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The androgen receptor (AR) in stromal cells contributes significantly to the development and growth of
prostate during fetal stages as well as during prostate carcinogenesis and cancer progression. During
prostate development, stromal AR induces and promotes epithelial cell growth, as observed from tissue
recombinant andmouse knockout studies. During prostate carcinogenesis and progression, the stromal cells
begin to lose AR expression as early as at the stage of high-grade prostatic intraepithelial neoplasia. The
extent of loss of stromal AR is directly proportional to the degree of differentiation (Gleason grade) and
progression of prostate cancer (PCa). Co-culture studies suggested that stromal AR inhibits the growth of
malignant epithelial cells, possibly through expression of certain paracrine factors in the presence of
androgens. This functional reversal of stromal AR, from growth promotion during fetal prostate develop-
ment to mediating certain growth-inhibiting effects in cancer, explains to some extent the reason that loss
of AR expression in stromal cells may be crucial for development of resistance to androgen ablation therapy
for PCa. From a translational perspective, it generates the need to re-examine the current therapeutic
options and opens a fundamental new direction for therapeutic interventions, especially in advanced PCa.
(Am J Pathol 2014, 184: 2598e2607; http://dx.doi.org/10.1016/j.ajpath.2014.06.022)
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Prostate cancer (PCa) is the most common non-skin ma-
lignancy in the male population within the United States and
is the second most common cancer in men worldwide.1 It is
also one of the leading causes of cancer-related deaths in
males in the United States.

Normal human prostate is composed of an epithelial tissue
and an adjacent stroma. The epithelium is composed of two
principal cell types, the tall columnar secretory luminal cells that
line the glandular ducts and the flattened basal cells surrounding
them. In addition, some rare neuroendocrine cells are also pre-
sent. Often, the termsmesenchyme and stroma are loosely used.
Herein, mesenchyme refers to the mesodermal-derived fetal
or newborn tissues with instructive induction potential. The
word stroma describes the tissues surrounding the prostatic
stigative Pathology.

.

epithelium, later indevelopment. In the adult humanprostate, the
stroma is composedmainly of smooth muscle cells. However, it
also includes some fibroblasts, nerves, blood vessels, and
various infiltrating immune and inflammatory cell types.
Circulating androgens mediate the development and

function of prostate by stimulating the androgen receptor
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Figure 1 Stromal AR expression in developing prostate and cancer
progression. Stromal AR expression in a 13-week developing prostate (A),
benign prostate (B), primary PCa (C), and bone metastatic PCa (D).

Stromal AR in Developing Prostate and PCa
(AR). Rat studies have shown that in stroma, AR is
expressed in mesenchymal cells of the urogenital sinus
(UGS), especially those adjacent to the epithelium, con-
current with the formation of prostatic buds.2,3 As the
prostate develops and the mesenchymal cells differentiate to
form smooth muscle, AR expression is widespread, but not
universal, throughout the muscle. In the past, investigators
have mainly focused on studying epithelial AR function in
prostate. Relatively limited data are available to describe the
expression and function of stromal AR in prostate devel-
opment2e14 and cancer. Stromal AR is involved in both
prostate development and prostate carcinogenesis, with
distinct functions in these two processes. We examine the
current knowledge and understanding of stromal AR func-
tion, including its translational significance.

Stromal AR in Prostate Development

The role of stromal cells in prostate development, function,
and maintenance of tissue differentiation is well establish-
ed.15e17 The principal stromal cells in human prostate are
fibroblasts and smooth muscle cells, which contribute to the
synthesis of the extracellular matrix. Together, the stromal
cells and extracellular matrix generate a microenvironment
that regulates the growth of the adjacent epithelial cells.

AR plays a critical role in prostate development through
stage-specific regulation of androgenic effects on epithelial
cells. Much of this activity is believed to be mediated by the
release of paracrine factors, which are independent of the
presence of epithelial AR.10 The profiles of AR expression
in mouse and rat have been well described and show a
predominance of mesenchymal AR expression during the
fetal period, whereas epithelial AR is expressed on gland
maturation2,8,18 during the post-natal period.

Stromal-Epithelial Interactions in Fetal Prostate

Interactions between mesenchymal and epithelial cells are
obligatory for prostate development from the embryonic
UGS.5 Androgen-dependent inductive signals from UGS
mesenchyme direct the overall development process.19 The
UGS mesenchyme induces the prostatic epithelium to bud
from the UGS and form solid cords that grow, arborize, and
canalize, developing an epithelium characterized by differ-
entiation into tall columnar luminal cells interspersed by
basal cells on the basement membrane.20,21 Concurrent with
the epithelial differentiation, the loose mesenchymal cells
differentiate to form smooth muscle immediately adjacent to
the epithelium.2,18 The role of the epithelial cells in this
process is underlined by the observation that the patterning
of the smooth muscle sheets is determined by the species of
the epithelial cells, rather than the species of the mesen-
chymal cells.2,18,22

A series of elegant experiments by Cunha and co-
workers,5,23 using tissues from testicular feminized mice,
established the importance of stromal and epithelial AR.
The American Journal of Pathology - ajp.amjpathol.org
Testicular feminized mice, which have a functional null
mutation in the AR, have a female phenotype and do not
develop prostates. By using tissue recombination experi-
ments, it was demonstrated that mesenchymal AR drives the
proliferation and differentiation of the epithelial cells,
whereas epithelial AR plays a role in the differentiated
function of the gland, specifically in the expression of various
secreted proteins.5,23 Thus, the stromal-epithelial interactions
are reciprocal in the development of mature prostatic tissue in
which the epithelium expresses a highly differentiated
secretory phenotype with specific secretory proteins, whereas
the mature stroma is predominantly composed of smooth
muscle cells. This clearly implies that the nature of the
paracrine signals expressed by fetal mesenchyme and adult
prostatic smooth muscle in response to androgens is different
and results in contrasting effects on the epithelium. The
development of the female genital tract shows a similar
pattern, where estrogen and progesterone receptors in the
stroma control the epithelial proliferation and differentiation.
However, the differentiated epithelial function is regulated
by epithelial receptors.24

Mediators of AR Expression in Prostate Development

It is important to understand that, unlike many other organs,
the stromal-epithelial interactions in prostate development
are androgen dependent. Several investigators7,8 have
demonstrated that before and during prostatic development,
the mesenchymal (stromal) cells express high levels of AR
(Figure 1), whereas AR is initially undetectable in the
epithelium. The fact that epithelial AR appears in the later
phases of prostate development has been confirmed through
the analysis of developing prostates, organ cultures, and
tissue recombinants,10,25,26 reinforcing the idea that andro-
genic effects on epithelium in early development are inde-
pendent of epithelial AR.

Although androgens can act directly on the epithelium via
epithelial AR to elicit differentiated function,27 there are
2599
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many instances where the androgens appear to act indirectly
via stromal AR28 and by elaboration of paracrine mediators,
such as epithelial growth factor and fibroblast growth factor
family members. Other important growth factors include
nerve growth factor and insulin-like growth factor.29e33 In
addition, inflammatory chemokines have been implicated as
potential players in prostatic development.34 These mediators
can diffuse from the stromal compartment to epithelial cells
and influence epithelial growth and differentiation.29e31

More recently, stromal AR knockout mice, either with AR
knockout in fibroblasts or in smooth muscle or a double
knockout in both fibroblasts and smooth muscle, showed
suppressed prostate epithelial cell growth and develop-
ment,35,36 further suggesting the importance of stromal AR in
prostate development.

In a recent study (E.S., unpublished data) using human
fetal tissues, the pattern of AR expression during early
prostate development was found to be broadly similar to
observations in rodent studies. However, there were some
interesting variations that perhaps reflected the much longer
gestational period in humans and the greater amount of ductal
development that occurs in human fetal prostate. By using
immunohistochemistry (IHC), tissue sections, representing
all regions of the human fetal prostate at a gestational age
between 7 and 22 weeks, were stained using anti-AR anti-
bodies. At a gestational age of 7 weeks, AR expression was
mainly in the peripheral stroma, cephalic (anterior) to the
ejaculatory ducts (EDs), and in the epithelium lining the
UGS. By 9 weeks, AR expression was seen throughout the
stroma and in the suprabasal cells of the UGS. It was also
seen exclusively in the basal cells of central dorsal UGS,
caudal (posterior) to the EDs. The stroma, especially in the
periphery, showed increased AR staining by 11 to 13 weeks.
Epithelial AR expression increased from the base to the apex
and throughout the cell layers of the UGS, ducts, and acini.
Basal cells of the UGS and ducts anterior to the EDs did not
express AR until this period. By 22 weeks, AR expression
was throughout the gland, with maximum staining in the
epithelium and the posterior and posterolateral peripheral
stroma. These findings illustrate crucial differences between
human prostate and the rodent models on which most of our
knowledge is based.
Stromal Cells in Prostate Carcinogenesis

Normal adult prostate stromal cells have been characterized
as maintaining growth quiescence within prostatic tissue. For
many years, investigators studied the role of stromal cells in
the initiation and promotion of carcinogenesis. The recog-
nition of the similarities to the stromal microenvironment of a
wound site resulted in Dvorak’s famous description of cancer
as a wound that does not heal.37 Tumor stroma, variously
known as cancer-associated stroma (CAS), cancer-associated
fibroblasts, tumor-associated stroma, or reactive stroma, is
often different from the normal stroma.38e41 Animal studies
2600
have demonstrated that when normal or benign stromal cells
are associated with malignant epithelial cells, there is a
decrease in the proliferation rate42e44 and an apparent loss of
former malignant properties of the epithelial cells.44,45 Some
investigators have also shown a restriction of growth in
epithelial cells and their induction into a more differentiated
phenotype.46 Recombination studies using Dunning rat
prostate adenocarcinoma revealed that the normal stromal
environment may override the effects of oncogenic mutations
in tumor cells.44 Normal stromal cells retain the properties of
growth control and can possibly prevent the proliferation of
cells undergoing neoplastic transformation.

Morphological Modifications in Stroma

Modification of the stromal environment is common in
carcinogenesis, and it is adequately evident on observation
of stroma immediately adjacent to PCa cells.40,47e49 During
carcinogenesis, the composition of the prostate stroma often
changes with the emergence of a stromal phenotype char-
acterized by a loss of well-differentiated smooth muscle, the
presence of myofibroblasts, and an increase in the amount of
extracellular collagen.40,49,50 Morphologically and on the
basis of cytoskeletal protein expression, myofibroblasts are
an intermediate between fibroblasts and smooth muscle
cells,51 characterized mainly by a prominent rough endo-
plasmic reticulum (as in fibroblasts) and contractile myo-
filaments (smooth muscle cells), with increased expression
of vimentin and a-actin and decreased expression of cal-
ponin and smooth muscle myosin.52,53 Myofibroblasts have
been widely implicated as the cancer-promoting cells in the
stroma.38,54,55 Molecular changes to the prostate tumor
stroma include changes in the expression of cell signaling
and immunomodulatory proteins.56,57 There is a suggestion
that the tumor stroma has the potential to become a target
for therapy, leading to preclinical development of some
innovative approaches, such as the activation of bee venom
by proteases expressed in breast and prostate cancer
stroma.58

Factors Promoting the Stromal Modification

There are several possible factors that promote the modifi-
cation of normal stromal cells into CAS. Some signals from
cancer epithelium to surrounding stromal cells have been
shown to alter the function of stromal cells and extracellular
matrix production. These include transforming growth
factor-b1, which induces stromal secretion of versican, an
extracellular chondroitin sulfate proteoglycan.59 By using a
prostate cell line, transforming growth factor-b1 has been
shown to cause the formation of larger tumors and extensive
metastatic disease.60 In a hormone-sensitive cell model,
variations in extracellular matrix have been shown to regulate
stromal cell phenotype.61 Although it has been suggested
that there are genetic modifications seen in the CAS,62

possibly as a result of epithelial-to-mesenchymal transitions
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of previously genetically abnormal epithelial cells, these re-
sults may reflect the technological limitations at the time the
study was performed. More recent work has shown that the
stromal cells seem to have limited, if any, genetic damage,
suggesting that previous studies may reflect experimental
artifacts, such as limiting and poor-quality DNA, followed by
highly multiplexed PCR-based analysis.63 However, there is
substantial evidence that the differences in gene expression
between normal stroma and CAS are heritable within a cell
lineage, indicating the possible operation of mechanisms,
such as epigenetic changes,64e66 in maintaining this pheno-
type. In an analysis by Dakhova et al,67 when compared with
normal stroma, a total of 544 unique genes were significantly
higher and 606 unique genes were lower in the reactive
stroma. Gene ontology analysis revealed significant alter-
ations in several novel processes in PCa-reactive stroma,
including neurogenesis, axon genesis, and the DNA damage/
repair pathways, as well as evidence of increases in stem cells
in PCa-reactive stroma. Changes in gene expression profiles
(both positive and negative) associated with tumor stroma
have been shown to be sufficient to mediate tumor
promotion.68,69

Wound Repair as an Analogy for Carcinogenesis of
Stroma

In the reactive stroma hypothesis,50 the stroma of the
prostate has been correlated with the granulation tissue in
wound repair, with reference to similar biological re-
sponses. Wound healing and generation of tumor stroma
share many important properties. Both begin with the
infiltration of plasma proteins, including fibrinogen, fibro-
nectin, and plasminogen. In both the processes, the extra-
vascular fibrin-fibronectin clot serves as a provisional
stroma, providing a matrix for the migration of macro-
phages, fibroblasts, and new capillaries.37 As in any wound
repair situation, the microenvironment would be expected
to be growth promoting, which correlates with the pro-
motion of survival and proliferation of carcinoma cells by
stroma in prostatic carcinogenesis. Tissue recombination
studies have demonstrated that human prostatic CAS can
promote carcinogenesis in genetically initiated human
prostate epithelial cells.38,70 To investigate whether these
intraetumor-reactive stromal cells in human PCa are pre-
dictive of survival, tumor stroma volume and specific
stroma markers were quantitated by Ayala et al49 using
tissue microarrays. Statistical analysis of the survival data
set showed that the presence and quality of reactive stroma
in the tumor was a significant predictor of disease-free
survival. Stroma volume was also seen to be an indepen-
dent predictor of progression in tumors with a Gleason
score 7, a group that represents the interface between high
and low risk of progression. Outcomes for patients with
Gleason score 7 tumors are hard to predict using traditional
methods, and scoring stromal data may refine the accuracy
of such prognostications.
The American Journal of Pathology - ajp.amjpathol.org
Progressive Loss of AR Expression in Stromal Cell
Transition from Benign to Cancer and during its
Progression

Numerous studies have focused on AR expression in
epithelial cells during the genesis and the progression of
PCa from primary to metastatic and from hormone-sensitive
to castration-resistant PCa (CRPC). It has also been estab-
lished that the function of epithelial AR changes with dis-
ease progression so that the proproliferative response to
androgens becomes, at least to some degree, cell autono-
mous in cancer epithelium,71 rather than completely medi-
ated through the stroma, as occurs in development.
Increased epithelial AR expression in patient tumors has
been associated with aggressive disease and decreased
progression-free survival.72 However, the expression and
function of stromal AR may be distinct from epithelial AR.
As a result of the structural and genomic modifications64e67

of the stromal cells, there are functional modifications in
tumor-associated stroma. Stromal AR expression progres-
sively decreases during the transition from benign tissue to
in situ cancer lesion and during progression of PCa from
low to high grade, primary to metastatic, and hormone
sensitive to CRPC.73e77
Transition from Benign to Neoplasia

Compared with normal prostate, stromal AR expression was
found to decline starting as early in the disease process as
high-grade prostatic intraepithelial neoplasia.74 Analysis of
stromal tissue adjacent to PCa from patients undergoing
transurethral resection of prostate or radical prostatectomy
showed that loss of stromal AR expression increased line-
arly with higher histological grades. AR expression was
absent in 67% of peri-epithelial stromal tissue in well-
differentiated PCa (Gleason score, 2 to 4), 91% in moder-
ately differentiated PCa (Gleason score, 5 to 7), and 94% in
poorly differentiated PCa (Gleason score, 8 to 10).74 We
have shown a statistically significant decrease in stromal AR
expression (P < 0.001) in the areas surrounding PCa
compared with benign prostate, with up to a 6% decrease in
stromal AR expression.77 When stratified with Gleason
score, we also established a trend of greater decrease of AR-
positive stromal cells in cancerous areas compared with
benign areas with increased tumor grade.77 Other in-
vestigators have also demonstrated that the loss of stromal
AR is directly correlated with advances in pathological stage
and with higher Gleason scores75 using AR IHC of tran-
surethral resection of prostate specimens obtained from
patients with varying Gleason scores and pathological
stages. This difference was notable (P < 0.05) in tumor
specimens of stage T2 and tumors with a Gleason score of 7,
whereas it was more statistically significant (P < 0.01) in
tumor stages T3 and T4 and in specimens with Gleason
scores of 8 to 10.
2601
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Figure 2 Differential transcriptional activation and repression of cyclin
B1 by AR in prostate epithelial and stromal cells. A: AR-mediated tran-
scriptional repression of cyclin B1 in immortalized myofibroblastic stromal
cells with stable AR expression by luciferase assay using 100 ng 200-bp LUC
reporter containing 200-bp cyclin B1 promoter. B: AR-mediated tran-
scriptional activation of cyclin B1 in PC-3 cells with luciferase assay. The
200-bp LUC reporter (100 ng) and pcDNA-AR (50 ng) were cotransfected to
PC-3 cells.

Singh et al
Progression from Castration-Sensitive to
Castration-Resistant PCa

Decreased stromal AR expression also correlates with dis-
ease progression, including metastasis (Figure 1D) and
castrate resistance. Wikstrom et al75 showed that specimens
with metastatic disease displayed significantly lower
(P < 0.01) stromal AR expression compared with speci-
mens with primary disease. Only 1.6% of cells stained
positive for AR in metastatic tumor stroma compared with
18% of cells in normal stroma. In the primary prostate tumor
specimens, 13% of tumor stroma cells stained positive for
AR compared with 48% in normal stroma, which was
equivalent to a 3.5-fold loss of expression in CAS.

We also demonstrated that, during transition of PCa from
hormone naive to castration resistance, there is a significant
decrease in stromal AR expression. We determined AR
levels in prostate stroma of 44 cases of androgen-dependent
PCa and in 22 cases of CRPC by IHC analysis using
affinity-purified polyclonal AR antibodies. The levels of
stromal AR expression were measured as an average per-
centage of AR-positive stromal cells. When comparing
androgen-dependent and CRPC tumors, we observed a
statistically significant, threefold decrease from 12% to 4%,
of AR-positive stromal cells that were associated with
CRPC.77

Understanding the Mechanisms of Loss of AR
Expression

It is of great interest to determine the function of stromal AR
target genes in PCa. It is well established that stromal AR
regulates its target genes differentially than prostate epithelial
cells. For example, most androgen-regulated genes in pros-
tatic epithelium require the presence of the transcription
factor Fox a1, which is not expressed in the stroma.78e81 It is
likely that different combinations of transcription factors,
likely involving alternative Fox family members, are
involved in androgen-regulated gene expression in the
stroma. It is also possible that these relationships change as
the differentiation status of the stroma is altered from smooth
muscle to a more myofibroblastic phenotype. By using pro-
teomics pathway array analysis, we reported that androgen
and AR inhibit the proliferation of stromal cells through
transcriptional suppression of CNNB1, a target gene of AR in
prostate stromal cells, confirmed with luciferase assays
(Figure 2A).82 The negative regulation of CNNB1 by stromal
AR is mediated through switching between transcription
factors E2F1 and E2F4 on CNNB1 promoter. However,
CNNB1 is positively regulated by AR in cancer epithelial
cells (Figure 2B). It has also been shown that the activation of
the estrogen-inducible cell cycle promoter CNND1 in normal
prostatic stroma allows the stromal cells to behave more like
cancer-associated fibroblasts.83

The mechanism behind the loss of AR expression in the
peri-epithelial stroma is not well established. It has been
2602
suggested that, during malignant transformation of epithelial
cells, there is a shift in AR axis from stromal celledependent
paracrine pathways to autocrine-dependent pathways.71

When these cancer cells shift to an autocrine mechanism of
proliferation, it appears that epithelial AR regulates a new
series of genes for survival and proliferation, not normally
expressed by prostate epithelial cells.29 The consequence
may be that malignant epithelial cells no longer depend on
stromal-epithelial interactions and stromal AR-mediated
growth factors for their survival and proliferation. It is also
notable that during development, the androgen-regulated
paracrine signals produced by the stroma contribute
initially to epithelial proliferation that becomes progressively
more organized as the stroma gradually differentiates into
AR-expressing smooth muscle. As cancer progresses, the
stroma becomes progressively less differentiated, suggesting
a loss of signaling that normally restricts epithelial growth
and maintains a largely growth quiescent differentiated form,
a concept reviewed elsewhere.84e86

PCa has been characterized as more aggressive in African
American (AA) patients compared with Caucasian (CA)
patients. AR in cancer epithelial cell expression has been
ajp.amjpathol.org - The American Journal of Pathology
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shown to be increased in AA PCa in comparison to CA
patients.87 In contrast, stromal AR in AA PCa decreased
more when compared with that in CA.82
Stromal AR Inhibits Cancer Epithelial Cell
Growth, Causing a Functional Reversal

We have previously demonstrated in experiments using well-
characterized AR-positive and AR-negative stromal cell
lines, both by co-culture in vitro and coxenograft in vivo, that
in the presence of androgen, stromal cells expressing AR
decrease the growth and invasive ability of PCa epithelial
cells.77 It was hypothesized that this distinct effect of AR in
stromal cells is due to the involvement of paracrine factors/
mechanisms regulated by both epithelial and stromal cells.

To establish this analysis, a well-characterized prostate
stromal cell line, morphologically similar to the tumor stroma,
was used. We constructed an immortalized stromal cell line
termed PShTert from a prostate with benign prostatic hy-
perplasia. The cells stably expressed the human telomerase
catalytic subunit, hTert. Morphologically, the cells showed
typical characteristics of myofibroblasts. IHC showed
diffuse, strongly positive staining for vimentin, strong smooth
muscle actin staining in 25% of cells, and negative staining
for desmin. Together, these data support the myofibroblastic
phenotype of the PShTert stromal cells. Western blot analysis
confirmed the absence of AR in these cell lines. We trans-
duced this cell line with the pBabe-AR retroviral vector and
selected stable clonal cell lines expressing AR, termed
PShTertAR. Further Western blot analysis, performed with
nuclear and cytoplasmic extracts, showed AR expression in
cytoplasmic and nuclear fractions in the absence and presence
of androgen, respectively. Ensuring the functionality of the
ectopic AR in the nucleus is crucial to model the AR-
expressing section of tumor stroma, and was confirmed by
dual-luciferase assay eliciting ligand-dependent transcrip-
tional activation in the presence of androgens.77

For in vitro analysis, transwell indirect co-culture assays
using these two stromal cells with PC-3 cells were performed.
Figure 3 AR expression, localization, and activity in WPMY-1 cells. A: AR expre
dihydrotestosterone (DHT) stimulation. C: Luciferase assay with the reporter pG
endogenous AR fails to show any activation, whereas ectopic AR increases tran
phosphate dehydrogenase.

The American Journal of Pathology - ajp.amjpathol.org
In the presence of androgens, co-culture with PShTertAR
resulted in inhibition of PC-3 cell growth compared with PC-3
cell proliferation when cultured alone (P Z 0.045). In
contrast, co-culture with AR-negative PShTert cells resulted
in enhancement of growth rate of PC-3 cells compared with
PC-3 cells grown alone (PZ 0.03). Flow cytometric analysis
revealed that PC-3 cells co-cultured with PShTertAR showed
a decrease from 27% to 20% of cells in S-phase compared
with cells co-cultured with PShTert cells. Expression of cell
cycle genes, including CNNA1, CNNB1, cyclin-dependent
kinase inhibitor 1A (p21), cyclin-dependent kinase inhibitor
1B (p27), and S-phase kinase-associated protein 2 (Skp2), was
examined. We showed decreased expression of Skp2 in PC-3
cells co-cultured with PShTertAR compared with PC-3 cells
co-cultured with PShTert cells. Expression of other genes was
similar for both the co-cultures. In co-cultures with androgen-
free media, both PShTert and PShTertAR cells stimulated the
growth of PC-3 cells.77

Similarly, experiments performed by co-injecting PC-3
cells with PShTert cells s.c. in the flank region of male nude
mice resulted in development of tumors twice as large as in
control mice with PC-3 cells alone. On the other side, co-
injection of PC-3 cells and the PShTertAR cell line resulted
in statistically significant reductions of tumor growth and
size.77

There were two important observations made from this
analysis. First, consistent with previous observations, both
AR-negative and AR-positive stromal cells promote growth
of PCa epithelial cells in the absence of androgen by secretion
of a paracrine factor, which is independent of AR.88e90

Second, AR-positive stromal cells secrete another paracrine
factor, which is growth inhibitory for PCa epithelial cells and
is dependent on androgen/AR presence.91

Furthermore, media from the androgen-treated PShTer-
tAR cells were used to culture PC-3 cells. Contrary to the
co-culture, there was an increase in the growth of PC-3
cells.77 This signifies that such an AR-dependent growth-
inhibitory factor is dependent on the presence of stromal
cells for its expression, strongly supporting a role for active
two-way intercellular communication. Further investigation
ssion in WPMY-1 cells. B: Cytoplasmic AR localization regardless of R1881 or
L3-4xAREE4 (containing 4xARE upstream E4 promoter) indicates that the
sactivation on R1881 stimulation. Ctrl, control; GAPDH, glyceraldehyde-3-

2603
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Figure 4 Distinct function of stromal AR in fetal, adult, and cancerous prostate and its therapeutic implication in PCa. ADT, androgen deprivation therapy;
EC, epithelial cell.

Singh et al
and understanding of this two-way paracrine regulation
of growth in metastasis and androgen independence are
necessary and may lead to development of novel therapeutic
interventional targets for PCa.

Interestingly, in an animal model experiment using
recombination of human prostate stromal cell line (WPMY-1)
with human PCa epithelial cell line (PC-3), Niu et al92 have
indicated that stromal ARmay play amore dominant role than
epithelial AR in promoting primary tumor proliferation at
earlier stages. One caveat is that the endogenous AR
expressed in theWPMY-1 cell line is nonfunctional. By using
immunofluorescence, we demonstrated that, in the WPMY-1
cell line, AR is exclusively expressed in the cytoplasm,
regardless of the presence of androgen (Figure 3). Further-
more, the endogenous AR expressed in this cell line showed
no transcriptional activation by luciferase reporter assay in the
presence of androgen (Figure 3). Together, these results
demonstrate thatWPMY-1may not be an appropriate cell line
model for characterization of AR-positive PCa stromal cells.
Considering nonfunctional endogenous AR expression as
equivalent to absence of AR expression, the results of the
study by Li et al77 are consistent with our analysis. More
recently, the group of Yu et al93 showed stromal AR function
in promoting cancer epithelial cell growth using immortalized
cancer-associated fibroblast cells from prostate. It will be
important to clarify this situation.

Need to Re-Evaluate the Role of Continued ADT
in CRPC and Future Directions

A normal androgen-responsive prostate stroma has previ-
ously been shown to suppress tumor cell growth.44 These
2604
data are consistent with our hypothesis that AR-positive
stromal cells normally inhibit the growth of tumors. Apart
from the case of the PC-3 cells in data described above, we
also analyzed and found similar results using AR-positive
LNCaP cells. However, the magnitude of growth inhibi-
tion by AR-positive stromal cells was lower in LNCaP cells
compared with PC-3 cells.77 One of the explanations for this
observation may be that, because androgen and AR enhance
the growth of LNCaP cells, the end result is due to inhibi-
tion of epithelial (LNCaP) cells through effects mediated by
stromal AR and additional stimulation of epithelial (LNCaP)
cells by androgen and epithelial AR. This illustrates that
stromal AR-mediated growth inhibition of cancer epithelial
cells is more evident in the CRPC/metastatic PCa disease
model (PC-3) compared with the androgen-dependent PCa
model (LNCaP). Relevant to this observation is a recent
description of the forced re-expression of proteins associ-
ated with the differentiation of normal prostatic stroma in
tumor stromal cells where they have been lost. In this study,
consistent with the reported observations on AR, tumor
growth was suppressed by expression of either delta-like 1
homolog (Dlk1) or signal peptide, CUB domain, epithelial
growth factorelike 1 (SCUBE1) in tumor stroma.94

The role of continued androgen deprivation therapy
(ADT) during progression to CRPC has been under evalu-
ation for some years.95,96 Recent clinical trials that
compared the use of intermittent with continued ADT have
not been able to demonstrate any conclusive results.97 It
may be reasonable to accept that with the onset of androgen-
independent epithelial tumor cells, the therapeutic efficacy
and potency of ADT begin to wane. However, with the
progressive loss of stromal AR, there may be a loss of
ajp.amjpathol.org - The American Journal of Pathology
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growth-inhibitory stromal effects that are also androgen
mediated. Consistently, it supports high-dose exogenous
testosterone therapy in patients with CRPC, initiated in a
clinical trial setting.98

Summary

A close observation of the behavior of stromal AR chro-
nologically from the fetal/pubertal development up to the
stage of poorly differentiated/metastatic PCa illustrates a
change from promoting growth and differentiation in the
developing prostate to suppressing growth and maintaining
differentiation in the normal adult organ. In cancer, the role of
androgens becomes more complex, with direct growth pro-
motion in the epithelium and stromal cell stateespecific re-
sponses to androgenic stimulation of the stroma that can range
from promoting to suppressing growth (Figure 4). Studies
exploring changes in the signaling pathways in stromal cells
should be encouraged.99 More investigations are required to
understand the mechanism of this functional versatility in
stromal AR for its utility in PCa prognosis and treatment.
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