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Abstract

The application of machine learning to epilepsy can be used both to develop clinically useful

computer-aided diagnostic tools, and to reveal pathologically relevant insights into the disease.

Such studies most frequently use neurologically normal patients as the control group to maximize

the pathologic insight yielded from the model. This practice yields potentially inflated accuracy

because the groups are quite dissimilar. A few manuscripts, however, opt to mimic the clinical

comparison of epilepsy to non-epileptic seizures, an approach we believe to be more clinically

realistic. In this manuscript, we describe the relative merits of each control group. We demonstrate

that in our clinical quality FDG-PET database the performance achieved was similar using each

control group. Based on these results, we find that the choice of control group likely does not

hinder the reported performance. We argue that clinically applicable computer-aided diagnostic

tools for epilepsy must directly address the clinical challenge of distinguishing patients with

epilepsy from those with non-epileptic seizures.
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I. Introduction

Machine learning (ML) has proven clinically useful in many aspects of the diagnosis and

pathologic characterization of epilepsy. For decades, seizure detection and prediction

algorithms have been applied to scalp and intracranial electroencephalography (EEG) to

characterize each patient's seizures [1, 2]. The seizure detection algorithms are integrated

regularly into the clinical software for EEG review. More recently, ML has been applied to

scalp EEG, intracranial EEG, structural and diffusion MRI and FDG-PET to diagnose

epilepsy compared to both patients with non-epileptic seizures (PWN) and seizure-naïve,

neurologically normal patients (NNPs) [3-9]. These applications helped to provide

meaningful pathological insight into the features of epilepsy. They likely also have the

potential to become computer-aided diagnostic tools (CADTs) that can be applied readily in

clinical medicine. The choice of which “control” group to compare patients with epilepsy

(PWE) against is not uniform. In this manuscript, we provide evidence to suggest that that

the optimal control group depends upon whether an ML tool is intended to elucidate facets

of the neurophysiology of epilepsy, or to estimate the reliability of the tool to diagnose

patients in a clinical setting.

Non-epileptic seizures are primarily psychiatric events. In greater than 90% of cases, these

seizure-like attacks are a symptom of conversion disorder in which patients' psychological

challenges present as physical symptoms [10, 11]. These attacks tend to mimic seizures that

the patient has seen or heard about; they are therefore difficult to distinguish from epileptic

seizures. The diagnosis of non-epileptic seizures is based on ruling out all organic causes for
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the attacks; therefore these patients are frequently exposed to antiepileptic medication and

other neurologic interventions prior to definitive diagnosis. There are no neuropathologic

changes that predispose these patients to have attacks and the electrophysiological

mechanism for the attacks is dissimilar from the mechanism for epileptic seizures.

Therefore, antiepileptic medication and other neurologic interventions will not control these

attacks, though their side effect profile remains the same. Although a small minority of

PWN also suffer from epileptic seizures, it is important to distinguish PWN from PWE so

that they can receive the treatment appropriate to the underlying cause of their seizures.

The pathologic benefit of comparing NNPs to PWE is clear. Using our knowledge of normal

physiology, this comparison has been used to describe how the complexity of EEG

recording during seizure (ictus) is less than that of interictal EEG [1, 2]; how epileptic

lesions are associated with focal cortical atrophy and hyperintensity on MRI [12]; and how

focal interictal hypometabolism in FDG-PET can indicate the seizure onset zone [13]. These

differences are thought to be macro-scale features that confirm our understanding of

epilepsy on a neural level.

The decreased complexity in EEG reflects hypersynchronized activity of neurons in the

epileptic network, coupled with inhibited activity in the surrounding tissue [14]. Focal

cortical atrophy and MRI signal hyperintensity are MRI-based signs of increased cell death

of inhibitory cells and the ensuing gliosis [15]. The cause for focal hypometabolism is

defines less clearly, but it has been shown that neurons within the epileptic network have

altered metabolic activity [16]. Cell death and gliosis also may play a role in interictal

hypometabolism [16]. While these findings help us to understand the neuropathologic

features of epilepsy, there are, unfortunately, important caveats to their interpretation.

Patients with seizures are exposed to environmental factors that may artificially increase

physicians' ability to discriminate NNPs from PWE. The mechanism of action of many

antiepileptic drugs (AEDs) is to decrease the synchronicity and excitability of neural

networks [14], thereby potentially increasing the baseline complexity of EEG so that the

contrast with seizure activity is enhanced. Similarly, some AEDs have psychiatric side

effects that appear similar to the psychiatric co-morbidities of PWN [17, 18]. In contrast

with NNPs, PWN frequently are treated with these AEDs before their seizures are

determined to be non-epileptic, therefore the use of PWN as a control group more accurately

controls for the potential effect of AEDs.

Even though the diagnoses of non-epileptic seizures and epilepsy are distinct, many of their

risk factors are shared. PWNs model their seizures after those they have seen or heard about

before, therefore the relationship with family history is difficult to describe [19, 20].

Similarly, both PWN and PWE are associated with traumatic brain injury (TBI), albeit PWN

are more associated with mild TBI [10, 19]. The presence of psychiatric comorbidities

increases the suspicion for non-epileptic seizures, but epilepsy also has been shown to be

associated with significant psychiatric challenges, potentially as a side effect of AEDs, or to

the loss of independence and the stigma associated with the disease [21] Therefore, in order

to assess reliably if ML models can detect signs of the underlying pathology associated with

epilepsy, it is useful to compare PWE to PWN.
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Lastly, and potentially most importantly, the comparison to PWN mirrors the clinical

question at hand. Physicians only question if a patient has epilepsy if they present with

seizure-like events. They do not, as suggested by the comparison with NNPs, consider

epilepsy in all patients they encounter.

As a result of these concerns, we seek to study in our FDG-PET database which control

group results in a more accurate diagnosis of lateralized temporal lobe epilepsy (TLE). This

allows us to measure the potential effect of the confounding factors discussed above. We

also inspect if there were detectable and/or interpretable differences between PWN and

NNP.

II. Methods

A. Dataset

All of the 105 patients with seizures included in our analysis were admitted to the University

of California, Los Angeles (UCLA) Seizure Disorder Center's video-EEG Epilepsy

Monitoring Unit between 2005 and 2012. Each patient's diagnosis was based on a consensus

panel review of their clinical history, physical and neurological exam, neuropsychiatric

testing, video-EEG, interictal FDG-PET, ictal FDG-PET, structural and diffusion MRI

and/or CT scan. This multimodal assessment is the gold standard for epilepsy diagnosis, and

for localization of the epileptic focus. The patients included in this analysis were chosen

because they had an FDG-PET; had no history of penetrative neurotrauma, including

neurosurgery; were determined by consensus diagnosis to have a single, lateralized

epileptogenic focus and had no suspicion of mixed non-epileptic and epileptic seizure

disorder. These patients were diagnosed with either left temporal lobe epilepsy (LTLE,

n=39), right temporal lobe epilepsy (RTLE, n=34) or non-epileptic seizures (PWN, n=32).

PET images were determined to be interictal by clinical findings and concurrent scalp EEG.

Neurologically normal, seizure naïve patients (NNP, n=30) were scanned for other reasons

on the same clinical scanners and were age matched to the PWN. Details of PET acquisition

and feature extraction using NeuroQ (Syntermed, CA) are described in [4].

B. Machine Learning Details

The Multilayer Perceptron was implemented to discriminate between either PWN or NNP

versus RTLE or LTLE with default parameters in Weka [22] using the protocol described in

[4] where the clinical implications of the PWN versus TLE discrimination are discussed.

The minimum redundancy-maximum relevancy (mRMR) toolbox for MATLAB [23, 24]

was used to generate a ranked list of the 47 ROI metabolisms (features) based on the

training set. We used a random field theory correction (RFTC) to correct for the bias in

selecting the maximum cyclical leave-one-out cross validation (CL1OCV) accuracy after

testing multiple numbers of ROIs that contributed to the model [4]. Weka [22] was used to

implement CL1OCV of a cost-sensitive MLP that was weighted to maximize balanced

accuracy, defined by the mean of sensitivity and specificity.
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III. Results

A. Cross-Validation Accuracy Differences

Using either control group, we diagnosed lateralized TLE effectively with greater than 81%

CL1OCV accuracy (RFTC z-test of proportions versus naïve classifier, z>5.8, p<10-8; Fig.

1). There was no significant difference between the CL1OCV accuracies when NNP or

PWN was used when diagnosing RTLE or LTLE (two sample z-test of proportions, |z|<1.5,

p>0.16). We discriminated between PWN and NNP with 77% CL1OCV accuracy which

was significantly better than chance (RFTC z-test of proportions versus naïve classifier,

z=4.9, p<10-5).

B. Insight into Focality of the Epilepsies

Fig. 2 illustrates the number of features that produced the random field theory corrected

CL1OCV accuracy. Using the PWN as a control, the RTLE comparison required fewer

ROIs than the LTLE comparison. Using the NNPs as a control, the same trend was seen,

albeit with different mRMR feature rankings (Table 1).

IV. Discussion

Even though there are substantial differences in the resting state neural metabolism of PWNs

and NNPs, the choice of control group did not substantively affect our ability to diagnose

PWEs, nor did it provide different pathologic insight into the difference between LTLE and

RTLE. This suggests that comparing PWE to NNPs did not artificially increase our

discriminative ability, contrary to our hypothesis. Our reliable discrimination between

PWNs and NNPs, and the difference in feature rankings however, indicate that the

multilayer perceptron may harness separate pathologic findings depending on the control

group used. Interested readers are directed to [4] for an in depth description of this clinical

and pathologic insight.

This suggests that there may be no control group that a priori will result in higher

performance. The comparison to NNPs might describe better the combination of pathologic

insults that results from, and/or causes, epilepsy. In our case, the lack of temporal ROIs in

the top 5 rankings for LTLE suggests that the most salient pathologic consequences, and/or

initiating factors, may lie outside the epileptogenic focus whereas the opposite may be true

for RTLE. In contrast, the comparison to PWN demonstrates directly how the algorithm

would perform in the clinic. In addition to utilizing the neurometabolic changes associated

with epilepsy, this model may also harness the neurometabolic changes associated with

PWN. Therefore, all of the observed differences cannot be attributed directly to epilepsy. As

discussed above, depression was associated with hippocampal volume loss [25, 26].

Therefore, conversion disorder may also have characteristic FDG-PET findings.

These results reveal the challenge of developing a CADT to diagnose patients effectively.

Just detecting epilepsy is not enough; we must also discriminate it reliably from disorders

whose presentation is similar. The ideal CADT for epilepsy would effectively rule out

transient ischemic attacks, confusion episodes, syncope, drug abuse and other disorders on

the differential diagnosis for seizures (for full differential diagnosis see [27]). This presents
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a clear challenge: effectively recruiting and scanning enough patients with each of these

disorders is prohibitively expensive in both time and money. Therefore, when planning

experiments, we believe that one must choose the control group(s) that reflects the desired

balance of clinical relevance to pathologic relevance.

There are a few limitations in the generalizability of these findings to the diagnosis of

epilepsy and other disorders. In patients who present with their first seizure, the clinical

question is not merely if the seizures are epileptic or non-epileptic: the patient also needs to

know if they are at risk for future seizures. This clinical comparison may be better served by

the contrast between NNPs and PWE. In addition, PWN are more frequently misdiagnosed

as frontal lobe or generalized epilepsy instead of TLE. Therefore, there are also some

caveats to using PWN as the control group for TLE diagnosis.

The challenge of identifying the proper control group to train CADTs is not unique to

epilepsy. For example, many CADTs for Alzheimer's disease frequently are controlled both

by NNPs and patients with mild cognitive impairment [28, 29]. Few studies, however,

consider the full differential diagnosis for dementia, including Parkinson's dementia, fronto-

temporal lobe dementia, Lewy-body disease, and other dementias. Similarly, much work has

been done in discriminating patients with schizophrenia from NNPs even though

antipsychotic medication is associated with substantial neurologic changes [30].

We believe that there may be two divergent goals for machine learning in clinical

populations: the pathologic description of disorders and the development of clinically

applicable tools. Therefore, when describing the underlying pathophysiology of disease, the

goal of machine learning is not necessarily to optimize classification accuracy. It is instead

to pose a biologically plausible model that reflects trends seen in the data. This is related,

but potentially separate, from the ultimate goal of using machine learning to maximize the

clinical utility of computer-aided diagnostic tools. We argue here that to maximize clinical

applicability, one must mimic the clinical question at hand by carefully selecting the control

group.
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Fig. 1.
CL1OCV accuracy of our computer-aided diagnostic tool using each control group. Error

bars indicate standard error from the mean. Shading indicates performance of a naïve

classifier. PWN: Patients with non-epileptic seizures; NNP: Neurologically normal patients;

L or R TLE: Left or Right Temporal Lobe Epilepsy
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Fig. 2.
Percent of the 47 ROIs that contributed to the best CL1OCV accuracy. Error bars indicate

accuracies within the same significant random field theory cluster.
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Table I
ROI mRMR Ranking

ROI Rank
Region of Interest

LTLE vs PWN LTLE vs NNP RTLE vs PWN RTLE vs NNP

1 Midbrain R Ass Vis R ila Temp R ila Temp

2 L ilp Temp R pm Temp L SM R ilp Temp

3 R ilp Temp L i Frontal R ilp Temp L Lentiform

4 L Ass Vis R s Parietal L sl Temp L SM

5 L Broca's L SM R Thal R sl Temp

The mRMR Rank of the top 5 ROIs based on the full data. Note that these rankings utilize the full dataset and therefore do not necessarily coincide
with any individual training set, each of which are missing data from just one patient. The preceding L and R refer to left and right respectively.
The lower case i, l, a, p, s, and m stand for inferior, lateral, anterior, posterior, superior, and medial respectively. The other abbreviations are for
temporal cortex (Temp), thalamus (Thal), associative visual cortex (Ass Vis), and Sensorimotor cortex (SM). The temporal, parietal and frontal
ROIs are all cortical ROIs. Colors indicate repeat ROIs.
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