Skip to main content
. 2014 Sep 24;12:145. doi: 10.1186/s12955-014-0145-9

Table 4.

Multinomial logistic modeling: predicting EQ-5D index scores from SF-36

Model 11 a Model 12 b Model 13 c Model 14 d
Derivation set
R2 0.452–0.611 0.445–0.607 0.455–0.615 0.421–0.576
MAE 0.088 0.121 0.084 0.099
 AE > 0.05 (%) 32.8 49.8 32.2 34.3
 AE > 0.1 (%) 25.0 45.5 23.7 26.0
RMSE 0.297 0.347 0.290 0.315
Predicted EQ-5D index
 Mean (SD) 0.826 (0.279) 0.731 0.310 0.826 (0.279) 0.829 (0.185)
 Min/max −0.171 /1.000 −0.171 1.000 −0.171 /1.000 −0.171 /1.000
Internal validation set
MAE 0.097 0.119 0.092 0.101
 AE > 0.05(%) 35.9 48.5 37.2 35.9
 AE > 0.1(%) 28.7 43.2 28.9 28.1
RMSE 0.312 0.344 0.304 0.315
Predicted EQ-5D index
 Mean (SD) 0.825 (0.288) 0.732 0.313 0.821 (0.292) 0.828 (0.292)
 Min/max −0.171 /1.000 −0.171 1.000 −0.171 /1.000 −0.171 /1.000
External validation set
MAE 0.085 0.125 0.075 0.084
 AE > 0.05 (%) 47.2 60.2 45.5 44.7
 AE > 0.1 (%) 26.0 52.0 26.0 26.8
RMSE 0.292 0.354 0.273 0.290
Predicted EQ-5D index
 Mean (SD) 0.883 (0.164) 0.753 0.204 0.892 (0.131) 0.877 (0.170)
 Min/max −0.171 /1.000 −0.171 1.000 0.151 /1.000 −0.171 /1.000

MAE, mean absolute error; AE, absolute error ; RMSE, root mean squared error.

aIndependent variables: PF, RP, BP, GH, VT, SF, RE, MH.

bIndependent variables: PF, BP, SF, RE, MH.

cIndependent variables: PF, BP, GH, SF, RE, MH, PF squared, SF squared, RE squared.

dIndependent variables: PCS, MCS, PCS × PCS, MCS × MCS, PCS × MCS.