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Abstract

Background—In Huntington’s disease (HD) increased variability is seen in performance of

motor tasks that require implicit control of timing. We examined if timing variability was also

evident in an explicit interval-timing task.
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Methods—Sixty subjects (21 controls, 19 manifest HD and 20 pre-manifest HD) performed a

single interval production task with three target intervals (1.1s, 2.2s, 3.3s). We analyzed accuracy

(proportional error) and precision (standard deviation) across groups and intervals.

Results—No differences were seen in accuracy across groups or intervals. Precision was

significantly lower in manifest (p=0.0001) and pre-manifest HD (p=0.04) compared with controls.

This was particularly true for pre-manifest subjects close to diagnosis (based on probability of

diagnosis in five years). Precision was correlated with proximity to diagnosis (r2=0.3, p<0.01). To

examine the source of reduced precision, we conducted linear regression of standard deviation

with interval duration. Slope of the regression was significantly higher in manifest HD (p=0.02)

and in pre-manifest HD close to diagnosis (p=0.04) compared with controls and pre-manifest

participants far from diagnosis.

Conclusions—Timing precision is impaired before clinical diagnosis in Huntington’s disease.

Slope analysis suggests that timing variability (decreased precision) was due to deficits in timing

dependent processes. Our results provide additional support for the proposal that the basal ganglia

are implicated in central timekeeping functions. Since the single interval production task was

sensitive to deficits in pre-manifest HD, temporal precision may be a useful outcome measure in

future clinical trials.
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Introduction

The diagnosis of Huntington’s disease (HD) is based on clinical observation of motor

impairments [1]. Motor impairments in HD include inaccurate saccadic eye movements with

increased latency and variability [2], slow and variable arm movements [3, 4], slow,

asymmetric gait with increased variability [5, 6], and increased force and timing variability

during precision grip [7, 8]. An impairment common to all motor tasks mentioned above is

increased timing variability. In motor tasks, timing is thought to be an emergent property

rather than being controlled explicitly [9, 10]. Increased timing variability in HD can be

explained by the fact that the basal ganglia are implicated in timing control, as seen from

lesion studies in animals and humans [11–13], as well as imaging studies in healthy humans

[14, 15]. However, it is unclear if deficits in explicit timing accompany those in implicit

timing control seen in motor tasks.

Sensitivity to time as a stimulus dimension (i.e. duration) is typically evaluated using

perception or production tasks. There is a lack of clarity on time perception impairments in

HD: while pre-manifest HD (pHD) subjects demonstrate impairments on a single alternative

discrimination task [16], they do not demonstrate impairments on a two-alternative forced

choice variation of the task [17]. Time production (interval timing) is tested through

repetitive tapping (in the range of hundreds of milliseconds) [18] or single interval

production (SIP), ranging from the hundreds of milliseconds to minutes [19, 20]. Repetitive

tapping at paced and self-selected intervals is impaired in manifest HD [21] and pre-

manifest HD [22–24]. However, results from speeded repetitive tapping are inconsistent:
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one study [17] reported that performance of pre-manifest HD subjects was similar to

controls, whereas another study [25] reported impaired performance.

SIP may be a better test of explicit timing than repetitive tapping. The cyclic pattern of

responses in repetitive tapping may confer a performance advantage by reducing variability

and may engage neural mechanisms implicated in motor control [10, 26]. Moreover, SIP is

sensitive in differentiating between controls and individuals with Parkinson’s disease (PD)

[11] and elderly [27–29]. Only one study has examined SIP in HD, which reported similar

error rate for manifest, pre-manifest HD, PD and elderly [30]. Since this study only tested a

single interval (1.2 sec) and did not measure the magnitude of error or variability, we

examined SIP in pre-manifest and manifest HD at three intervals using measures of accuracy

and precision. The purpose of this study was to examine (a) if single interval production task

could distinguish between pre-manifest, manifest HD and matched controls, (b) if

performance on single interval production is associated with proximity to diagnosis, (c) the

source of timing variability [10].

Methods

Participants

Sixty participants (20 healthy controls, 21 pre-manifest HD (pHD) and 19 early manifest

HD (mHD)) enrolled in this study. pHD participants were recruited from ongoing multi-site

observational studies if they 1) had a family history of HD, 2) had a confirmed genetic test

(expended CAG allele >36), 3) were rated by a movement disorder specialist as not meeting

clinical criteria for diagnosis of HD based on clinical motor examination and diagnostic

confidence rating from the UHDRS, and 4) were free of orthopedic or neurological

disorders.

mHD participants were recruited from the Huntington’s disease Center of Excellence at

Columbia University and were included if they 1) had a confirmed diagnosis of HD, 2) had

total functional capacity (TFC) scale score of at least 9 out of 13 indicating mild functional

limitations, 3) had negative history of neurological disorders other than HD; and 4) could

follow directions in English. Healthy control participants were recruited from among family

members of mHD or pHD without the expanded CAG allele. Additional control participants

were included through public advertisement if they had a negative family history of HD.

Control subjects were matched with pHD and mHD for age and were not administered the

modified MMSE or the UHDRS because they were not at risk of HD. The Institutional

Review Board at Columbia University approved study procedures and all subjects provided

written informed consent before participation. Subjects were compensated for participation.

Interval Timing Assessment

Testing was done in a quiet, well-lit room. Participants sat on a comfortable chair at a table

in front of a laptop computer (Macbook Pro 15″, Apple, Inc.). The single interval production

(SIP) task consisted of two phases: synchronization and continuation, as seen in Figure 1A

[31]. During synchronization (training) trials, participants were presented with two tones.

The time period between the tones corresponded to one of the target intervals (1.1 s ‘short’,
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2.2 s ‘medium’, or 3.3 s ‘long’). Participants were instructed to respond by pressing a key

(spacebar) in synchrony with the second tone at the end of the interval. The trial ended after

a response or was terminated if participants failed to respond. Two blocks of 20 trials were

presented for each of three target intervals (1.1s, 2.2s, 3.3s). The order of presentation of the

blocks was randomized. At the beginning of each block, target interval was identified on the

screen and the tester provided instructions.

The continuation phase began immediately after the synchronization phase. During

continuation trials participants were presented with a single tone at the beginning of the

target interval, and were instructed to respond by pressing the spacebar at the end of the

interval. No tone was presented at the end of the target interval. The cue turned red

following a response (pressing the spacebar) or a time out. Two blocks of 20 trials were

presented for the three intervals in a randomized order. At the beginning of each block,

target interval was identified on the screen and the tester provided instructions. The inter-

trial interval was 0.5 s. Performance feedback was not provided during either phase. The

total duration of testing was 20 minutes. In this report, we present results for the

continuation phase because it explicitly evaluates time estimation (whereas the purpose of

the synchronization phase was training).

Clinical Assessment

1) Motor Assessment—pHD and mHD participants were administered the motor section

of the Unified HD Rating Scale (UHDRS), a standardized assessment of involuntary and

voluntary motor function [32]. We computed the total motor score (TMS), as the sum of

scores of 31 individual items, each of which was scored on a scale of 0–4 (total of 124

points). Raters were blinded to genetic status of pHD participants. A movement disorder

specialist rated the motor items of the UHDRS and assigned a rating of diagnostic

confidence ranging from 0–4, defined as follows: (0) no motor abnormalities; (1) non-

specific motor abnormality (<50% confidence), (2) motor abnormalities that may be signs of

HD (50–89% confidence), (3) motor abnormalities that are likely signs of HD (90–98%

confidence), (4) motor abnormalities that are unequivocal signs of HD (>99% confidence)

[33]. Participants with diagnosis confidence rating ≤ 2 were included in the analysis. While

some recent studies (Track-HD[24]) have used a criterion of TMS < 5 to recruit pre-

manifest subjects, we included subjects with higher TMS, as long as their diagnostic

confidence was ≤ 2, because there are no well-defined criteria for diagnosis purely based on

TMS, and because none of the individual item scores were greater than 2/4 (mild-moderate

impairment).

2) Cognitive Assessment—pHD and mHD participants completed the Symbol digit

modality test (SDMT) [34]. The SDMT assesses psychomotor speed and working memory

and is sensitive to performance differences between controls, pHD and mHD [35].

Participants were provided with a reference key that paired digits with symbols on top of a

page. Symbols were presented in rows below the key. Participants were required to write the

corresponding digit for each symbol. The number of correct matches completed in 90 s was

recorded.
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Proximity to Diagnosis—Estimated onset and probability of diagnosis in 5 years were

computed from CAG repeats on the expanded allele and the participants’ age by an

investigator blinded to subject assignment [36]. We used probability of diagnosis for

regression analysis because regression relationships are approximately linear [22]. For

between group analyses, we used estimated onset.

Data Analysis

Normally distributed data were analyzed with parametric statistics. Data that were not

normally distributed were analyzed with non-parametric statistics. We analyzed the

continuation phase of the SIP task using analysis of variance and linear regression.

Dependent variables included accuracy (proportional error defined as (response latency–

target)/target) and precision (standard deviation) [22, 23]. The first two responses, the fastest

and slowest response from each block of trials were excluded from analysis to eliminate

spurious variability.

1. Single interval production across groups—We compared accuracy and precision

across groups by conducting repeated measures analysis of variance (ANOVA) with group

(control, pHD_far, pHD_near and mHD) and interval (1.1s, 2.2s, 3.3s) as factors. We

divided the pHD group based on estimated onset (near onset= <9 years and far from onset=

≥ 9 years), based on prior work[22]. We included age, sex, education, medication status and

music training as covariates, defined a priori, in the analysis. Post-hoc analyses, defined a-

priori, were conducted using Tukey’s honestly significant difference.

2. Association with proximity to diagnosis—We performed linear regression analysis

to examine if timing performance (precision) was predictive of probability of diagnosis in

five years.

3. Effect of Motor and Cognitive Function on interval timing—In separate

analyses, we divided pHD subjects into pHD_near and pHD_far based on median total

motor score (7.0) and median score on symbol digit modality test-SDMT (53.0) and

conducted group × interval ANOVA with repeated measures.

4. Source of timing variability—We performed slope analysis [10], which assumes that

total variability in a timing task can be decomposed into variability associated with timing

dependent and timing independent processes. The method involves linear regression of

standard deviation and interval duration, where the slope represents the timing dependent

processes and the intercept represents timing independent processes (attention, memory,

motor implementation) [10]. The slope and intercept were separately analyzed using a non-

parametric test (Jonckheere-Terpstra Test for Ordered Alternatives) with group as the single

factor (control, pHD_far, pHD_near, and mHD). pHD groups were divided based on

estimated onset. We used a non-parametric test because slope and intercept were not

normally distributed.

Demographic variables were analyzed with one-way ANOVA (for continuous variables) and

Chi-square (for discrete variables). All analyses used SPSS 18.0 and we used 0.05 as the

level of significance.
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Results

Table 1 presents demographic and clinical data for each group. There were no differences in

age (p= 0.22) or music training (p= 0.46) across groups. Control participants were, on

average, more educated than pHD (p=0.001) and mHD (p=0.001) participants, likely

because a number of them were recruited from an academic institution. pHD participants

had a five-year probability of diagnosis ranging from 0.07–0.74, and had an estimated onset

ranging from 3.2–15.5 years.

1. Single Interval Production across Groups

We divided pHD participants into two groups: far from onset and near onset based on

estimated onset. Group (control, pHD_far, pHD_near, mHD) × interval ANOVA for

accuracy did not reveal any significant effects for either factor, as seen in Table 2. Precision

showed a main effect of interval (F= 15.96, p= 0.0001), with all groups demonstrating a

significant linear trend (F= 31.17, p<0.0001) but not a significant quadratic trend (F= 1.49,

p=0.23). This result indicates that precision demonstrated the scalar property of interval

timing [10]. A main effect of group (p= 0.001) was also seen, after controlling for age, sex,

education and music training as covariates (Figure 1A). None of the covariates demonstrated

significant effects. Post-hoc analysis indicated that controls had significantly higher

precision than mHD (p=0.0001) and pHD_near (p=0.04). Differences between controls and

pHD_far were not significant (p=0.17). Cohen’s d for differences between controls and

mutation positive groups were 1.2 (mHD) and 0.8 (pHD_near). There were no significant

group × condition interaction effects (F=1.01, p= 0.42).

2. Association with Proximity to Diagnosis

Linear regression revealed that precision was a significant predictor of probability of

diagnosis (r2=0.3, p<0.01) after controlling for age, sex, education and music training, as

shown in Figure 1B.

3. Effect of Motor and Cognitive Performance

Motor function, assessed by the TMS, was significantly worse for mHD compared with

pHD_near (p=0.005) and pHD_far (p=0.00001) participants. The two pHD groups were not

different from each other (p= 0.15). To examine the effect of motor function on interval

timing, we divided pHD participants into two groups (higher and lower motor function)

based on the median UHDRS total motor score (7.0) and performed a group (control,

pHD_higher motor, pHD_lower motor, mHD) × interval ANOVA for precision. There was a

significant main effect of interval (F= 16.18, p= 0.0001) and a significant main effect of

group (F= 9.63, p=0. 0001) but no interaction effect (p= 0.38). Control subjects

demonstrated significantly higher precision compared with pHD_lower motor function (p=

0.001) and mHD (p= 0.0001) participants, but not compared with pHD_higher motor

function (p= 0.84).

Cognitive function, assessed by the Symbol Digit Modality Test (SDMT) was worse for

mHD participants compared with pHD_near (p= 0.0001) and pHD_far (p= 0.0001). There

were no differences between pHD_near and pHD_far groups (P= 0.18). We examined the
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effect of cognitive function on interval timing by dividing the pHD participants into higher

and lower cognitive function groups based on the median SDMT score (53.0) and conducted

a group (control, pHD_higher cog, pHD_lower cog, mHD) × interval ANOVA for precision.

There was a significant effect of interval (F= 15.34, p= 0.0001) and group (F= 7.36, p=

0.0001). Control participants demonstrated higher precision compared with mHD (p=

0.0001), pHD_lower cognitive function (p= 0.01), but not when compared with pHD_higher

cognitive function (p= 0.3). Thus both motor and cognitive performance influenced

precision on single interval production.

4. Source of Timing Variability

We conducted linear regression of precision (standard deviation) with interval duration, and

compared the slope and intercept of the regression across groups (control, pHD_far,

pHD_near, mHD). Non-parametric Test of Ordered Alternatives (Jonckheere-Terpstra) for

slope demonstrated a significant effect (Test Statistic= 2.14, p=0.03). As seen in Figure 2,

control subjects had a significantly lower slope compared with mHD (p=0.02, Cohen’s d=

0.6), pHD_near (p −0.04, Cohen’s d=0.5) but not pHD_far (p=0.58). pHD_far had a

significantly lower slope compared with pHD_near (p=0.02, Cohen’s d= 0.4). The results

indicate that mHD and pHD_near participants had a deficit in timing dependent processes.

Non-parametric Test for intercept was not significant (p= 0.07). The results indicate that

deficits in timing independent processes did not account for between-group differences in

timing variability in our sample.

Discussion

Individuals with manifest Huntington’s disease (mHD) and pre-manifest mutation carriers

(pHD) demonstrate greater variability in motor skills that require implicit control of timing.

Here we investigated whether individuals with the expanded CAG mutation demonstrated

increased variability on a task that requires explicit control of timing. Our results

demonstrate that mHD and pHD participants have intact accuracy but impaired precision in

a single interval production task compared with matched control subjects. Group differences

were maintained after accounting for sex, education, and music training. Precision was

associated with proximity to diagnosis, indicating that the single interval production task is

sensitive to physiological changes in the pre-manifest stage of HD. A precise estimate of

time intervals is necessary for functional motor skills such as stepping on to a moving

escalator, estimating time available for crossing a busy street, and intercepting a moving

object, to name a few. Since the SIP task is easy to administer without special equipment,

and is a sensitive measure of timing control, precision in SIP may be a useful outcome

measure in clinical trials in pre-manifest HD aimed at improving motor function.

Slope analysis (regression of precision with interval duration) allowed us to examine the

source of impaired precision. While there were no differences across groups in the

regression intercept, the slope was significantly higher in mHD and pHD participants near

diagnosis. In both these groups the relationship between precision and interval duration

violated the scalar property of interval timing [9, 10]. Since deviations in slope represent
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timing dependent processes, our results indicate that increased timing variability in HD may

be due to deficits in timing dependent processes [10, 19].

Our results are comparable to recent studies on repetitive tapping in pre-manifest and

manifest HD [22–25]. Precision, rather than accuracy, was impaired and was correlated with

predicted disease onset, clinical motor function and basal ganglia volume (but see [17]).

However, tapping may engage motor control networks rather than timing specific

mechanisms because it involves repetitive movement at very short intervals [26, 37]. Our

results establish that late pre-manifest and early manifest HD subjects have lower precision

in single interval production that is due to deficits in timing dependent processes. Models of

timing control are proposed to have a time dependent mechanism (clock) and a time

independent mechanism, which may include attention and motor implementation [10, 19,

38]. The basal ganglia are thought to be important for regulating the clock mechanism,

particularly for time intervals above 1s [15]. This suggestion was partly based on

observation of explicit timing impairment in PD [11, 38]. In Huntington’s disease,

impairments have been observed in motor skills that require implicit control of timing. Our

result of impairments in explicit timing before clinical diagnosis and functional limitations

underscores the role of the basal ganglia in timing control.

Our study has limitations. First, while our data did not confirm deficits in timing

independent processes (based on the regression intercept), it is possible that our small

sample size obscured differences between groups. However, differences in slope emerged

despite the relatively small sample, indicating that timing dependent deficits are readily

evident in pre-manifest and manifest HD. Second, total motor score for some of the pHD

participants were well above what has been reported in recent studies [24]. Despite having

higher motor scores, precision was not different for pHD_far compared to pHD_near

participants (see Figure 1A). Notwithstanding the inclusion of pHD participants who may be

classified as “peri-manifest” rather than pre-manifest, single interval production was

sensitive to proximity to diagnosis. Finally, we were unable to directly compare the

sensitivity of single interval production and repetitive tapping in the same subjects. Future

work will attempt to compare performance across single interval production and other

timing tasks. Despite the limitations, single interval production was sensitive in detecting

deficits in temporal processing in individuals with the HD gene mutation years before

clinical diagnosis, and may be a useful measure of function in future clinical trials.
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Figure 1.
A) Description of synchronization and continuation phases of the single interval production

task. During the synchronization phase subjects were presented stimuli (S) at the beginning

and end of the interval (1.1s, 2.2s or 3.3s). Subjects were asked to respond (R) by pressing a

key (spacebar) at the end of the interval. During the continuing phase, stimulus was

provided only at the beginning of the interval and subjects were asked to respond by

indicating the end of the interval. B) Mean ± standard error for precision (standard

deviation) at each interval (1.1s, 2.2s, 3.3s) for each group. Pre-manifest subjects were

divided into two groups based on median probability of diagnosis. C) Relationship between

precision (standard deviation) and probability of diagnosis in 5 years for pre-manifest HD

subjects at all three target intervals. Linear regression line is presented (r2= 0.3, p<0.01)
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Figure 2.
Results of regression of standard deviation with interval duration across groups. A) Presents

the regression slope for each group (control, pHD_far, pHD_near, and mHD), and B)

Presents the regression intercept for each group.
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