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Stress Induces Pain Transition by Potentiation of AMPA
Receptor Phosphorylation
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Chronic postsurgical pain is a serious issue in clinical practice. After surgery, patients experience ongoing pain or become sensitive to
incident, normally nonpainful stimulation. The intensity and duration of postsurgical pain vary. However, it is unclear how the transition
from acute to chronic pain occurs. Here we showed that social defeat stress enhanced plantar incision-induced AMPA receptor GluAl
phosphorylation at the Ser831 site in the spinal cord and greatly prolonged plantar incision-induced pain. Interestingly, targeted muta-
tion of the GluA1 phosphorylation site Ser831 significantly inhibited stress-induced prolongation of incisional pain. In addition, stress
hormones enhanced GluA1 phosphorylation and AMPA receptor-mediated electrical activity in the spinal cord. Subthreshold stimula-
tion induced spinal long-term potentiation in GluA1 phosphomimetic mutant mice, but not in wild-type mice. Therefore, spinal AMPA
receptor phosphorylation contributes to the mechanisms underlying stress-induced pain transition.
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Introduction

Pain is a hallmark of tissue damage and inflammation, which
promotes tissue protection and thereby contributes to repair.
Thus, transient acute pain is an important feature of the adaptive
response to damage. However, pain can persist for months or
years after surgery even though the surgical incision that origi-
nally caused the pain has healed. Such chronic pain is maladap-
tive because it no longer serves as a protective reaction. To date,
the neurobiological mechanisms that underlie the transition
from adaptive acute pain to maladaptive chronic pain are not
fully understood (Mifflin and Kerr, 2014).

Previous studies have shown that psychosocial and socioenvi-
ronmental factors contribute to the development of chronic
postsurgical pain (Kehlet et al., 2006; Katz and Seltzer, 2009).
Psychosocial stress is generally defined as any conditions that
disturb the physiological or psychological homeostasis of an or-
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ganism (Kim and Diamond, 2002; Krugers et al., 2010). Exposure
to stressful events induces physiological and behavioral changes
that promote long-term adaptive responses to such disturbances
(Krugers et al., 2010). One of the core reactions in response to a
stressful event is the rapid activation of the autonomic nervous
system and subsequent release of epinephrine and norepineph-
rine (NE) into the circulation (de Kloet et al., 2005). NE can
activate cAMP-dependent protein kinase A (PKA) and calcium/
calmodulin-dependent protein kinase II (CaMKII; Hall, 2004;
Wang et al., 2004b). AMPA receptor GluA1 Ser831 is phosphor-
ylated by CaMKII and PKC, whereas GluA1 Ser845 is phosphor-
ylated by PKA (Roche et al., 1996; Barria et al., 1997; Mammen et
al., 1997). Genetically modified mice with knock-in mutations
that block phosphorylation at the Ser831 and Ser845 sites of
GluA1 show disturbances in synaptic plasticity and learning (Lee
et al., 2003). Thus, the stress hormone NE can induce GluAl
phosphorylation at Ser831 and Ser845 sites, and thereby facilitate
long-term potentiation (LTP) induction (Hu et al., 2007). Phos-
phorylation at these sites is necessary and sufficient to lower the
threshold for GluA1 synaptic incorporation during LTP (Hu et
al., 2007). In addition, stressful events stimulate the hypothala-
mus—pituitary—adrenal axis, and glucocorticoids, a type of corti-
costeroid hormone, are released from the adrenal glands after
exposure to a stressful event (de Kloet et al., 2005). Corticoste-
rone (Cort) is the main glucocorticoid in rodents, and can rapidly
and persistently regulate AMPA receptor GluA2 trafficking,
which is crucially involved in synaptic transmission and plasticity
(Groc et al., 2008; Krugers et al., 2010). Glucocorticoid receptors
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have been located in the spinal cord dorsal horn neurons (Cintra
etal., 1993). It has been reported (Wang et al., 2004a) that gluco-
corticoid receptors are increased primarily within superficial
laminas of the ipsilateral spinal cord dorsal horn after peripheral
nerve injury. Through activation of glucocorticoid receptors, the
stress hormone Cort can effectively condition the synaptic con-
tent of AMPA receptors and then trigger synaptic potentiation
(Groc et al., 2008; Krugers et al., 2010). In this study, we com-
bined plantar incision with social defeat stress to investigate the
pain transition process.

Materials and Methods

Mice. Male wild-type (WT), AMPA receptor GluAl S831A-phospho-
deficient mutant, and GluAl S831D+S845D (DD) phosphomimetic
mutant mice (8—10 weeks old) with C57BL/6 genetic background were
used in this study. Mice were housed under standard conditions with a
12 h light/dark cycle, were allowed food and water ad libitum, and accli-
mated in our animal facility for a minimum of 1 week before use in
experiments. All animal experiments were performed with the approval
of the Animal Care and Use Committee at Johns Hopkins University. All
efforts were made to minimize animal suffering and to reduce the num-
ber of animals used.

Plantar incision. A plantar incision was performed in mice as described
previously (Pogatzki and Raja, 2003). In brief, mice were anesthetized
with 1.5-2% isoflurane. After antiseptic preparation of the left hindpaw, a 5
mm longitudinal incision was made through the skin and fascia of the plan-
tar foot. The incision was started 2 mm from the proximal edge of the heel
and extended toward the toes. The underlying muscle was elevated with a
curved forceps, leaving the muscle origin and insertion intact.

Social defeat stress. A social defeat stress was performed as described
previously (Tsankova etal., 2006; Covington et al., 2011; Wilkinson et al.,
2011). In brief, CD1 mice were used to defeat C57BL/6 mice. The
C57BL/6 mice were defeated for 10 min/d and then housed for the re-
mainder of the day with the CD1 aggressor but separated by a Plexiglas
screen. This process was repeated daily for 10 consecutive days with a
different CD1 aggressor each day. There was no any physical damage to
the C57BL/6 mice during the stress session.

Mechanical pain behavioral testing. Pain behavioral testing was con-
ducted by an investigator blinded to treatment groups, as described pre-
viously (Pogatzki and Raja, 2003) with minor modification. Mice were
placed on an elevated wire mesh floor and were covered with a clear
Plexiglas chamber. After acclimation for 30 min, paw withdrawal re-
sponses to mechanical stimuli were determined using calibrated von Frey
filaments (0.08, 0.15, 0.25, 0.41, 0.75, 1.2, and 2.0 g). Each monofilament
was applied five times to the plantar side of the hindpaws for ~1 s with a
10 sinterval, starting with a force 0f0.08 X gand continuing in ascending
order. A stimulus-related withdrawal was considered a positive response.
The paw withdrawal threshold was calculated as the force at which the
positive response occurred in three of five stimuli.

Western blotting. The mice were killed, and ipsilateral lumbar spinal
cord tissues were harvested at 48 h after the incision was made. AMPA
receptor phosphorylation in the spinal cord was analyzed with quantita-
tive Western blotting. Membrane-bound proteins from the lumbar en-
largement segments of mouse spinal cord were extracted as previously
described (Tao et al., 2006). The affinity-purified anti-GluA1 and anti-
phospho-GluA1 at Ser831/845 antibodies were used to assess the expres-
sion of total (T) GluAl and phosphorylated GluAl at the Ser831 and
Ser845 sites, respectively. The intensity of Western blots was quantified
with densitometry. The signals of phospho-specific GluAl antibodies
were normalized to total GluAl in phosphorylation analysis.

Surface biotinylation assay. Spinal slices were incubated for 45 min on
ice with artificial CSF (ACSF) containing 1.5 mg/ml sulfo-NHS-LC-
biotin (Pierce) and then rinsed in ACSF to quench the biotin reaction.
Next, the slices were homogenized in modified RIPA buffer (1% Triton
X-100, 0.1% SDS, 0.5% deoxycholic acid, 50 mm NaPO,, 150 mm NaCl,
2 mM NaF, 1 mm PMSF, 1 mg/ml leupeptin, and 10 mm sodium pyro-
phosphate). The homogenates were centrifuged at 1000 X g for 10 min at
4°C, and then the supernatant (total soluble fraction) was collected and
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centrifuged at 20,000 X g for 20 min at 4°C. The pellet (P1; crude plasma
membrane fraction) was resolved in the RIPA buffer for use. After the
measurement of protein concentration, 20% of P1 fraction was used for
assessing total GluA1 expression. The remainder of the P1 fraction was
incubated with 50% NeutrAvidin agarose (Pierce) for 4 h at 4°C and
washed three times with RIPA buffer. T and biotinylated surface (S)
proteins were assessed using quantitative Western blotting.

Cross-linking assay. The mice were killed, and transverse spinal dorsal
horn slices (450 wm) were prepared on day 7 after stress. Spinal slices
were placed into ice-cold ACSF with or without 1 mg/ml BS? for 45 min
at4°C. BS? isa membrane-impermeable cross-linking reagent that cross-
links proteins only on the surface of cells (Grosshans et al., 2002a,b).
Because BS? is unable to enter polyacrylamide gels, the intracellular pool
of receptors was measured directly. To quench the remaining BS* activ-
ity, the slices were washed three times in cold ACSF containing 20 mm
Tris, pH 7.6. Homogenization and subcellular fractionation were per-
formed as described in the surface biotinylation assay. Equal amounts of
T and BS’-treated proteins were assessed using quantitative Western
blotting.

Electrophysiology. In our electrophysiological experiments, pyramidal
projection neurons in the laminae II (substantia gelatinosa) of the spinal
cord dorsal horn were chosen for recording under microscope. AMPA
receptor-mediated miniature EPSCs (mEPSCs) were recorded in spinal
slices. For mEPSC recording, spinal cord slices were preincubated for 30
min. Cort was washed in while we recorded after the preincubation.
Totally spinal mEPSCs were recording for 10 min, and the last 5 min of
recording was used for statistical analysis. We observed that the effect of
Cort occurred within 3 min; 0.5 uMm tetrodotoxin was included in perfu-
sion solution. mEPSCs were recorded at a holding potential of —70 mV,
at which NMDA receptors are presumably blocked by Mg>" ions. The
following mEPSC characteristics were determined: frequency, peak am-
plitude, and decay time. For spinal LTP induction experiments, the mag-
nitude of LTP was the average of the last 5 min of the field EPSP (fEPSP)
amplitude and was expressed as a percentage of the baseline fEPSP am-
plitude. Spinal LTP was induced with a subthreshold 10 Hz stimulation
that was applied for 90 s (900 pulses in total). The size of potentiation in
the last 5 min was quantified. Representative fEPSP traces at baseline and
during the last 5 min were shown. In addition, 10 um NE was perfused for
10 min before the subthreshold stimulation in some LTP induction
experiments.

Bicuculline (10 uMm) and strychnine (1 pum) were added to the perfu-
sion solution to block inhibitory synaptic transmission in all experi-
ments. AMPA receptor-mediated synaptic responses were isolated by
treatment with APV (100 uMm) and confirmed by blocking with GYKI
53655, a selective AMPA receptor antagonist.

ELISA. Mice were rapidly anesthetized by isoflurane, and blood sam-
ples were obtained by heart puncture (Orlando et al., 2008). Blood was
collected in ice-chilled EDTA-coated vials containing 10 ul of Trasylol
and centrifuged at 5000 X g for 5 min at 4°C to separate plasma from
cellular components. The plasma samples were stored at —80°C until
use. Plasma NE and Cort values were measured using ELISA according to
the manufacturer’s instructions. All samples and standards were assayed
in duplicate.

Statistics. Data are expressed as the mean = SEM. Comparisons among
groups were performed by one-way and two-way ANOVA followed by
the Student—-Newman—Keuls method. Differences with p < 0.05 were
considered statistically significant.

Results

Stress-induced prolongation of incisional pain is dependent
on AMPA receptor GluA1 phosphorylation

Incisional pain was induced by a plantar incision in the left hind-
paw of WT mice, as described previously (Pogatzki and Raja,
2003). We observed that plantar incision alone decreased paw
withdrawal threshold in the ipsilateral hindpaw of the WT mice,
starting from day 1 after surgery (Fig. 1A). The incision-induced
pain lasted for ~7 d, and the paw withdrawal threshold returned
to baseline level on day 7 after surgery (Fig. 1A4). To determine



Lietal.  AMPA Receptor Regulation and Pain Transition

A Ipsilateral hindpaw
—o—Incision alone  —®—Incision+Stress Stress alone
@2.5
T
o 21 =
ﬁ & T %
@ i ‘\'\—-'::;
= 1.5 4 g \**/
—
©
2 1
i
T
S 05
2
E 0 T T T T T T T T T 1
¥ P <
& o o"*\o's\o 6\ 6\0& fs\ & &

Q'O
Time after incision or stress

(@)

Ipsilateral hindpaw

_ -WT (Incision+Stress)
-0-GluA1 Ser831A mutant (Incision+Stress)
-4-GluA1 Ser831A mutant (Incision alone)

N

Paw withdrawal threshold (g)

SHHS PSS
%90\ 'o* Qrﬁ dﬁ 0& & & o"’* P & &
Time after incision

Figure 1.

J. Neurosci., October 8, 2014 - 34(41):13737-13746 « 13739

B Contralateral hindpaw

Stress alone

—#—Incision+Stress

—e—Incision alone

N
w

N

-
o
L

-
L

e
wn
N

0 T T T T T

Paw withdrawal threshold (g)

& NP o ﬂ?b@@@
Q,o‘? & & & 06\04’* ors\@«s\ S B P

Time after incision or stress

O

Contralateral hindpaw

25 -#-WT (Incision+Stress)
-0-GluA1 Ser831A mutant (Incision+Stress)
-4-GluA1 Ser831A mutant (Incision alone)
2 il ,

.
[}
=

-
L

Paw withdrawal threshold (g)

0.5 4
0 T T T T T T T T T
Aoe\'bb'\,\Qq,Qerb‘Q@Q@Q
I R R

Time after incision

Targeted mutation of GluA1 phosphorylation at Ser831in GluA1 Ser831A-phosphodeficient mutant mice significantly inhibits social defeat stress-induced prolongation of

incisional pain. 4, Social defeat stress significantly prolonged the incision-induced pain in the ipsilateral hindpaw (n = 10 for each group; *p << 0.05 vs incision-alone group). Social
defeat stress alone (n = 9) did not produce pain behaviors. B, All treatments had no effect on paw withdrawal threshold in the contralateral hindpaw. C, Targeted mutation of GluA1
phosphorylation site Ser831in the GluA1 S831A mutant mice significantly inhibited social defeat stress-induced prolongation of incisional pain in the ipsilateral hindpaw. There was no
significant difference between the incision-alone and incision-plus-stress groups in the GluA1 S831A mutant mice (n = 10 for each group; *p << 0.05 vs GluA1 S831A mutant mice). D,
No pain behaviors were observed in the contralateral hindpaw of WT or GluA1 Ser831A mutant mice. The data from WT (incision-plus-stress) mice were used in A and  (ipsilateral

hindpaw) as well as B and D (contralateral hindpaw).

whether stress can prolong the incisional pain and induce the
transition from acute to chronic pain after surgery, mice were
subjected to chronic social defeat stress before plantar incision
based on published reports (Tsankova et al., 2006; Covington et
al., 2011; Wilkinson et al., 2011). We found that social defeat
stress significantly prolonged the incision-induced pain, and the
paw withdrawal threshold in the ipsilateral hindpaw of the
“incision-plus-stress” group did not return to baseline level until
day 40 after surgery (Fig. 1A, *p < 0.05 vs incision-alone group).
Neither incision alone nor incision plus stress had an effect on
paw withdrawal threshold in the contralateral hindpaw (Fig. 1B).
In addition, social defeat stress alone did not produce pain be-
haviors (Fig. 1A,B). To further investigate the importance of
AMPA receptor phosphorylation in stress-induced prolonga-
tion of incisional pain, AMPA receptor GluAl S831A-
phosphodeficient mutant mice were used (Lee et al., 2003). In the

mutant mice, GluAl phosphorylation site Ser831 is mutated to
alanine using a gene knock-in technique to prevent the phos-
phorylation of this site in vivo. Interestingly, we found that tar-
geted mutation of the GluA1 phosphorylation site Ser831 in the
GluAl S831A mutant mice significantly inhibited social defeat
stress-induced prolongation of incisional pain in the ipsilateral
hindpaw (Fig. 1C, *p < 0.05 vs GluAl S831A mutant mice).
There was no significant difference between the incision-alone
and incision-plus-stress groups in the GluAl S831A mutant
mice. These results indicate that AMPA receptor GluAl phos-
phorylation plays an important role in stress-induced prolonga-
tion of incisional pain. No pain behaviors were observed in
the contralateral hindpaw of WT or GluA1 Ser831A mutant mice
(Fig. 1D). The data from WT (incision-plus-stress) mice were
used in Figure 1, A and C (ipsilateral hindpaw), as well as Figure
1, Band D (contralateral hindpaw).
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Figure 2.  Stress hormones enhance AMPA receptor-mediated electrical activity and lower the threshold for LTP induction in the spinal dorsal horn neurons. 4, Social defeat stress significantly
increased NE concentration in mouse plasma (n = 6 for each group; *p << 0.05 vs control group). B, Social defeat stress significantly increased Cort concentration in mouse plasma (n = 6 for each
group; *p << 0.05 vs control group). ¢, AMPA receptor-mediated mEPSCs were recorded in spinal slices. We observed that bath-applied Cort (100 nm) enhanced AMPA receptor-mediated electrical
activity. D, Cort significantly increased the mEPSC frequency (n = 6 slices and one slice per mouse; *p << 0.05 vs control group). E, Cort significantly decreased the decay time of the mEPSCs (n =
6 slices and one slice per mouse; *p << 0.05 vs control group). F, Subthreshold 10 Hz stimulation induced spinal LTP in AMPA receptor GluA1 DD phosphomimetic mutant mice, but notin WT mice.
The size of potentiation in the last 5 min was quantified (WT mice: 103.9 == 0.9%; n = 7 slices and one slice per mouse; p > 0.05, vs baseline; DD mice: 130.2 == 1.6%; n = 6 slices and one slice
per mouse; p << 0.01 vs baseline; *p << 0.05 between WT and DD). G, Subthreshold stimulation following NE incubation (10 wum) induced spinal LTP at similar levels in both WT and the GluA1 DD
mutant mice. The size of potentiation in the last 5 min was quantified (WT mice: 127.2 == 2.3%; n = 6 slices and one slice per mouse; p << 0.05 vs baseline; DD mice: 132.9 = 1.0%; n = 5 slices
and one slice per mouse; p << 0.01 vs baseline; p > 0.1 between WT and DD).
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LTP at similar levels in both WT and the
GluAl DD mutant mice (Fig. 2G). These
results suggest that phosphorylation of
GluA1 Ser831/Ser845 and NE treatment
may reduce the threshold for spinal LTP
induction, thereby potentiating synaptic
plasticity in the spinal dorsal horn neu-
rons. Recently, we conducted the plantar
incision model in the DD mice and found
that, compared with WT mice, the DD
mice showed a prolonged incisional pain
after plantar surgery (Fig. 3), which is sim-
ilar to stress-induced pain prolongation in
this model. Together, our data suggest
that AMPA receptor phosphorylation
plays an important role in stress-induced
pain transition.

Paw withdrawal thresholds in the DD mice do not return to baseline level until day 80 after the incision was made. B, Plantar

incision does not induce pain in the contralateral hindpaw of both the WT and DD mice.

Stress hormones enhance AMPA receptor-mediated electrical
activity and synaptic plasticity in the spinal dorsal horn
neurons

After the social defeat stress paradigm was repeated daily for 10
consecutive days, we measured plasma NE and Cort by using
ELISA. Our data showed that the social defeat stress significantly
increased the levels of NE and Cort in mouse plasma (Fig. 2A, B,
*p < 0.05 vs control group). To reveal the effects of stress hor-
mones on AMPA receptor-mediated electrical activity and syn-
aptic plasticity in the spinal dorsal horn neurons, AMPA
receptor-mediated mEPSCs and spinal LTP induction were re-
corded in the spinal cord slices prepared according to our previ-
ous study (Tao et al., 2003). It has been shown that Cort affects
presynaptic release of glutamate and alters the frequency of hip-
pocampal mEPSCs (Karst et al., 2005). In this study, we found
that bath-applied Cort (100 nm) significantly increased the fre-
quency of AMPA receptor-mediated mEPSCs in the spinal cord
slices (Fig. 2C,D, *p < 0.05 vs control group), though it had no
effect on the current peak amplitude. Cort perfusion also signif-
icantly decreased the decay time of the mEPSCs (Fig. 2C,E, *p <
0.05 vs control group). Our data suggest that spinal AMPA
receptor-mediated electrical activity can be enhanced by the
stress hormone Cort, and that Cort could affect the probability of
presynaptic glutamate release, but may not influence number of
postsynaptic AMPA receptors and glutamate vesicle size. Our
results are consistent with a previous study (Karst et al., 2005) in
acutely prepared adult mouse hippocampal slices, in which Cort
enhances mEPSC frequency but has no effect on mEPSC ampli-
tude (Karst et al., 2005). Furthermore, by using AMPA receptor
GluA1 S831D+S845D phosphomimetic mutant mice (Makino
et al., 2011), in which GluA1 phosphorylation sites Ser831 and
Ser845 are mutated to aspartate using a gene knock-in technique
to mimic the phosphorylation of these sites in vivo, we tested
whether spinal LTP can be induced with a subthreshold 10 Hz
stimulation. The percentage of fEPSP amplitude in the last 5 min
of recording was compared with that at baseline. We found that
the subthreshold 10 Hz stimulation induced spinal LTP in the
AMPA receptor GluA1l DD phosphomimetic mutant mice, but
not in WT mice (Fig. 2F, *p < 0.05 vs WT mice). In addition, NE
can regulate AMPA receptor phosphorylation and then modify
the possibility of synaptic plasticity (Hu et al., 2007). In this study,
the subthreshold stimulation plus NE incubation induced spinal

Stress enhances spinal AMPA receptor

GluA1 phosphorylation by releasing

stress hormones
To reveal whether stress affects incisional pain through regu-
lating AMPA receptor activities in the spinal cord, we har-
vested ipsilateral lumbar spinal cord tissues at 48 h after
incision. Western blot analysis showed that plantar incision
significantly increased GluAl phosphorylation at the Ser831
site (Fig. 4A,B, **p < 0.01 vs sham control group) and that
social defeat stress further enhanced plantar incision-induced
GluAl phosphorylation (Fig. 4A,B, #p < 0.05 vs incision
group). Neither incision alone nor incision plus stress
changed the expression of total GluAl (Fig. 4A,B). We also
observed that plantar incision did not alter GluA1 phosphor-
ylation at the Ser845 site, and that stress alone increased
GluA1 phosphorylation at both Ser831 and Ser845 sites (Fig.
5). Moreover, to test whether stress hormones regulate AMPA
receptor phosphorylation in the spinal cord, epinephrine (0.5
mg/kg, i.p.) was injected into WT mice, and lumbar spinal
cord tissues were harvested 30 min after injection. Western
blot analysis showed that systemic injection of epinephrine
significantly increased GluA1l phosphorylation at the Ser831
site (Fig. 4C,D, **p < 0.01 vs saline control group), but did not
affect total GluAl level (Fig. 4C,D). In addition, the incuba-
tion with 10 um NE in the spinal cord slices time-dependently
increased GluAl Ser831 phosphorylation, but did not affect
the expression of total GluAl (Fig. 6). Together, our data
suggest that stress may enhance spinal AMPA receptor GluAl
phosphorylation by releasing stress hormones. To further
clarify the protein kinase dependence of NE-induced GluAl
phosphorylation in the spinal cord slices, we incubated the
slices with 10 wMm NE and KN-93 (20 um), a CaMKII inhibitor,
or KT5720 (4 uM), a PKA inhibitor, for 10 min. We observed
that the coincubation of NE with KN-93 inhibited the effect of
NE on GluAl Ser831 phosphorylation, but not Ser845 phos-
phorylation, and that the coincubation of NE with KT5720
inhibited the effect of NE on GluA1 Ser845 phosphorylation,
but not Ser831 phosphorylation (Fig. 7). However, all of the
treatments had no effect on the expression of total GluAl
(Fig. 7).

Stress promotes synaptic AMPA receptor subunit switch in
the spinal dorsal horn neurons

To further investigate how AMPA receptor regulation is involved in
stress-induced pain transition, we performed a surface biotinyla-
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Discussion Figure 4.  Stress enhances plantar incision-induced GluA1 phosphorylation at Ser831 and systemic injection of epinephrine

markedly increases GluA1 phosphorylation in the spinal cord. 4, Plantar incision increased GluA1 phosphorylation at the Ser831

The transition from acute to chronic post-
surgical pain is a complex and poorly un-
derstood developmental process that
involves biological, psychological, and so-
cioenvironmental factors (Katz and Selt-
zer, 2009). Our study demonstrates that
by releasing stress hormones, stress regulates AMPA receptor
phosphorylation and trafficking, which leads to a change in syn-
aptic AMPA receptor subunit composition and causes AMPA
receptor subunit switch from Ca?" impermeable (containing
GluA2) to Ca** permeable (lacking GluA2). This switch will
enhance Ca*" influx and further activate Ca*"-dependent pro-
tein kinases, thereby promoting AMPA receptor phosphoryla-
tion and other phosphorylation-triggered activities. This positive
feedback loop may contribute to the molecular mechanisms that
underlie stress-induced pain transition after surgery. Previous
studies have shown that a reduction in spinal Ca>*-permeable
AMPA receptors is accompanied by a loss of nociceptive plas-
ticity, whereas an increase in spinal Ca®"-permeable AMPA
receptors facilitates nociceptive plasticity, and enhances spinal
LTP and long-lasting inflammatory hyperalgesia (Hartmann
etal.,2004; Youn et al., 2008), suggesting that AMPA receptors
are not mere determinants of fast synaptic transmission un-
derlying basal pain sensitivity, but are critically involved in
activity-dependent changes in synaptic processing of nocice-
ptive inputs.

After tissue injury or nerve damage, synaptic efficacy increases
in somatosensory neurons in the dorsal horn of the spinal cord, a
process called “central sensitization” (a specific form of synaptic
plasticity). AMPA receptor phosphorylation and trafficking are
critical for spinal central sensitization in response to nociceptive
stimulation (Katano et al., 2008; Park et al., 2009). It is widely
believed that long-lasting changes in spinal central sensitization
(e.g., spinal LTP) serve as a neural basis of chronic pain develop-
ment. The C-terminal domains of different AMPA receptor
subunits have different phosphorylation sites (Malinow and
Malenka, 2002; Song and Huganir, 2002; Bredt and Nicoll, 2003;

site, and social defeat stress further enhanced plantarincision-induced GluAT phosphorylation. However, neitherincision alone nor
incision plus stress changed the expression of total GluA1 in the spinal cord. B, Statistical analysis of the data in A.n = 6 for each
group; **p << 0.01 vs sham control group; #p << 0.05 vs incision group. C, Systemic injection of epinephrine increased GluA1
phosphorylation at the Ser831site, but did not affect total GluA1 level in the spinal cord. D, Statistical analysis of the datain C.n =
6 for each group. **p << 0.01 vs saline control group. 3-Actin served as a loading control in all Western blot experiments.

Shepherd and Huganir, 2007). This variation allows subunit-
specific regulation of AMPA receptors during synaptic transmis-
sion and plasticity. It has been shown that the phosphorylation of
GluAl at Ser831 and Ser845 sites is sufficient to lower the thresh-
old for LTP induction and increase the probability of synaptic
plasticity (Makino et al., 2011) and that targeted mutation of the
GluA2 phosphorylation site at Ser880 inhibits chronic inflamma-
tory pain (Park et al., 2009). In the present study, we found that
stress-induced prolongation of incisional pain is significantly in-
hibited in AMPA receptor GluA1 S831A-phosphodeficient mu-
tant mice and that the subthreshold stimulation induces spinal
LTP in GluA1 DD phosphomimetic mutant mice, suggesting that
GluA1 phosphorylation at S831 site is involved in stress-induced
pain transition and that the GluA1 phosphorylation is sufficient
to reduce the threshold for spinal LTP induction. The DD mutant
mice are altered at both the Ser831 and Ser845 sites (Makino et
al., 2011). It would be interesting to determine whether the phos-
phorylation of Ser831, Ser845, or either of them is necessary for
stress-regulated spinal central sensitization. In addition, we
also found that the subthreshold stimulation plus NE incuba-
tion induce spinal LTP at a similar level in both the WT and
the GluA1 DD mutant mice, suggesting that the subthreshold
stimulation-induced spinal LTP in the GluA1 DD mutant
mice is attributed to the phosphomimicry of GluA1 S831 and
S845 but not to nonspecific changes in the mutant mice.
Therefore, stress-produced regulation of AMPA receptor
phosphorylation may be critical for spinal central sensitiza-
tion and stress-induced pain transition.

NE plays important roles in the CNS through the activation of
different adrenergic receptors (a- and B-adrenoceptors). It has
been reported (Stone et al., 1997; Baba et al., 2000a,b; Kawasaki et
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However, neither incision/stress alone nor incision plus stress changed the expression of total GluA1 in the spinal cord. B, Statistical analysis of the datain A.n = 5 for each group. *p << 0.05 vs the
sham control group; #p << 0.05 vs the incision plus stress group. B-Actin served as a loading control in all Western blot experiments.
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Effect of NE incubation on GluAT phosphorylation at Ser831 site in spinal cord slices. 4, The incubation with 10 um NE time-dependently increased GluA1 Ser831 phosphorylation, but

did not affect the expression of total GluA1. The slices from GluA1 Ser831A mutant mice were used as a negative control for the GluA1 Ser831 phosphorylation. B, Statistical analysis of the data in
A. n = 5for each group. *p << 0.05 vs the control group [NE (0 min)]. B-Actin served as a loading control in all Western blot experiments.

al., 2003; Pertovaara, 2013) that NE is involved in intrinsic con-
trol of pain through action on ¢, - and a,-adrenoceptors. In brief,
NE attenuates pain by inhibitory action on a, ,-adrenoceptors on
central terminals of primary afferent nociceptors, by direct a,-
adrenergic action on spinal pain-relay neurons, and by «;-
adrenergic activation of inhibitory interneurons. Meanwhile, it
has been shown that NE enhances AMPA receptor phosphoryla-
tion through action on B-adrenoceptor (Vanhoose and Winder,
2003; Hu etal., 2007). Thus, the effect of noradrenergic system on
pain transmission has varied depending on the action on the type
of adrenoceptor.

In postoperative patients, secondary mechanical hyperalgesia
and central sensitization after surgery have been reported
(Richmond et al., 1993; Stubhaug et al., 1997). By using an
antagonist to Ca’"-permeable AMPA receptors, it has been
shown (Pogatzki et al., 2003) that the antagonist selectively
reverses the secondary mechanical hyperalgesia and has no
effect on primary mechanical hyperalgesia in the plantar inci-
sion model, indicating that central sensitization causing sec-
ondary hyperalgesia in postoperative patients is mediated by

the activities of Ca**-permeable AMPA receptors; however,
primary hyperalgesia resulting from the incision is not depen-
dent on these receptors. Therefore, a more specific agent (e.g.,
siRNA/shRNA of the receptor) could be used to specifically
inhibit the secondary hyperalgesia following the incision and
prevent the transition from acute to chronic pain after
surgery.

Previous studies (Vitale et al., 2005; Hua et al., 2006; Hayati et
al., 2008; Kumar and Goyal, 2008; Kumar et al., 2009; Botelho et
al.,, 2010; Lafrance et al., 2010; Fechir et al., 2012; Heidari-
Oranjaghi et al., 2012; Vachon-Presseau et al., 2013) have dem-
onstrated that exposure to an acute and intense stress induces a
reduction in pain sensation, which is called “stress-induced anal-
gesia.” The stress-induced analgesia is mediated by descending
inhibitory pain modulation, and endogenous opioid, mono-
amine, cannabinoid, GABA, and glutamate systems play key roles
in the modulation (Butler and Finn, 2009). On the other hand,
considerable evidence (Andre et al., 2005; Bardin et al., 2009;
Khasar et al., 2009; Dina et al., 2011; Le Roy et al., 2011; Quintero
et al.,, 2011; Gibbons et al., 2012; Crettaz et al., 2013; Jennings et
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expression of total GluA1. B, Statistical analysis of the data in A.n = 5 for each group. *p << 0.05 vs the control group; #p << 0.05 vs the NE alone group. 3-Actin served as a loading control in all

Western blot experiments.
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after surgery. We showed that AMPA
receptor-mediated spinal LTP was in-
duced by subthreshold 10 Hz stimulation
in AMPA receptor GluA1l DD phospho-
mimetic mutant mice, but not in WT
mice (Fig. 2F), suggesting that GluAl
phosphorylation could lower the thresh-
old for spinal LTP induction, thereby ac-
counting for the potentiation of the
behavioral response to incision. We also
showed that stress hormone NE increased
spinal GluA1 phosphorylation (Fig. 6), and that the subthreshold
stimulation plus NE incubation induced spinal LTP at similar
levels in both WT and the GluA1 phosphomimetic mutant mice
(Fig. 2G). These results further indicate that GluA1 phosphory-
lation plays an important role in spinal central sensitization and
stress-induced pain transition. Thus, our data support our con-
clusion that stress-regulated AMPA receptor phosphorylation
contributes to the mechanisms underlying stress-induced pain

Figure 8.

control in these assays.

Stress increases GIuAT membrane insertion and GluA2 internalization in the spinal dorsal horn neurons. 4, In
the surface biotinylation experiment, T and biotinylated S proteins were assessed using quantitative Western blotting. B,
By calculating the surface S/T ratio, we showed that stress significantly increased GluA1 membrane surface expression in
the spinal dorsal horn neurons (n = 6 for each group; *p << 0.05 vs control group). C, In the cross-linking experiment, equal
amounts of T and BS >-treated (BS>) proteins were assessed using quantitative Western blotting. D, By calculating the
intracellular BS>/T ratio, we showed that stress significantly increased GluA2 internalization in the spinal dorsal horn
neurons (n = 6 for each group; *p << 0.05 vs control group). B-Actin, an unbiotinylated intracellular protein, served as a

transition. In addition to enhancing AMPA receptor phosphor-
ylation, stress may regulate other signaling pathways. The stress
effect we described here must involve more than AMPA receptor
phosphorylation. Our results identify stress as a risk factor for the
development of chronic postsurgical pain. This finding will help
us predict which patients are at greater risk for developing
chronic pain after surgical procedures. Eventually, monitoring of
stress hormone levels in the blood may help physicians improve
pain control in high-risk patients.
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