluster computing in the AWS cloud using the rredis [26] and

doRedis [27] R packages. The predictive performance data used

in the paper, that is, the MSE values derived from the 10,000

simulations, is available in Synapse under the project DOSE

(https://www.synapse.org/#!Synapse:syn2177826). All the open-

source code to simulate the data sets, fit the penalized regression

models, and analyze the predictive performance results is deposited

in Github and can be accessed from the DOSE project in Synapse.

Supporting Information

Figure S1 Performance of ridge-regression, lasso, and
elastic-net under sparse and saturated models. Scatter

plots of the MSER versus MSEL (panel a) and MSER versus MSEE

(panel b) colored according to the true model sparsity. Blue dots

show the simulations where the number of covariates entering the

true model was equal or smaller than the sample size. In total, only

476 (out of the 10,000) simulations showed this pattern. Red dots

show the reverse situation (9,524 simulations). Note that in both

panels a and b, the red dots tend to be concentrated above (but

close) to the diagonal line, whereas the blue dots tend to be located

below but dispersed away from the diagonal. This suggests that for

sparse models lasso and elastic net tend to perform better than ridge,

and often times considerably better (note the concentration of points

close to 0 in the y-axis, but ranging from 0 to 1 in the x-axis). For

more saturated models, on the other hand, ridge regression tends to

be better, but the difference in performance is not accentuated

(especially for the elastic net - panel b). Panel c shows the

distribution of the actual number of covariates that entered the true

model across the 10,000 simulations. At each simulation, the actual

number of covariates was sampled from a binomial distribution with

p trials and probability of success given by w.

(EPS)

Figure S2 Response distributions. Panels a, c, and e show,

respectively, the response distributions of WR~MSER (ridge-

regression), WL~MSEL (lasso), and WE~MSEE (elastic-net),

used in the absolute performance analyses. Panels b, d, and f show,

respectively, the response distributions WLR~MSEL{MSER

(lasso vs ridge), WER~MSEE{MSER (elastic-net vs ridge), and

WEL~MSEE{MSEL (elastic-net vs lasso), used in the relative

performance analyses. In all cases the responses do not follow a

normal distribution.

(EPS)

Text S1 Additional investigations on the g parameter.
Additional simulation experiments investigating the effect of the

signal-to-noise parameter under four distinct ranges of p=n ratios.

(PDF)

Text S2 Pilot studies: original parameters versus
parameter ratios. Pilot simulation study investigating whether

the signal-to-noise and number-of-features-to-sample-size ratio

parameters could be used in place of the respective original

parameters.

(PDF)

Text S3 Pilot studies: the effect of blocked correlation
structure. Pilot simulation study investigating whether blocking

structure, in addition to correlation strength, can affect predictive

performance of the methods under study.

(PDF)

Text S4 Tuning parameter grid for the ridge-regres-
sion. Description of the automatic/data-driven approach used to

determine the tuning parameter grid for ridge-regression.

(PDF)

Text S5 Supplementary tables. Permutation tests for

equality of the group distributions using distance components

analysis, and permutation F-tests for the presence of 2-by-2

interactions, using 5, 10, and 15 bins. Table S1 compares ridge-

regression vs lasso. Table S2 compares ridge-regression vs elastic-

net. Table S3 compares lasso vs elastic-net.

(PDF)
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