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Voxel-based cervical spinal cord mapping
of diffusion abnormalities in MS-related
myelitis

ABSTRACT

Objective: To apply a novel postprocessing voxel-based analysis for diffusion tensor imaging of
the cervical spinal cord in multiple sclerosis (MS) in a prospective cross-sectional study.

Methods: Fourteen patients with MS who were within 4 weeks of the onset of cervical myelitis
(lesion C1-3) and 11 healthy controls underwent cervical spinal cord diffusion tensor imaging.
Cervical spinal cord maps of fractional anisotropy (FA), mean diffusivity, radial diffusivity (RD),
and axial diffusivity were registered and compared between patients and controls. Mean FA
and RD values from significant thresholded clusters were regressed with clinical scores, after ad-
justing for cord area and age, to determine associations with physical disability.

Results: Cord registrations for subjects were qualitatively assessed (scored out of 5) and those
with low scores (1 or 2) were excluded from further analysis. Cord registration was considered
good in 11 patients (6 females; mean age 5 35.5 years) and 10 controls (6 females; mean age
44 years). Voxel-based comparisons showed patients with MS had lower FA and higher RD at
C2-3 levels (left.right mainly in gray matter; p, 0.01, uncorrected). Extracted values of both FA
and RD from thresholded clusters were significantly associated with greater disability measured
using the Expanded Disability Status Scale and Timed 25-Foot Walk Test in patients with MS.

Conclusions: Mapping diffusion abnormalities within the cervical spinal cord using a novel voxel-
based approach can localize clinically relevant pathology. Neurology® 2014;83:1321–1325

GLOSSARY
AD5 axial diffusivity; DTI5 diffusion tensor imaging; EDSS5 Expanded Disability Status Scale; FA5 fractional anisotropy;
iNHPT 5 inverse of 9-Hole Peg Test; iTWT 5 inverse of Timed 25-Foot Walk Test; MD 5 mean diffusivity; MS 5 multiple
sclerosis; MSWS 5 Multiple Sclerosis Walking Scale; RD 5 radial diffusivity; TWT 5 Timed 25-Foot Walk Test.

Most studies reporting multiple sclerosis (MS)-related diffusion tensor imaging (DTI) changes in
the cervical spinal cord have utilized region-of-interest or histogram-based analyses.1–3 Voxel-based
analysis is technically challenging because of difficulties with registration due to the cord’s small
diameter and relative lack of spatial features4 but can spatially localize abnormalities in an unbiased
manner and can direct region-of-interest analyses to investigate clinicopathologic correlations, effec-
tively providing greater statistical power. Clinically, localizing pathology to specific tracts may help
to predict long-term clinical motor or sensory disability and guide treatment trials. As an early step
toward this goal, we present findings from a novel postprocessing DTI voxel-based analysis for
people with MS-related acute cervical myelitis. We hypothesized that fractional anisotropy (FA)
reductions are spatially localized in the cord and correlate with measures of disability.

METHODS We recruited 14 patients with MS who attended the MS outpatient clinic from 2005 to 2006 at the National Hospital

for Neurology and Neurosurgery, London, UK, with acute motor and sensory signs attributable to at least one cervical lesion between

C1-3 on conventional MRI. The clinical and radiologic characteristics of these patients have been previously described.3 Eleven age- and

sex-matched healthy controls were also recruited.

Subject assessment. Patients underwent neurologic examination and the following measures: Expanded Disability Status Scale

(EDSS), 9-Hole Peg Test, Timed 25-Foot Walk Test (TWT), and Multiple Sclerosis Walking Scale (MSWS). The inverse of the
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average of 2 trials for each hand for the 9-Hole Peg Test (iNHPT)

and the inverse of the mean of 2 trials for the TWT (iTWT) were

used for data analysis. All subjects underwent cervical spinal cord

structural MRI and cardiac-gated DTI (1 3 1 3 5 mm) on a

1.5T GE scanner (see appendix e-1 on theNeurology®Web site at

Neurology.org).

Data analysis. This is described in more detail in appendix e-1.

In brief, we constructed a b0 cord template for cervical levels C1-5

from both patients and controls in a 2-step procedure (figures e-1

and e-2). We then registered each native b0 image to this b0

template and applied the individual transformation matrices to

register individual FA, mean diffusivity (MD), radial diffusivity

(RD), and axial diffusivity (AD) maps into common stereotactic

space (defined by the b0 template) (http://fsl.fmrib.ox.ac.uk/fsl).

The registered images were smoothed (2 3 2 3 10 mm3) and

entered into a voxel-based nonparametric permutation-based

analysis using threshold-free cluster enhancement to assess

differences between patients and healthy controls (p , 0.01,

uncorrected). An uncorrected threshold was chosen because our

study was exploratory in using a novel technique and sample

sizes were relatively small.

Post hoc, we extracted the mean FA and RD values from voxels

common to both FA and RD differences (p , 0.01) in the cord

(figure 1) and compared them between patients and controls using

the Mann–Whitney U test in STATA 13.0 (StataCorp, College

Station, TX). AD and MD values were not extracted post hoc

because differences did not survive statistical threshold (p , 0.01).

Associations between extracted mean FA and RD values and

disability measures (iTWT, iNHPT, MSWS, EDSS) were inves-

tigated with (1) Spearman correlations, and (2) linear regression

analysis, adjusting for age, sex, and cord area, for EDSS using a

nonparametric bootstrapped regression.

Standard protocol approvals, registrations, and patient
consents. All subjects gave informed, written consent, and the

study was approved by the local institutional research ethics board.

RESULTS Eleven patients with MS (6 females; mean
age 35.5 years) and 10 healthy subjects (6 females;
mean age 44 years) were analyzed after cord registra-
tion (3/14 MS and 1/11 healthy subjects could not be
registered accurately and were excluded). Subject
characteristics are detailed in the table.

Differences between patients and controls. After voxel-
based analysis, patients showed lower FA at C2-3
than controls, predominantly in the left hemicord,
extending across to the right (p , 0.01, uncorrected).
These changes in FA were driven by higher RD in

Figure 1 Differences in diffusion parameters between patients and controls

Significant differences in FA and RD between patients (n5 11; 6 females; mean age 35.5 6

8.2 years) and healthy controls (n 5 10; 6 females; mean age 446 12.2 years). The cervical
region with significant differences between patients and controls are shown. Clusters are
shown in coronal, sagittal, and axial views, viewed from left to right, respectively. Signifi-
cance is taken at p , 0.01, uncorrected. A 5 axial; FA 5 fractional anisotropy; I 5 inferior;
L 5 left; P 5 posterior; R 5 right; RD 5 radial diffusivity; S 5 superior.

Table Characteristics of patients with MS and healthy controls

Patients with MS
(n 5 11)

Healthy controls
(n 5 10)

Differences
(p values)

Mean age (SD); (range), y 35.5 (8.2); (23.0–47.0) 44 6 (12.2); (30–61) 0.083

Sex 6 F 6 F 0.813

Mean cord area (SD); (range), mm2 76.4 (8.8); (62.1–90.5) 80.4 6 (6.9); (67.4–89.9) 0.259

Mean days from relapse onset (SD); (range) 24.5 (11.9); (9.0–47.0) — —

Lesion number between C1-5 (n) 1.3 (1–2) — —

Mean EDSS (SD); (range) 4.6 (1.5); (2.5–6.5) — —

MSWS-12 (SD); (range) 45.9 (7.8); (35–56) — —

Inverse NHPT (SD); (range) 0.04 (0.01); (0.006–0.05) — —

Inverse TWT (SD); (range) 0.12 (0.04); (0.06–0.169) — —

Mean FA (SD) 3 1023 534.8 (71.1) 626.1 (47.6) ,0.003

Mean RD (SD) 3 1023 mm2 s21 404.0 (61.2) 307.7 (71.3) ,0.004

Abbreviations: EDSS 5 Expanded Disability Status Scale; FA 5 fractional anisotropy; MS 5 multiple sclerosis; MSWS 5

MS Walking Scale; NHPT 5 9-Hole Peg Test; RD 5 radial diffusivity; TWT 5 Timed 25-Foot Walk Test.
Mean FA and RD values calculated from significant clusters (p , 0.01) in the voxel-based analysis.
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patients with MS than controls, which was detected at
the same level, mainly in the central cord (figure 1). AD
was not significantly different between groups. Voxel-
based analysis also revealed higher MD in patients with
MS at the same level (figure e-3), but with lower
significance (p , 0.05, uncorrected); hence, MD
values were not extracted for the post hoc analysis of
clinical associations. It is likely that these changes seen
for FA, RD, and MD resulted from the presence of
lesions causing the acute relapse at the same levels.

Patients’mean RD values extracted from the over-
lapping thresholded clusters were significantly higher
than controls’ (404 vs 308 3 1023 mm2 s21, p ,

0.005). This was likely to explain the lower mean
extracted FA found in patients with MS (table [535
vs 626, p , 0.005]).

Associations between extracted DTI metrics and disability.

Spearman correlations showed that lower FA and

higher RD were significantly associated with greater
disability, measured using EDSS and iTWT (RD vs
iTWT showed borderline significance at p 5

0.054) (figure 2).
Regression modeling adjusting for age, sex, and

cord area showed that lower FA was associated with
greater disability measured using EDSS (p , 0.05,
bootstrap) and iTWT (p 5 0.034). Higher RD
showed a borderline significant association with
iTWT (p 5 0.087). RD’s association with EDSS
became nonsignificant because of confounding by
age (p. 0.05, bootstrap). No significant associations
were found for iNHPT or MSWS and FA/RD.

DISCUSSION We localized lower FA and higher RD
in MS-related myelitis to specific regions of the cervical
spinal cord. Extracted FA and RD were associated with
greater disability (higher EDSS and lower iTWT
scores), confirming the clinical relevance of our

Figure 2 Significant correlations between diffusion and clinical metrics

(A) Relation between FA and EDSS (R 5 20.605; p 5 0.049). (B) FA and iTWT (R 5 0.721; p 5 0.019). (C) Relation between RD and EDSS (R 5 0.744; p 5

0.009). (D) RD and iTWT (R520.624; p5 0.054). EDSS 5 Expanded Disability Status Scale; FA 5 fractional anisotropy; iTWT5 inverse of Timed 25-Foot
Walk Test; RD 5 radial diffusivity.
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results. Spatially localizing diffusion differences in the
cord with voxel-based analyses permits one to focus
on pathologically relevant areas (without an a priori
hypothesis) thereby improving the ability to detect
clinically relevant associations. This technique can
provide clinical and pathophysiologic insights into
mechanisms of disability in MS and can be applied to
other neurologic conditions with cord involvement. It
may also lead to more accurate imaging biomarkers to
monitor therapeutic treatments and help to predict
clinical outcomes in future studies.

Associations between DTI metrics and spinal cord
pathology have been reported by previous studies
using region-of-interest analyses in MS and other
conditions.2,3,5,6 Lower FA and higher RD are
associated with pathologic alterations of tissue micro-
structure7,8 and correspond with greater motor
impairment in vivo.2,3,6 Our study supplements these
findings by spatially localizing these changes without
relying on an a priori hypothesis.

Cervical spinal cord registration is challenging.
The cord possesses smooth cylindrical morphology
thus does not have as much information content
as the brain, which has richer features associated
with sulcal, gyral, and CSF spaces, making it less
amenable to robust registration. Partial volume
effects and cardiac/CSF-related inhomogeneities
may also impair registration accuracy. Previous spi-
nal cord voxel-based analyses have relied on
sagittal-based registration.9 Axial imaging can pro-
vide higher cross-sectional resolution than sagittal
imaging for anisotropic voxel dimensions. We
defined upper and lower limits of C1 and C5 indi-
vidually to maintain some degree of longitudinal
anatomical correspondence.

The effect of smoothing should be considered.
Smoothing can lead to less precise spatial inferences
because of spatial blurring and this may be a particu-
lar issue at the gray matter–white matter interface.
However, this should be balanced against the advan-
tages that it provides. Registration is rarely 100%
accurate, and there are likely to be small differences
between subjects. Smoothing compensates for this. It
also helps to increase signal to noise and, in paramet-
ric analyses, normalizes the data structure. Overall, it
is likely that the advantages outweigh the loss in spa-
tial resolving ability. In spinal cord DTI, the degree of
smoothing required is not clear but must be chosen to
balance the factors above. Anisotropic (vs isotropic)
spatial filtering may be more sensitive and specific at
detecting significant effects in DTI while preserving
white matter boundaries.10

With further advances in image registration, voxel-
based analyses should improve and complement a
priori region-of-interest techniques in assessing spinal
cord pathology.
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