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This paper presents a microfluidic device enabling culture of vascular smooth

muscle cells (VSMCs) where extracellular matrix coating, VSMC seeding, culture,

and immunostaining are demonstrated in a tubing-free manner. By optimizing

droplet volume differences between inlets and outlets of micro channels, VSMCs

were evenly seeded into microfluidic devices. Furthermore, the effects of

extracellular matrix (e.g., collagen, poly-L-Lysine (PLL), and fibronectin) on

VSMC proliferation and phenotype expression were explored. As a platform

technology, this microfluidic device may function as a new VSMC culture model

enabling VSMC studies. VC 2014 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4893914]

I. INTRODUCTION

Vascular smooth muscle cells (VSMCs) are essential blood vessel components responsible

for the regulation of vessel tones and their dysfunctions may lead to diverse vascular diseases1,2

(e.g., abdominal aortic aneurysm,3,4 atherosclerosis,5–7 and restenosis8,9). Current studies of

VSMCs are based on conventional cell culture approaches (e.g., culture dish and flask),10,11

which allow no control over the spatial/temporal distribution of the cells and biomolecules and

thus cannot recapitulate local in vivo microenvironments.

Microfluidics is the science and technology of manipulating and detecting fluids in the

microscale.12,13 Due to its dimensional comparison with biological cells and capabilities of

defining local biophysical, biochemical, and physiological cues, microfluidics has been used to

construct more in vivo like cell culture models,14–16 enabling tumor,17,18 neuron,19 and vascu-

lar20,21 studies.

As to applications of microfluidics to vascular smooth muscle cell studies, preliminary

studies were confined within three areas.22–43 As the first demonstration, soft lithography was

used to form micro and nano patterned extracellular matrix proteins and geometrical topogra-

phies enabling the regulation of VSMC morphologies and phenotypes.22,23,27–31,36,37,39

Furthermore, microfluidics based gradient-compliance substrates were proposed to investigate

durotaxis (migration from less stiff to more stiff substrates) of VSMCs.26,35 Meanwhile, three-

dimensional culture of VSMCs based on layer-by-layer assemblies32,38 or circular micro

channels42 were demonstrated for tissue engineering studies. However, the combination of

microfluidics with vascular smooth muscle cells is still at an early stage and no systematic stud-

ies of on-chip VSMC culture were previously demonstrated.
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To address this issue, this paper proposed a microfluidic platform for VSMC culture where

extracellular matrix coating (Figures 1(a) and 1(b)), VSMC seeding, culture and observation

(Figures 1(c)–1(e)), and immunostaining (Figures 1(f)–1(h)) are demonstrated in a tubing-free

manner. More specifically, the VSMC seeding evenness in microfluidic channels was investigated

and the effects of extracellular matrix on VSMC phenotypes were explored. In addition, as gravity

was used as the driving force for cell loading and immunostaining, this platform does not need

external pumps and tubes, which can be operated in biological labs with low access requirements.

II. MATERIALS AND METHODS

A. Materials

Dulbecco Modified Eagle Medium (DMEM) was purchased from Hyclon and the other

cell-culture reagents were purchased from Life Technologies. SU-8 photoresist (MicroChem)

was used for mold master fabrication while collagen (Sigma), poly-L-Lysine (PLL) (Sigma),

and fibronectin (Sigma) were used for glass surface coating. Materials for alpha actin immuno-

staining included 4% paraformaldehyde (Sigma), primary antibody (Bioss), GTVision Detection

System (Gene Technology), and goat serum (GIBCO).

B. Device design and fabrication

Polydimethylsiloxane (PDMS) based microchannels with channel dimensions of

10.00 L� 0.80 W� 0.10 H (mm) were proposed in this study, where each channel was divided

into eight observation windows (1.00 L� 0.80 W� 0.10 H (mm)) and labeled as 1 to 8 for cell

distribution eveness evaluation. Two microchannel ports (channel inlet and outlet) with a diam-

eter of 4 mm and a PDMS thickness of 2 mm were used in this study to facilitate liquid droplet

manipulation. Four channels were included in one mask to characterize operation repeatability

(see Figure 2(a)).

The PDMS device was replicated from a single-layer SU-8 mold based on the conventional

soft lithography (see Figure 2(b)). Briefly, SU-8 5 was spin coated on a glass slide, flood

exposed, post exposure baked, and hard baked (without development) to form an adhesive

layer, followed by SU-8 2100 spin coating, exposure and development, forming the mold mas-

ter with a height of 100 lm. PDMS prepolymers and curing agents were mixed, degassed,

poured on channel masters, and baked in an oven. Cured PDMS channels were then peeled

from the SU-8 masters with ports punched through and bonded to glass slides.

C. Cell culture

VSMCs of CRL-1999 (ATCC) were cultured with DMEM media supplemented with 10%

fetal bovine serum and 1% penicillin and streptomycin. Immediately prior to an experiment,

cells were trypsinized, centrifuged, and resuspended in supplemented culture medium with a

concentration of 1� 106 cells per ml. Cell passage generations between p6 and P12 were used

in the experiments.

FIG. 1. Schematic of the tubing-free microfluidic platform for vascular smooth muscle cell (VSMC) culture where gravity

was used for extracellular matrix coating ((a) and (b)), VSMC seeding, culture and observation ((c)-(e)), and immunostain-

ing ((f)-(h)).
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D. Device operation and data analysis

The fabricated microfluidic devices were sterilized in a hood under ultraviolet (UV) over-

night, followed by surface coating (PLL of 0.1 mg per ml, or fibronectin of 0.1 mg per ml or

collagen of 1 mg per ml). As the first step, phosphate-buffered saline (PBS) solutions were

flushed into the microfluidic devices by using micro pipets. Then, PBS solutions in two ports

were replaced with coating solutions containing PLL, fibronectin, or collagen at a volume of

20 ll and 15 ll, respectively. Due to the gravity difference, the coating solutions were loaded

into microfluidic channels for one-hour channel soaking. In the end, the coating solutions were

removed by aspiration and the coated surfaces were rinsed with DMEM thoroughly.

The cell loading and observation protocol is as follows. DMEM solutions in two ports

were removed and replaced with cell suspension solutions at 20 vs. 18 ll, 20 vs. 15 ll, 20 vs.

10 ll or 20 vs. 0 ll, respectively (1� 106 cells per ml). After five minutes of cell loading, mi-

croscopic images were taken to evaluate the cellular seeding evenness. Then each microfluidic

device was placed in a petri dish containing PBS to limit evaporation and osmolality shifts and

then incubated in a cell incubator. DMEM was replaced every 12 h where solutions in two

ports were removed and replaced with 20 ll fresh culture medium.

The on-chip immunostaining procedure is as follows. Cells within microfluidic devices

were washed twice with PBS, fixed by 4% paraformaldehyde (15 min), permeabilized by 0.3%

FIG. 2. (a) Dimensions of microfluidic devices for VSMC culture (channel length: 10 mm, channel width: 0.8 mm, channel

height: 0.1 mm, port diameter: 4 mm, PDMS thickness: 2 mm). (b) Microfluidic device fabrication flow chart including

SU-8 5 based adhesive layer fabrication (I), channel mold master fabrication using SU-8 2100 (II, III), PDMS channel

structure formation (IV, V), and PDMS-glass bonding (VI).
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Triton X-100 (15 min), blocked with 10% goat serum (1 h). Then cells within microfluidic devi-

ces were incubated with primary antibodies (1:100) at 37 �C (1 h), secondary antibodies at

37 �C (1 h), and the Diaminobenzidine (DAB) solution (2 min), sequentially. Note that in all the

steps requiring liquid handling, a setup of 20 vs. 10 ll was used where gravity was the driving

force for liquid manipulation inside microfluidic devices.

In order to evaluate the cell loading evenness and the cellular proliferation status inside

microfluidic channels, cell number analysis was conducted based on manual processing of

phase-contrast images taken along the length of the micro channels at 0 h, 12 h, 24 h, 48 h, and

72 h (�10 magnification and 592 images in total).

III. RESULTS AND DISCUSSION

Microfluidic technologies hold great promise for the creation of advanced cell culture mod-

els.14–16 However, the majority of currently available microfluidic cell culture approaches are

not compatible with existing laboratories since syringe pumps and plastic tubes are used for

cell loading and liquid dispersion. In addition, these physical connections with microfluidic

devices lead to cell seeding on tubing walls and medium instabilities due to tubing

disturbances.44,45

To address this issue, Beebe et al.44–46 and Takayama et al.47–49 proposed the concept of

tubing-free microfluidic cell culture where surface tension or gravity was used for cell loading

and liquid manipulation. Based on surface tension, difference in menisci of unequal volumes of

two drops is used to drive liquid flow, which was extensively optimized and demonstrated for

cellular micro environment reconstructions.44–46 Meanwhile, although gravity based cell loading

(relying on the height rather than menisci difference of drops for the channel inlet and outlet)

was utilized for cell loading and characterization,47–49 corresponding operation optimization and

condition investigation were not reported.

A. Cell loading distribution evaluation in microfluidic channels

Figure 3 shows the effects of liquid volume differences (different gravity levels) between

two ports on the cell distribution evenness within microfluidic channels. For the microfluidic

channels with a total volume of �1 ll and a cell loading concentration of 1 million cells per

ml, solutions within two ports were replaced with 20 vs. 18 ll, 20 vs. 15 ll, 20 vs. 10 ll, or 20

vs. 0 ll, respectively.

Cell loading densities based on the setup of 20 vs. 18 ll were quantified as 94.2 6 21.7/mm2

(position 1), 103.3 6 23.6/mm2 (position 2), 85.4 6 12.6/mm2 (position 3), 79.6 6 20.7/mm2

(position 4), 81.7 6 17.8/mm2 (position 5), 67.9 6 10.4/mm2 (position 6), 65.8 6 6.8/mm2 (posi-

tion 7), 56.7 6 4.8/mm2 (position 8), and 79.3 6 21.7/mm2 in average.

A trend in cell density decrease from the port loaded with 20 ll to the port loaded with

18 ll was observed as 94.2 6 21.7/mm2 (position 1) vs. 56.7 6 4.8/mm2 (position 8) (Figures

3(a) and 3(e)). These experiments show that the 2 ll volume difference between two ports was

not capable of pushing the cell solution through the whole microfluidic channel, which was

confirmed by the observation of a significant decrease in concentrations of the suspended cells

in the downstream of the microfluidic channel (positions 7 and 8).

Cell loading densities for the setup of 20 ll vs. 15 ll were quantified as 105.0 6 18.1/mm2

(position 1), 100.2 6 20.8/mm2 (position 2), 94.6 6 13.7/mm2 (position 3), 100.9 6 17.0/mm2

(position 4), 91.6 6 16.3/mm2 (position 5), 94.6 6 15.9/mm2 (position 6), 91.8 6 9.7/mm2 (posi-

tion 7), 89.6 6 8.2/mm2 (position 8), and 96.0 6 16.3/mm2 in average.

This is the optimal choice since the averaged cell density (96.0 6 16.3/mm2) approaches

the idea cell loading density of 100/mm2 and the ratio of standard deviation to average was the

lowest among all the four setups (Figures 3(b) and 3(e)). In this setup, cell suspension solutions

were assumed to replace the culture medium solutions inside microfluidic channels thoroughly

as the first step, followed by cell seeding on the substrates.

Cell loading densities for the setup of 20 ll vs. 10 ll were quantified as 220.8 6 36.7/mm2

(position 1), 209.2 6 13.8/mm2 (position 2), 184.2 6 15.9/mm2 (position 3), 162.5 6 10.2/mm2
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(position 4), 149.2 6 12.3/mm2 (position 5), 143.7 6 8.4/mm2 (position 6), 127.1 6 7.4/mm2

(position 7), 140.0 6 17.4/mm2 (position 8), and 167.1 6 37.2/mm2 in average.

A trend in cell density decrease from the port loaded with 20 ll to the port loaded

with 10 ll was observed (220.8 6 36.7/mm2 (position 1) vs. 140.0 6 17.4/mm2 (position 8))

(Figures 3(c) and 3(e)). In addition, the quantified averaged cell density number was much

higher than the ideal cell loading density (167.1 6 37.2/mm2 vs. 100/mm2). The 10 ll volume

difference may lead to a prolonged cell flushing process. As the cell suspension solution was

FIG. 3. Microscopic pictures of seeded VSMCs at positions of 1, 5, and 8 (left to right) for 20 vs. 18 ll (a), 20 vs. 15 ll (b),

20 vs. 10 ll (c), and 20 vs. 0 ll (d), respectively, with quantified cell numbers (e). These results suggest an optimal choice

of the 20 vs. 15 ll setup for even cell distribution.
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flushed from position 1 to position 8, there was a concentration decrease due to the concurrent

cell seeding process, which results in lower cell seeding densities in the downstream of micro-

fluidic channels compared to upstream counterparts.

Cell loading densities for the setup of 20 ll vs. 0 ll were quantified as 57.5 6 35.5/mm2

(position 1), 87.2 6 47.9/mm2 (position 2), 106.6 6 60.7/mm2 (position 3), 135.3 6 54.2/mm2

(position 4), 140.9 6 51.5/mm2 (position 5), 126.9 6 14.4/mm2 (position 6), 131.3 6 23.8/mm2

(position 7), 124.7 6 30.1/mm2 (position 8), and 113.8 6 51.1/mm2 in average.

A trend in cell density increase from the port loaded with 20 ll to the port loaded with 0 ll

was located (57.5 6 35.5/mm2 (position 1) vs. 124.7 6 30.1/mm2 (position 8)) (Figures 3(d)

and 3(e)). It was speculated that the 20 ll volume difference lead to a prolonged cell flushing

process, together with cellular seeding on micro channels. Due to the existence of the 20 ll vol-

ume difference, a higher flow rate compared to the setup of 20 ll vs. 10 ll was produced, which

lead to cell settlement in the downstream rather than in the upstream of microfluidic channels.

Thus a higher cell seeding density in position 8 than position 1 was recorded.

B. Effect of extracellular matrix on VSMC phenotypes

VSMCs have been demonstrated to have contractile or synthetic phenotypes.11,50

Contractile VSMCs are featured with limited proliferation capabilities while synthetic VSMCs

are characterized by high proliferation and extracellular matrix secretion. In the local microen-

vironments of VSMCs, extracellular matrix of fibronectin and collagen were located and their

effects on VSMC phenotypes were investigated in conventional cell culture models.51,52 This

study was designed to investigate the effects of extracellular matrix on the phenotypes of

VSMCs in the microfluidic environment.

Figure 4(a) shows the microscopic images of VSMCs cultured on the glass substrate without

modifications in a time sequence, followed by an endpoint immunostaining of alpha actin fila-

ments. Based on the manual cell counting, the cell numbers were quantified as 88.5 6 17.9/mm2

(12 h), 87.7 6 21.6/mm2 (24 h), 94.5 6 24.5/mm2 (48 h), and 102.4 6 28.5/mm2 (72 h) (see

Figure 4(b)).

FIG. 4. (a) Microscopic pictures of VSMCs cultured on bare glass surfaces without modification in a time sequence (12 h,

24 h, 48 h, and 72 h (left to right)), followed by endpoint immunostaining of alpha actin filaments. (b) Cell numbers were

quantified as 88.5 6 17.9/mm2 (12 h), 87.7 6 21.6/mm2 (24 h), 94.5 6 24.5/mm2 (48 h), and 102.4 6 28.5/mm2 (72 h).
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Within the first 24 h of cell seeding, VSMCs were noticed to have limited surface spread-

ing areas and no cellular proliferations (88.5 6 17.9/mm2 (12 h) vs. 87.7 6 21.6/mm2 (24 h)) due

to the bare glass surface without extracellular matrix coating. Starting from 24 h after cell seed-

ing, VSMCs were noticed to increase in surface spreading areas with noticeable cellular prolif-

erations from 87.7 6 21.6/mm2 (24 h) to 102.4 6 28.5/mm2 (72 h).

It was speculated that within the first 24 h, VSMCs secreted extracellular matrix macromo-

lecules on glass substrates as extracellular modifications, which lead to cellular proliferations

from 24 h to 72 h. These results indicate that VSMCs maintained the synthetic phenotype during

the on-chip culture process, featured with extracellular molecule secretions and cellular

proliferations.

Figure 5(a) shows the microscopic images of VSMCs cultured on collagen coated glass sub-

strates in a time sequence, followed by an endpoint immunostaining of alpha actin filaments.

Based on the manual cell counting, the cell numbers were quantified as 93.4 6 13.2/mm2 (12 h),

106.7 6 12.9/mm2 (24 h), 112.7 6 13.9/mm2 (48 h), and 111.3 6 13.4/mm2 (72 h) (see Figure 5(b)).

Within the first 48 h of cell seeding, noticeable VSMC proliferations were located with

quantified cell numbers increased from 93.4 6 13.2/mm2 (12 h) to 106.7 6 12.9/mm2 (48 h), as

an indicator of the synthetic phenotype. From 48 h to 72 h, no significant cellular proliferation

was noticed (112.7 6 13.9/mm2 (48 h) vs. 111.3 6 13.4/mm2 (72 h)), suggesting that VSMCs

change from the synthetic phenotype to the contractile phenotype.

Figure 6(a) shows the microscopic images of VSMCs cultured on PLL coated glass sub-

strates in a time sequence, followed by an endpoint immunostaining of alpha actin filaments.

Based on the manual cell counting, the cell numbers were quantified as 150.1 6 33.2/mm2 (12 h),

166.2 6 42.1/mm2 (24 h), 188.1 6 70.2/mm2 (48 h), and 173.6 6 62.9/mm2 (72 h) (Figure 6(b)).

Within the first 48 h of cell seeding, noticeable VSMC proliferations were located with

quantified cell numbers increased from 150.1 6 33.2/mm2 (12 h) to 188.1 6 70.2/mm2 (48 h), as

an indicator of the synthetic phenotype. From 48 h to 72 h, a decrease in cellular proliferation

was noticed (188.1 6 70.2/mm2 (48 h) vs. 173.6 6 62.9/mm2 (72 h)), suggesting that VSMCs

change from the synthetic phenotype to the contractile phenotype.

FIG. 5. (a) Microscopic pictures of VSMCs cultured on collagen coated glass substrates in a time sequence (12 h, 24 h, 48

h, and 72 h (left to right)), followed by endpoint immunostaining of alpha actin filaments. (b) Cell numbers were quantified

as 93.4 6 13.2/mm2 (12 h), 106.7 6 12.9/mm2 (24 h), 112.7 6 13.9/mm2 (48 h), and 111.3 6 13.4/mm2 (72 h).
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Figure 7(a) shows the microscopic images of VSMCs cultured on fibronectin coated glass

substrates in a time sequence, followed by an endpoint immunostaining of alpha actin filaments.

Based on the manual cell counting, the cell numbers were quantified as 111.9 6 13.4/mm2

FIG. 6. (a) Microscopic pictures of VSMCs cultured on PLL coated glass substrates in a time sequence (12 h, 24 h, 48 h,

and 72 h (left to right)), followed by endpoint immunostaining of alpha actin filaments. (b) Cell numbers were quantified as

150.1 6 33.2/mm2 (12 h), 166.2 6 42.1/mm2 (24 h), 188.1 6 70.2/mm2 (48 h), and 173.6 6 62.9/mm2 (72 h).

FIG. 7. (a) Microscopic pictures of VSMCs cultured on fibronectin coated glass substrates in a time sequence (12 h, 24 h,

48 h, and 72 h (left to right)), followed by endpoint immunostaining of alpha actin filaments. (b) Cell numbers were quanti-

fied as 111.9 6 13.4/mm2 (12 h), 127.5 6 18.0/mm2 (24 h), 118.8 6 20.0/mm2 (48 h) and 120.6 6 21.8/mm2 (72 h).
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(12 h), 127.5 6 18.0/mm2 (24 h), 118.8 6 20.0/mm2 (48 h), and 120.6 6 21.8/mm2 (72 h) (see

Figure 7(b)).

Within the first 24 h of cell seeding, noticeable VSMC proliferations were located with

quantified cell numbers increased from 111.9 6 13.4/mm2 (12 h) to 127.5 6 18.0/mm2 (48 h), as

an indicator of the synthetic phenotype. From 24 h to 48 h, a decrease in cellular proliferation

was noticed (127.5 6 18.0/mm2 (24 h) vs. 118.8 6 20.0/mm2 (48 h)), suggesting that VSMCs

change from the synthetic phenotype to the contractile phenotype, which was further confirmed

by the following 24 h with no significant cellular proliferation (118.8 6 20.0/mm2 (48 h) vs.

120.6 6 21.8/mm2 (72 h)).

In summary, for VSMCs cultured in microfluidic channels coated with extracellular matrix

(e.g., collagen, PLL, and fibronectin), cellular proliferations were initially noticed, followed by

stable cell numbers without cell doubling, indicating that VSMCs changed from the synthetic

phenotype to the contractile phenotype. Since cells in the middle areas of the microchannels

with limited access to fresh medium (positions 4 and 5) and cells in the areas close to channel

ports with easy access to fresh medium (positions 1 and 8) demonstrated similar trends

(Figures 5(b), 6(b), and 7(b)), these proliferation rate variations and phenotype transitions have

no relationship with nutrition transportation. Thus it was speculated that the height of microflui-

dic channels (100 lm) may provide geometry limitations53 or the thickness of PDMS (2 mm)

may limit oxygen transportation,54 which was responsible for cellular proliferation and pheno-

type variations.

IV. CONCLUSION

This paper presented a tubing-free microfluidic platform for VSMC culture where extracel-

lular matrix coating, VSMC seeding, culture and observation, and immunostaining were demon-

strated. Based on operation optimization, even distributions of cells within microfluidic chan-

nels (96.0 6 16.3/mm2) was realized. Compared to bare glass surface, extracellular matrix (e.g.,

collagen, PLL, and fibronectin) coated substrates lead to VSMC proliferations and phenotype

variations in a time sequence. As a platform technology, this microfluidic device was confirmed

to be capable of functioning as a new VSMC culture model for VSMC studies.
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