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While a number of protocols for password-only authenticated key exchange (PAKE) in the 3-party setting have been proposed, it
still remains a challenging task to prove the security of a 3-party PAKE protocol against insider dictionary attacks. To the best of our
knowledge, there is no 3-party PAKE protocol that carries a formal proof, or even definition, of security against insider dictionary
attacks. In this paper, we present the first 3-party PAKE protocol proven secure against both online and offline dictionary attacks
as well as insider and outsider dictionary attacks. Our construct can be viewed as a protocol compiler that transforms any 2-party
PAKE protocol into a 3-party PAKE protocol with 2 additional rounds of communication. We also present a simple and intuitive
approach of formally modelling dictionary attacks in the password-only 3-party setting, which significantly reduces the complexity
of proving the security of 3-party PAKE protocols against dictionary attacks. In addition, we investigate the security of the well-
known 3-party PAKE protocol, called GPAKE, due to Abdalla et al. (2005, 2006), and demonstrate that the security of GPAKE
against online dictionary attacks depends heavily on the composition of its two building blocks, namely a 2-party PAKE protocol
and a 3-party key distribution protocol.

1. Introduction

Key exchange protocols (also known as key establishment
protocols) enable two or more parties communicating over
a public network to establish a shared secret key. This secret
key, called a session key, is then used for building a confiden-
tial or integrity-preserving communication channel between
the involved parties. Typically, a key exchange protocol is
integrated with an authentication mechanism so that each
party can ensure that the session key is in fact shared with
the intended parties and not with an impostor. Achieving
authenticated key exchange (AKE) inevitably requires some
secret information to be preestablished between the parties
during an initialization phase. Password-only authenticated
key exchange (PAKE) protocols, for example, are designed
to work when the preestablished secret information for
authentication is only a human-memorable password.

The design of secure PAKE protocols continues to be a
subject of active research. A major challenge in designing
a PAKE protocol is to prevent dictionary attacks, in which
an attacker exhaustively enumerates all possible passwords
to find out the correct password. The difficulty of design-
ing PAKE protocols secure against dictionary attacks is
compounded in the 3-party setting, in which two clients
wishing to establish a session key share their individual
passwords only with an authentication server but not with
any other client. A 3-party PAKE protocol must prevent
potential dictionary attacks by a malicious client, who is
registered with the server and thus is able to set up nor-
mal protocol sessions with other clients. (Throughout the
paper, we will use the term “insider attacks” to refer to
attacks mounted by a registered (malicious) client and use
the term “outsider attacks” to refer to attacks mounted
by a nonregistered party.) Indeed, a cursory review of
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the literature suggests that the majority of attacks mounted
against 3-party PAKE protocols fall into the category of
insider dictionary attacks; see, for example, Section 2 as well
as [1–6].

The difficulties of obtaining a high level of assurance in
the security of almost any new, or even existing, protocol are
well illustrated with examples of errors found in many such
protocols years after they were published. A widely accepted
approach is to use a deductive reasoning process whereby the
emphasis is placed on a proven reduction from the problem
of breaking the protocol to another problem believed to
be hard. Such an approach for key exchange protocols was
made popular by Bellare and Rogaway [7] who provide the
first formal definition for a model of adversary capabilities
with an associated definition of the indistinguishability-
based security. This model has been further revised several
times, and one of the more recent revisions is the real-
or-random (ROR) model proposed by Abdalla et al. [8, 9]
for PAKE protocols. They also proposed a generic con-
struction of a 3-party PAKE protocol that allows existing
provably secure 2-party password-based key exchange and
3-party symmetric key distribution protocols to be plugged
and played in a modular approach and yet remain secure
[8, 9].

To date, a number of 3-party PAKE protocols have been
presented with a formal proof of security [1, 8–17]. Most of
these protocols were proven secure only in a restrictedmodel,
in which the adversary is not allowed to corrupt protocol
participants [1, 8–10, 12–14]. In other words, these protocols
were not proven secure against insider attacks including
dictionary attacks conducted by insiders. Some protocols [11,
13] were subsequently found to be flawed [6, 18] and several
protocols [15, 16] were proven secure only in a model that
cannot capture (both insider and outsider) online dictionary
attacks. Although protocols such as those of [19, 20] claimed
to be provably secure against dictionary attacks of any kind,
these protocols assume a “hybrid” 3-party setting where a
server’s public key is required in addition to passwords (see
[21–27] for other protocols designed to work in a hybrid
setting). To the best of our knowledge, no 3-party PAKE
protocol has been proven secure against insider dictionary
attacks.

We regard the contributions of this paper to be threefold.

Contribution 1. We present the first 3-party PAKE proto-
col, a hashed variant of the protocol of [1], whose indisti-
nguishability-based security as well as password security
against all classes of dictionary attacks are formally proved in a
well-defined communication model. Similar to the protocols
of [1, 8, 9], our proposed protocol is generic in the sense
that it can be constructed from any 2-party AKE protocol.
Our construct can be viewed as a protocol compiler that
transforms any 2-party AKE protocol into a 3-party AKE
protocol with 2 more rounds of communication. If the given
2-party protocol is password-only authenticated, then the 3-
party protocol output by the compiler will also be password-
only authenticated. We prove the security of our construct
in the random oracle model under the gap Diffie-Hellman
(GDH) assumption; see Section 4.

Contribution 2. We offer a simple and intuitive approach of
capturing dictionary attacks in the widely accepted model of
Bellare et al. [28]. First, we clarify the relationship between
the indistinguishability-based security of session keys and the
password security against dictionary attacks.

(i) The indistinguishability-based security property in
the Bellare-Pointcheval-Rogaway model implies sec-
urity against (both insider and outsider) offline dic-
tionary attacks. We demonstrate this by showing that
a protocol cannot achieve the indistinguishability-
based security if it is not secure against an offline
dictionary attack (see Section 3.3).

(ii) The indistinguishability-based security property does
not imply security against undetectable online dic-
tionary attacks (referred to as “UD online dictionary
attacks” in the remainder of this paper). It is impor-
tant to note that a protocol may be insecure against a
UD online dictionary attack but it can still achieve the
indistinguishability-based security (see Section 3.3).

This observation allows us to exclude offline dictionary
attacks from our consideration once we have proved the
indistinguishability-based security. We then introduce a new
security definition to capture UD online dictionary attacks.
We claim that our approach, when compared to those of
[19, 20] (where a separate security definition is introduced
to capture both UD online and offline dictionary attacks),
provides a more intuitive and simpler way of proving security
against dictionary attacks (see Section 3).

Contribution 3. We revisit the generic protocol GPAKE of
Abdalla et al. [8, 9] to provide a detailed analysis of its
security against UD online dictionary attacks. (We note that
the work of Wang and Hu [1] has only provided a sketch
of an insider UD online dictionary attack against GPAKE.)
GPAKE is parameterized with a 2-party PAKE protocol
2PAKE and a 3-party key distribution protocol 3KD. We
found that the security of GPAKE against both insider and
outsider UD online dictionary attacks depends heavily on
the security properties provided by 2PAKE and 3KD. For
example, we can launch an insider UD online dictionary
attack against the protocol GPAKE if neither 2PAKE nor
3KD provides client-to-server authentication. An outsider
UD online dictionary attack can also be mounted under the
same condition in addition to the condition that 2PAKE
provides server-to-client authentication (see Section 2 for
details).

2. Undetectable Online Dictionary Attacks
against GPAKE

This section presents a comprehensive analysis of the security
of the GPAKE protocol [8, 9] against UD online dictionary
attacks. Our analysis shows that (1) GPAKE relies its security
against UD online dictionary attacks on how its building
blocks are instantiated and (2) the attacks could be mounted
not only by a registered client (an insider) but also by
a nonregistered party (an outsider). After conducting the
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Figure 1: GPAKE: Abdalla et al.’s generic 3-party PAKE protocol [8, 9].

security analysis, we suggest possible combinations of the
instantiations that allow the GPAKE protocol to avoid the
attacks.

2.1. A Review of GPAKE. TheGPAKE protocol is constructed
using a combination of three building blocks: (1) a 2-
party PAKE protocol 2PAKE, (2) a 3-party key distribution
protocol 3KD, and (3) amessage authentication code- (MAC-
) based Diffie-Hellman key exchange protocol MDH. Let G
be a finite cyclic group generated by an element 𝑔; and let
Σ = (Mac, Ver) be a MAC scheme where Mac and Ver

are the MAC generation and MAC verification algorithms,
respectively. The security of MDH relies on the hardness of
the decisional Diffie-Hellman (DDH) problem in G and on
the security of the underlyingMAC scheme Σ against chosen
message attacks. 𝑆 represents a trusted server which registers
clients and, during the registration, each client shares their
individual password secretly with 𝑆. Suppose that 𝐴 and 𝐵

are two registered clients who wish to establish a session
key and 𝑝𝑤

𝐴
and 𝑝𝑤

𝐵
are the passwords of 𝐴 and 𝐵,

respectively.

2.1.1. Description. A high-level depiction of GPAKE is given
in Figure 1 and its brief description follows. First, 𝐴 (and
𝐵) and 𝑆 establish a shared high-entropy key, 𝑘

𝐴𝑆
(and 𝑘

𝐵𝑆
,

resp.), by running the 2-party PAKE protocol, 2PAKE. Then,
𝑆 generates a MAC key, 𝑘

𝐴𝐵
, and distributes 𝑘

𝐴𝐵
to both 𝐴

and 𝐵 by running the 3-party key distribution protocol 3KD
which takes 𝑘

𝐴𝑆
and 𝑘

𝐵𝑆
as input. A session key, 𝑠𝑘 = 𝑔

𝑎𝑏, will
be established between𝐴 and𝐵 after running theMAC-based
Diffie-Hellman key exchange protocolMDHwhich takes 𝑘

𝐴𝐵

as an input.

2.1.2. Instantiations. Abdalla et al. [8, 9] suggested several
practical and provably secure protocols that can be used in
the instantiation of the 2-party protocol 2PAKE.Among them
are the KOY protocol [29, 30] and its generalization [31], the
PAK suite [32], and other protocols based on encrypted key
exchange (EKE) of Bellovin and Merritt [33] (e.g., Bresson et
al.’s OMDHKE protocol [34]). For the instantiation of 3KD,
any particular choice that is secure with respect to a single
sessionwill do since the symmetric keys given as input to 3KD
differ from session to session. Bellare and Rogaway’s 3PKD
protocol [35], for example, was suggested as a possible choice.
The MAC scheme used in MDH can be instantiated with the
HMAC [36] and the CBC MAC.

2.2. An Insider Attack. Let us consider, for example, the
case where 2PAKE and 3KD are instantiated with the PPK
protocol [32] and with the 3PKD protocol [35], respectively.
In this case, a malicious client 𝐵 who is registered with the
server, 𝑆, can mount a UD online dictionary attack against
any other client, for example,𝐴. It is important to note that we
do not require either of the protocols, PPK (see Figure 2) and
3PKD (see Figure 3), to be insecure and, in fact, we assume
that both protocols are secure.

2.2.1.The PPK Protocol. LetG be a finite cyclic group of order
𝑞, and let 𝑔 be a generator of G. The three hash functions
used are 𝐺

1
: {0, 1}

∗
→ G, 𝐺

2
: {0, 1}

∗
→ G, and

𝐻 : {0, 1}
∗
→ {0, 1}

ℓ, where ℓ is the length of the session key.
𝑝𝑤

𝐴
denotes 𝐴’s password known only to 𝐴 and (V

𝐴
, 𝑤

𝐴
) =

((𝐺
1
(𝑝𝑤

𝐴
))

−1
, 𝐺

2
(𝑝𝑤

𝐴
)) denotes the password verifiers held

by 𝑆. The function acceptable(∗) returns true, if and only if
∗ ∈ G (or, ∗ ∈ Ĝ when G is defined as a (proper) subgroup
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Figure 2: The PPK protocol [32].

(kAS, kBS) (kBS = kenc
BS ‖k

mac
BS )

rA ∈ {0, 1}
𝜅

⟨rA⟩

rB ∈ {0, 1}
𝜅

⟨rA, rB⟩

kAB ∈ {0, 1}
𝜅

𝛼A = Enckenc
𝐴𝑆

(kAB)
𝛼B = Enckenc

𝐵𝑆
(kAB)

𝜇A = Mackmac
𝐴𝑆

(A‖B‖rA‖𝛼A)
𝜇B = Mackmac

𝐵𝑆
(A‖B‖rB‖𝛼B)

⟨𝛼A, 𝜇A⟩
⟨𝛼B, 𝜇B⟩

Verify 𝜇A
kAB = Deckenc

𝐴𝑆
(𝛼A)

Verify 𝜇B
kAB = Deckenc

𝐵𝑆
(𝛼B)

A BS

(kAS = kenc
AS ‖k

mac
AS )

Figure 3: The 3PKD protocol [35].

of a group Ĝ). The session key 𝑘
𝐴𝑆

is computed as 𝑘
𝐴𝑆

=

𝐻(𝐴‖𝑆‖𝑋‖𝑍‖𝐾‖V
𝐴
). We observe that two messages ⟨𝐴,𝑋⟩

and ⟨𝑆, 𝑍⟩ are independent and thus the protocol can be easily
modified to run in a single round.

2.2.2. The 3PKD Protocol. The cryptographic tools used in
3PKD include (1) a symmetric encryption scheme consisting
of a pair of encryption/decryption algorithms (Enc, Dec)
and (2) a MAC scheme consisting of a pair of MAC gener-
ation/verification algorithms (Mac, Ver). The protocol runs
between a trusted server, 𝑆, and two clients, 𝐴 and 𝐵. 𝐴
(and 𝐵) and 𝑆 are assumed to have preestablished a 2𝜅-bit
secret 𝑘

𝐴𝑆
= 𝑘

enc
𝐴𝑆

‖𝑘
mac
𝐴𝑆

(resp., 𝑘
𝐵𝑆

= 𝑘
enc
𝐵𝑆

‖𝑘
mac
𝐵𝑆

). The protocol,
depicted in Figure 3, begins by having 𝐴 choosing a random
𝜅-bit challenge 𝑟

𝐴
and sending it to client 𝐵. 𝐵 also chooses

a random 𝜅-bit challenge 𝑟
𝐵
and sends ⟨𝑟

𝐴
, 𝑟

𝐵
⟩ to 𝑆. Upon

receiving ⟨𝑟
𝐴
, 𝑟

𝐵
⟩, 𝑆 generates a session key 𝑘

𝐴𝐵
which he will

distribute. 𝑆 then encrypts 𝑘
𝐴𝐵

under 𝐴’s encryption key 𝑘enc
𝐴𝑆

(resp.,𝐵’s encryption key 𝑘enc
𝐵𝑆

) to get ciphertext 𝛼
𝐴
(resp., 𝛼

𝐵
).

Then, 𝑆 computes 𝜇
𝐴
(resp. ,𝜇

𝐵
), the MAC under key 𝑘

mac
𝐴𝑆

(resp. 𝑘mac
𝐵𝑆

) of the string𝐴‖𝐵‖𝑟
𝐴
‖𝛼

𝐴
(resp.𝐴‖𝐵‖𝑟

𝐵
‖𝛼

𝐵
).Then,

𝑆 sends ⟨𝛼
𝐴
, 𝜇

𝐴
⟩ and ⟨𝛼

𝐵
, 𝜇

𝐵
⟩ to 𝐴 and 𝐵, respectively. 𝐴 and

𝐵 accept the session key 𝑘
𝐴𝐵

if and only if their receivedMAC
is valid.

In order for PPK and 3PKD to be used together, the
session keys generated by PPK need to be at least 2𝜅-bit long.

2.2.3. One Possible Attack Scenario. The malicious client, 𝐵,
can mount the following UD online dictionary attack against
another client, 𝐴.
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(pwA) (pwA)

Figure 4: The OMDHKE protocol [34].

Step 1 (running PPK). 𝐵 begins by initiating two concurrent
runs, R1 & R2, of the PPK protocol.

(i) In the (dishonest) run R1, 𝐵 impersonating 𝐴 makes
a guess (denoted by 𝑝𝑤

󸀠

𝐴
) on 𝐴’s actual password,

𝑝𝑤
𝐴
, selects a random 𝑥 ∈ Z

𝑞
, computes 𝑋󸀠

= 𝑔
𝑥
⋅

𝐺
1
(𝑝𝑤

󸀠

𝐴
), and sends the server 𝑆 a fabricated message

⟨𝐴,𝑋
󸀠
⟩. Since 𝑋

󸀠
∈ G, 𝑆 will respond with the

message ⟨𝑆, 𝑍⟩. After obtaining ⟨𝑆, 𝑍⟩, 𝐵 computes a
key 𝑘

󸀠

𝐴𝑆
= 𝐻(𝐴‖𝑆‖𝑋

󸀠
‖𝑍‖𝐾

󸀠
‖V󸀠

𝐴
), where 𝐾

󸀠
= (𝑍 ⋅

(𝐺
2
(𝑝𝑤

󸀠

𝐴
))

−1
)
𝑥 and V󸀠

𝐴
= (𝐺

1
(𝑝𝑤

󸀠

𝐴
))

−1. We let 𝑘󸀠

𝐴𝑆
=

𝑘
󸀠enc
𝐴𝑆

‖𝑘
󸀠mac
𝐴𝑆

.
(ii) In the (honest) run R2, 𝐵 honestly performs all the

operations as per protocol specification and estab-
lishes the key, 𝑘

𝐵𝑆
= 𝑘

enc
𝐵𝑆

‖𝑘
mac
𝐵𝑆

.

Step 2 (running 3PKD). Once R1 & R2 are completed, 𝐵
proceeds to run the protocol 3PKD by sending the server
𝑆 two random challenges 𝑟

𝐴
and 𝑟

𝐵
(selected as specified

by the protocol). 𝑆 will respond to the random challenges
with two messages ⟨𝛼

𝐴
, 𝜇

𝐴
⟩ and ⟨𝛼

𝐵
, 𝜇

𝐵
⟩. After obtaining

these two messages, 𝐵 recovers the keys 𝑘󸀠

𝐴𝐵
= Dec

𝑘
󸀠 enc
𝐴𝑆

(𝛼
𝐴
)

and 𝑘
𝐴𝐵

= Dec
𝑘
enc
𝐵𝑆

(𝛼
𝐵
).

Step 3 (verifying the password guess). 𝐵 verifies the correct-
ness of 𝑝𝑤󸀠

𝐴
by checking that 𝑘󸀠

𝐴𝐵
is equal to 𝑘

𝐴𝐵
. If they are

equal, 𝑝𝑤󸀠

𝐴
is the correct password with an overwhelming

probability. Otherwise, it means that 𝑝𝑤󸀠

𝐴
̸= 𝑝𝑤

𝐴
.

2.3. An Outsider Attack. We now consider the case where
2PAKE and 3KD are instantiated with the OMDHKE pro-
tocol [34] and with the 3PKD protocol [35], respectively.
Although OMDHKE (see Figure 4) is largely similar to PPK,
there is a marked difference between the two. OMDHKE
provides server-to-client authentication while PPK focuses
on implicit key authentication.

2.3.1. The OMDHKE Protocol. Let G be a finite cyclic group
generated by an element 𝑔 of prime order 𝑞. The hash

functions used are 𝐺 : {0, 1}
∗

→ G, 𝐻 : {0, 1}
∗

→ {0, 1}
ℓ,

and 𝐹 : {0, 1}
∗

→ {0, 1}
𝑓, where ℓ is the length of the

session key and 𝑓 is the length of the authenticator Auth
𝑆𝐴
.

Unlike the PPK protocol described in Figure 2, both 𝐴 and
𝑆 have a shared password, 𝑝𝑤

𝐴
. The protocol starts when

𝐴 chooses a random 𝑥 ∈ Z
𝑞
, computes 𝑋 = 𝑔

𝑥, 𝑃𝑊
𝐴

=

𝐺(𝑝𝑤
𝐴
), and 𝑋 = 𝑋 ⋅ 𝑃𝑊

𝐴
, and sends ⟨𝐴,𝑋⟩ to 𝑆. Upon

receiving the message from 𝐴, 𝑆 computes 𝑃𝑊
𝐴
= 𝐺(𝑝𝑤

𝐴
)

and 𝑋 = 𝑋/𝑃𝑊
𝐴
, chooses a random 𝑧 ∈ Z

𝑞
, and computes

𝑍 = 𝑔
𝑧,𝐾 = 𝑋

𝑧, andAuth
𝑆𝐴

= 𝐹(𝐴‖𝑆‖𝑋‖𝑍‖𝑃𝑊
𝐴
‖𝐾).Then 𝑆

sends ⟨𝑆, 𝑍,Auth
𝑆𝐴
⟩ to𝐴 and computes the session key, 𝑘

𝐴𝑆
=

𝐻(𝐴‖𝑆‖𝑋‖𝑍‖𝑃𝑊
𝐴
‖𝐾). 𝐴 computes 𝐾 = 𝑍

𝑥, verifies Auth
𝑆𝐴
,

and computes the session key 𝑘
𝐴𝑆

= 𝐻(𝐴‖𝑆‖𝑋‖𝑍‖𝑃𝑊
𝐴
‖𝐾) if

the verification succeeds.
Note that, in OMDHKE, server-to-client authentication

is achieved via the authenticator Auth
𝑆𝐴

sent by 𝑆 to 𝐴.

2.3.2. One Possible Attack Scenario. We now demonstrate
how 𝐶, a malicious adversary who is not registered with the
server, can mount a UD online dictionary attack against two
registered clients, 𝐴 and 𝐵.

Step 4 (runningOMDHKE). 𝐶 initiates two concurrent runs,
R1 & R2, of the protocol OMDHKE.

(i) In the (dishonest) run R1, 𝐶 impersonating 𝐴 makes
a guess (denoted by 𝑝𝑤

󸀠

𝐴
) on 𝐴’s password, 𝑝𝑤

𝐴
,

chooses a random 𝑥 ∈ Z
𝑞
, computes 𝑃𝑊󸀠

𝐴
= 𝐺(𝑝𝑤

󸀠

𝐴
)

and 𝑋
󸀠

= 𝑔
𝑥
⋅ 𝑃𝑊

󸀠

𝐴
, and sends the fabricated

message ⟨𝐴,𝑋󸀠
⟩ to 𝑆.𝐶will then receive the response,

⟨𝑆, 𝑍,Auth
𝑆𝐴
⟩, from 𝑆 as per protocol specification.

(ii) In the (dishonest) run R2, 𝐶 proceeds as per R1 but
impersonating 𝐵 (instead of 𝐴) and making a guess
(denoted as 𝑝𝑤󸀠

𝐵
) on 𝐵’s password, 𝑝𝑤

𝐵
. Let Auth

𝑆𝐵

denote the authenticator received (in response) from
𝑆.

Step 5 (running 3PKD). After R1 & R2 are completed, 𝐶 runs
the 3PKD protocol with 𝑆while impersonating both𝐴 and 𝐵.
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(This step provides no useful information to𝐶 but is required
for the attack to go undetected.)

Step 6 (verifying the password guess). 𝐶 can then ver-
ify the correctness of 𝑝𝑤

󸀠

𝐴
by computing Auth󸀠

𝑆𝐴
=

𝐹(𝐴‖𝑆‖𝑋
󸀠
‖𝑍‖𝑃𝑊

󸀠

𝐴
‖𝑍

𝑥
) and then checking if Auth󸀠

𝑆𝐴
is equal

to Auth
𝑆𝐴
. If they are equal, 𝑝𝑤󸀠

𝐴
is the correct password

(with an overwhelming probability).Otherwise,𝐶 knows that
𝑝𝑤

󸀠

𝐴
̸= 𝑝𝑤

𝐴
. Similarly, the correctness of 𝑝𝑤󸀠

𝐵
can be verified

using the received Auth
𝑆𝐵
.

2.4. Discussion. The insider attack described in Section 2.2
works because neither PPK nor 3PKD provides client-to-
server authentication. Indeed, the same attack also works if
we replace the PPK protocol with the OMDHKE protocol
[34], the EKE2 protocol [28], or the SPAKE protocol [37].
In other words, the GPAKE protocol becomes vulnerable to
the insider attack when both 2PAKE and 3KD are instanti-
ated with a protocol that does not provide client-to-server
authentication. The outsider attack described in Section 2.3
works under the same circumstance but additionally exploits
the fact that the OMDHKE protocol provides server-to-client
authentication.

Informally, both attacks can be prevented if one of the
two protocols, 2PAKE or 3KD, is instantiated with a protocol
that provides client-to-server authentication.We observe that
a typical 3-party key distribution protocol is not expected
to provide client-to-server authentication, and hence, we
suggest that the countermeasure targets the instantiation of
2PAKE.While some might also suggest that a round-optimal
protocol (i.e., a protocol that runs in a single round) should be
used in the instantiation of 2PAKE to achieve better efficiency,
we caution against this as no round-optimal 2-party PAKE
protocol is known to provide client-to-server authentication
and achieve security against offline dictionary attacks.

3. Modelling Dictionary Attacks in
the Password-Only 3-Party Setting

The ROR model used for security analysis of GPAKE [8, 9]
does not allow the adversary to access the Corrupt oracle and
thus cannot capture any kind of insider attacks, in particular,
(UD) online and offline dictionary attacks by a malicious
insider. The security definition associated with the ROR

model intends to capture indistinguishability of session keys
and does not consider mounting an online dictionary attack
against a protocol to be a violation of the security of the
protocol (see Section 3.3). Consequently, none of the online
dictionary attacks presented in Section 2 can be captured in
the model.

We begin this section by presenting a communication
model adapted from the Bellare-Pointcheval-Rogaway 2000
model [28] to support key exchange in the password-only 3-
party setting. Our communication model allows the adver-
sary to ask Corrupt queries and thereby captures insider
attacks (as well as forward secrecy and unknown key share
attacks). We then define a typical indistinguishability-based
security of session keys, which we call the SK security. As we

demonstrate in Section 3.3, the SK security implies security
against offline dictionary attacks but does not imply security
against UD online dictionary attacks. We then introduce a
separate security definition to capture UD online dictionary
attacks. Unlike the approach of [19, 20] where a separate
security definition is introduced to capture both online and
offline dictionary attacks, we only need to prove the protocol
secure against UD online dictionary attacks once we have
proved that it is SK-secure.

3.1. The Communication Model

3.1.1. Participants and Long-Term Keys. We denote 𝑆 by a
trusted authentication server and C by the set of all clients
registered with 𝑆. During registration, each client 𝐶 ∈ C
selects a password, 𝑝𝑤

𝐶
, from a dictionary, D, and shares

𝑝𝑤
𝐶
with 𝑆 via a secure channel. 𝑝𝑤

𝐶
is used as the long-

term secret key shared between 𝐶 and 𝑆. Any two clients,
𝐶, 𝐶

󸀠
∈ C, may run a 3-party PAKE protocol 𝑃 with 𝑆 at any

point in time to establish a session key. Let U = C ∪ {𝑆}. A
user, 𝑈 ∈ U, may participate in multiple protocol sessions
running, either serially or concurrently, with the same or
different participants. Thus, at any given time, there could
be multiple instances of a single user. Π𝑖

𝑈
denotes instance

𝑖 of user 𝑈. We say that a client instance, Π𝑖

𝐶
, accepts when it

computes its session key, sk𝑖

𝐶
, in an execution of the protocol.

3.1.2. Partnering. We say, informally, that two instances are
partners if they participate in a protocol execution and
establish a (shared) session key. Formally, partnering between
instances is defined in terms of the notions of session and
partner identifiers (See [38] on the role and the possible
construct of session and partner identifiers as a form of
partnering mechanism that enables the right session key
to be identified in concurrent protocol executions.) Session
identifier (sid) is a unique identifier of a protocol session and
is usually defined as a function of themessages transmitted in
the session (although this may not be possible in a multiparty
protocol where not all participants have the same view). sid𝑖

𝑈

denotes the sid of instance Π𝑖

𝑈
. A partner identifier (pid) is

a sequence of identities of participants of a specific protocol
session. Instances are given as input a pid before they can run
the protocol. pid𝑖

𝑈
denotes the pid given to instanceΠ𝑖

𝑈
. Note

that pid𝑖

𝐶
= ⟨𝐶, 𝐶

󸀠
, 𝑆⟩, where 𝐶󸀠 is another client with whom

Π
𝑖

𝐶
believes it runs the protocol. We say that two instances,

Π
𝑖

𝐶
and Π

𝑗

𝐶
󸀠
, are partners if the following holds: (1) both Π

𝑖

𝐶

andΠ𝑗

𝐶
󸀠
have accepted, (2) sid𝑖

𝐶
= sid

𝑗

𝐶
󸀠
, and (3) pid𝑖

𝐶
= pid

𝑗

𝐶
󸀠
.

3.1.3. Adversary Capabilities. The probabilistic polynomial-
time (ppt) adversaryA is in complete control of all commu-
nications between users, and its capabilities are modeled via
a predefined set of oracle queries described below.

(i) Execute (Π𝑖

𝐶
, Π

𝑗

𝐶
󸀠
, Π

𝑘

𝑆
): this query models passive

attacks against the protocol. It prompts an execution
of the protocol between the instancesΠ𝑖

𝐶
,Π𝑗

𝐶
󸀠
andΠ𝑘

𝑆

and returns the transcript of the protocol execution to
A.
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Experiment Exp0:
Phase 1. Amakes any oracle queries at will as many times as it wishes, except that:

(1)A is not allowed to ask the Test(Π𝑖

𝐶
) query if the instance Π𝑖

𝐶
is unfresh.

(2)A is not allowed to ask the Reveal(Π𝑖

𝐶
) query if it has already made a Test query to

Π
𝑖

𝐶
or Π𝑗

𝐶
󸀠
, where Π𝑗

𝐶
󸀠
is the partner of Π𝑖

𝐶
.

Phase 2. OnceA decides that Phase 1 is over, it outputs a bit 𝑏󸀠 as a guess on the hidden bit
𝑏 chosen by the Test oracle.A is said to succeed if 𝑏 = 𝑏

󸀠.

Box 1

(ii) Send (Π𝑖

𝑈
, 𝑚): this query sends message𝑚 to instance

Π
𝑖

𝑈
, modelling active attacks against the protocol.

Upon receiving 𝑚, the instance Π𝑖

𝑈
proceeds accord-

ing to the protocol specification. The message output
by Π

𝑖

𝑈
, if any, is returned to A. A query of the

form Send (Π𝑖

𝐶
, start: ⟨𝐶, 𝐶

󸀠
, 𝑆⟩) prompts Π

𝑖

𝐶
to

initiate the protocol with pidiC = ⟨𝐶, 𝐶
󸀠
, 𝑆⟩.

(iii) Reveal (Π𝑖

𝐶
): this query captures the notion of known

key security (it is often reasonable to assume that the
adversary will be able to obtain session keys from
any session different from the one under attack). The
instance Π

𝑖

𝐶
, upon receiving the query and if it has

accepted, returns the session key, sk𝑖

𝐶
, back toA.

(iv) Corrupt (𝑈): this query returns the password 𝑝𝑤
𝑈

of 𝑈. If 𝑈 = 𝑆 (i.e., the server is corrupted), all
clients’ passwords stored by the server are returned.
This query captures not only the notion of forward
secrecy but also unknown key share attacks and
insider attacks.

(v) Test (Π𝑖

𝐶
): this query is used to define the

indistinguishability-based security of the protocol.
If Π𝑖

𝐶
has accepted, then, depending on a randomly

chosen bit 𝑏, A is given either the real session key
sk𝑖

𝐶
(when 𝑏 = 1) or a random key drawn from the

session-key space (when 𝑏 = 0). Following the ROR

model [8, 9], we allowA to ask as many Test queries
as it wishes. All Test queries are answered using
the same value of the hidden bit 𝑏. Namely, the keys
output by the Test oracle are either all real or all
random. But, we require that, for each different set of
partners,A should access the Test oracle only once.

We describe the number of queries asked by an adver-
sary as the query complexity of the adversary. The query
complexity is represented as an ordered sequence of five
nonnegative integers, 𝑄 = ⟨𝑞exec, 𝑞send, 𝑞reve, 𝑞corr, 𝑞test⟩,
where 𝑞exec, 𝑞send, 𝑞reve, 𝑞corr, and 𝑞test refer to the num-
bers of queries that the adversary asked, respectively, to
the Execute, Send, Reveal, Corrupt, and Test oracles.

3.2. Session Key (SK) Security. We now proceed to define
the basic security, called the SK security, of a 3-party PAKE
protocol. The notion of freshness is a key element in defining
the SK security. Intuitively, a fresh instance is one that holds
a session key which should not be known to the adversaryA,

and an unfresh instance is one whose session key (or some
information about the key) can be known by trivial means. A
formal definition of freshness follows.

Definition 11. An instance Π
𝑖

𝐶
is fresh unless one of the

following occurs: (1)A queries Reveal (Π𝑖

𝐶
) or Reveal (Π𝑗

𝐶
󸀠
),

whereΠ𝑗

𝐶
󸀠
is the partner ofΠ𝑖

𝐶
; or (2)A queries Corrupt (𝑈),

for some𝑈 ∈ pid𝑖

𝐶
, before Π𝑖

𝐶
or its partner Π𝑗

𝐶
󸀠
accepts.

The SK security of a 3-party PAKE protocol 𝑃 is defined
in the context of Box 1.

Let Succ
0
be the event thatA succeeds in the experiment

Exp
0
. LetAdv

𝑃
(A) denote the advantage of A in attacking

protocol𝑃 and be defined asAdv
𝑃
(A) = 2 ⋅ Pr

𝑃,A[Succ0
] − 1.

Definition 12. A 3-party PAKE protocol 𝑃 is SK-secure
if, for any ppt adversary A asking at most 𝑞send Send

queries,Adv
𝑃
(A) is only negligibly larger than 𝑐 ⋅ 𝑞send/|D|,

where 𝑐 is a very small constant (usually around 2 or 4) when
compared with |D|.

To quantify the security of protocol 𝑃 in terms of
the amount of resources expended by adversaries, we
letAdv

𝑃
(𝑡, 𝑄) denote themaximum value ofAdv

𝑃
(A) over all

ppt adversariesA with time complexity at most 𝑡 and query
complexity at most 𝑄.

3.3. Password Security

3.3.1. Capturing Offline Dictionary Attacks. The SK security
described in Definition 12 implies security against offline
dictionary attacks. In other words, a 3-party PAKE protocol𝑃
is not SK-secure if it is not secure against an offline dictionary
attack. To demonstrate this, suppose that the protocol 𝑃 is
not secure against an offline dictionary attack whereby an
attacker 𝐵 can derive the password of any registered client 𝐴.
Then we can construct an adversaryAoff who breaks the SK
security of protocol 𝑃 as follows.

Corruption. If 𝐵 is a malicious insider, Aoff queries
Corrupt (𝐵) to obtain the password 𝑝𝑤

𝐵
. Otherwise, Aoff

skips this step.

Dictionary Attack. Next, Aoff runs the protocol 𝑃 exactly in
the way that 𝐵 conducts its offline dictionary attack against
client 𝐴. Note that Aoff can perfectly simulate 𝐵’s attack
by using the disclosed password 𝑝𝑤

𝐵
and by asking oracle
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queries appropriately. At the end of this step,Aoff will obtain
the password 𝑝𝑤

𝐴
of client 𝐴 as a result of the attack.

Impersonation. Now, Aoff initiates a new protocol session by
querying Send (Π𝑖

𝐶
, start: ⟨𝐴, 𝐶, 𝑆⟩), where Π𝑖

𝐶
is an unused

instance of an uncorrupted client 𝐶.Aoff runs this session as
per the protocol specification, but simulating by itself all the
actions of 𝐴 (by using 𝑝𝑤

𝐴
). At the end of the session, the

instance Π𝑖

𝐶
will accept with its session key sk𝑖

𝐶
.

Test. Clearly the instance Π
𝑖

𝐶
is fresh, since (1) no Reveal

query has been made on Π
𝑖

𝐶
or its partner (which does not

exist in this case) and (2) no Corrupt query has been made
against any of 𝐴, 𝐶, and 𝑆. Thus,Aoff may ask the Test (Π𝑖

𝐶
)

query. Since Aoff can compute the same session key as sk𝑖

𝐶
,

the probability that Aoff correctly guesses the bit 𝑏 chosen
by the Test oracle is 1 and so is the advantage of Aoff in
attacking the protocol. Then, by Definition 12, the protocol 𝑃
is not SK-secure since the number of Send queries asked by
Aoff is much smaller (i.e., nonnegligibly smaller) than |D|/𝑐.

3.3.2. Capturing Undetectable Online Dictionary Attacks.
Unfortunately, the SK security does not imply security against
UD online dictionary attacks. In other words, a 3-party PAKE
protocol that is not secure against a UD online dictionary
attack may be rendered SK-secure. Let us assume a 3-party
PAKE protocol𝑃 that is susceptible to aUDonline dictionary
attack (e.g., the GPAKE protocol in Section 2). Then, we can
construct an adversary Aon who attacks protocol 𝑃 with
advantage 1. The construction of Aon is the same as that of
Aoff , except that to correctly determine the password 𝑝𝑤

𝐴
,

Aon may have to ask Send queries as many times as 𝑑 ⋅ |D|

for some integer𝑑 ≥ 1. Note that verifying the correctness of a
password guess may require more than one Send query to be
asked. Even ifAdv

𝑃
(Aon) = 1, the protocol 𝑃 is still rendered

SK-secure by Definition 12, as the following holds for some
𝑐 ≥ 1:

Adv
𝑃
(Aon) ≤

𝑐𝑑 |D|

|D|
. (1)

This result is not surprising since we call a protocol SK-secure
if mounting an online dictionary attack by asking Send

queries is the best an adversary can do. However, we want
to be able to distinguish UD online dictionary attacks from
detectable online dictionary attacks and ensure that the best
an adversary can do is tomount a detectable online dictionary
attack. The following new definitions together provide a
simple and intuitive way of capturing security against UD
online dictionary attacks.

Definition 13 (an online dictionary attack). The Send (Π𝑘

𝑆
, 𝑚)

querymodels an online dictionary attack if both the following
are true at the time of the termination of instance Π

𝑘

𝑆
: (1)

𝑚 was not output by a previous Send query asked to an
instance of 𝐶 by which Π

𝑘

𝑆
believes 𝑚 was sent and (2) the

adversaryA queried neither Corrupt (𝑆) nor Corrupt (𝐶).

InDefinition 13, the first condition implies that a straight-
forward delivery of a message between instances is not
considered as an online dictionary attack while the second
condition implies that when𝐶󸀠 is the (assumed) peer of client
𝐶, the adversary A can corrupt the peer client 𝐶󸀠 to mount
an (insider) online dictionary attack. Note that our definition
of an online dictionary attack does not impose any restriction
on asking Reveal queries.

Let Undet be the event that, in experiment Exp
0
, a server

instance terminates normally when an online dictionary
attack was mounted against the instance. We say that the
adversary A succeeds in mounting an UD online dictio-
nary attack if the event Undet occurs. Formally, we define
protocol’s security against UD online dictionary attacks as
follows:

Definition 14. A 3-party PAKE protocol 𝑃 is secure against
a UD online dictionary attack if, for any ppt adversary
A asking at most 𝑞send Send queries, Pr

𝑃,A[Undet] is only
negligibly larger than 𝑐 ⋅ 𝑞send/|D|, where 𝑐 is as defined in
Definition 12.

4. A Compiler for 3-Party PAKE Protocols

We now present a protocol compiler that transforms any
2-party PAKE protocol into a 3-party PAKE protocol. If
the given 2-party protocol is SK-secure, then the 3-party
protocol output by the compiler is not only SK-secure but
also secure against both insider and outsider UD online
dictionary attacks. (We stress again that the SK security
implies resistance against both insider and outsider offline
dictionary attacks.) This is the case regardless of whether
the underlying 2-party protocol provides client-to-server
authentication or not. Our transformation does not require
the use of a 3-party key distribution protocol and always takes
only two additional rounds of communication. Hence, apply-
ing the compiler to a round-optimal 2-party PAKE protocol
immediately yields a 3-party PAKE protocol running in three
communication rounds.

Our generic construction, which we call H3PAKE (“𝐻”
for “hashed”), is a variant of NGPAKE that is the generic
construction ofWang andHu [1].The key difference between
H3PAKE and NGPAKE is in the computation of the session
key. NGPAKE defines the session key simply as the Diffie-
Hellman key 𝑔

𝑥𝑦, whilst H3PAKE defines the session key
as𝐻(pid‖sid‖𝑔𝑥𝑦

) where𝐻 is a cryptographic hash function.
The difference in how session key is computed, together with
a minor modification in the specifications of the protocol
messages, results in a significant improvement on the security
of the constructions. More specifically, we are now able
to prove that H3PAKE is secure against insider dictionary
attacks, unlike NGPAKE where it is unclear whether it can
be proven secure against insider dictionary attacks. Note that
the security of NGPAKE was proved in the RORmodel that
does not allow the adversary to ask Corrupt queries; and as
shown in Section 3.3, protocols proven secure in such amodel
cannot claim provable security against insider attacks of any
kind.
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4.1. Preliminaries. We begin with the cryptographic primi-
tives on which the security of our construction relies.

Gap Diffie-Hellman (GDH) Assumption. Consider a finite
cyclic group G of prime order 𝑞 where the operation is
denoted multiplicatively. Since the order of G is prime,
all the elements of G, except 1, are generators of G. Let
𝑔 be a random generator of G. The GDH problem in
G is to solve the computational Diffie-Hellman (CDH)
problem in G when given an oracle O(⋅, ⋅, ⋅) that solves
the decisional Diffie-Hellman (DDH) problem in G. The
DDH oracle O(⋅, ⋅, ⋅), on input a triple (𝑔

𝑎
, 𝑔

𝑏
, 𝐶) for 𝑎, 𝑏 ∈

Z
𝑞
, outputs 1 if and only if 𝐶 = 𝑔

𝑎𝑏. We define the
advantage of a ppt algorithm A in solving the GDH prob-
lem in G as Adv GDH

G (A) = Pr[AO(⋅,⋅,⋅)
(G, 𝑞, 𝑔, 𝑔𝑥

, 𝑔
𝑦
) = 𝑔

𝑥𝑦:
𝑥, 𝑦∈

𝑅
Z

𝑞
]. We say that the GDH assumption holds in G

if Adv GDH
G (A) is negligible for all ppt algorithms A. We

denote byAdv GDH
G (𝑡) the maximum value of Adv GDH

G (A)

over all algorithmsA running in time at most 𝑡.

Message Authentication Codes. A message authentication
code (MAC) scheme Σ is a triple of efficient algorithms
(Gen, Mac, Ver) where (1) the key generation algori-
thm Gen takes as input a security parameter 1ℓ and outputs
a key 𝑘 chosen uniformly at random from {0, 1}

ℓ; (2) the
MAC generation algorithm Mac takes as input a key 𝑘 and
a message 𝑚 and outputs a MAC (also known as a tag) 𝜎;
and (3) the MAC verification algorithm Ver takes as input
a key 𝑘, a message 𝑚, and a MAC 𝜎 and outputs 1 if 𝜎 is
valid for 𝑚 under 𝑘 or outputs 0 if 𝜎 is invalid. LetAdv

Σ
(A)

be the advantage of an adversary A in violating the strong
existential unforgeability ofΣ under adaptive chosenmessage
attacks. More precisely,Adv

Σ
(A) is the probability that an

adversaryA, whomounts an adaptive chosenmessage attack
against Σ with oracle access toMac

𝑘
(⋅) and Ver

𝑘
(⋅), outputs

a message/tag pair (𝑚, 𝜎) such that (1) Ver
𝑘
(𝑚, 𝜎) = 1 and

(2) 𝜎 was not previously output by the oracleMac
𝑘
(⋅) as a

MAC on the message 𝑚. We say that the MAC scheme Σ

is secure ifAdv
Σ
(A) is negligible for every ppt adversary

A. We useAdv
Σ
(𝑡, 𝑞mac , 𝑞 ver ) to denote the maximum value

ofAdv
Σ
(A) over all ppt adversaries A running in time at

most 𝑡 and asking at most 𝑞mac and 𝑞 ver queries toMac
𝑘
(⋅)

and Ver
𝑘
(⋅), respectively.

2-Party PAKE Protocols. H3PAKE takes as input a 2-party
PAKE protocol 2PAKE. We assume that the given 2-party
protocol 2PAKE outputs session keys distributed in {0, 1}

ℓ

and is SK-secure against an adversary who is given access to
all the oracles: Send, Execute, Reveal, Corrupt, and Test.
LetAdv2PAKE (A) be the advantage of an adversary A
in breaking the SK security of 2PAKE. We require that,
for any ppt adversary A asking at most 𝑞send Send que-
ries,Adv2PAKE (A) is only negligibly larger than 𝑞send/
|D|. Adv2PAKE (𝑡, 𝑄) denotes the maximum value of
Adv2PAKE (A) over all ppt adversaries A with time
complexity at most 𝑡 and query complexity at most 𝑄.

Additionally, H3PAKE uses a cryptographic hash func-
tion 𝐻 mapping {0, 1}

∗ to {0, 1}
𝜅, where 𝜅 is a security

parameter representing the length of session keys. 𝐻 is
modelled as a random oracle in our proof of security for
H3PAKE.

4.2. Description of H3PAKE. We assume that the following
information has been preestablished and is known to all users
in the network: (1) a cyclic group G of prime order 𝑞 and
a generator 𝑔 of G, (2) a MAC schemeΣ = (Gen,Mac,Ver),
(3) a 2-party PAKE protocol 2PAKE, and (4) a cryptographic
hash function𝐻.These public parameters can be determined
by the server and be broadcast to all its registered clients. Let
𝐴 and𝐵 be two clients whowish to establish a session key, and
let 𝑆 be the trusted server with which𝐴 and 𝐵 have registered
their passwords 𝑝𝑤

𝐴
and 𝑝𝑤

𝐵
, respectively. We denote the

partner identifier pid given as input to (an instance of) 𝐴
(resp., 𝐵 and 𝑆) by pid

𝐴
(resp., pid

𝐵
and pid

𝑆
). Recall that pid

is a sequence of identities of protocol participants. The order
of identities that appears in pid is of critical importance for
the correctness of our construction and its security proof.
For simplicity, we assume that pid

𝐴
= pid

𝐵
= pid

𝑆
= ⟨𝐴, 𝐵, 𝑆⟩.

Figure 5 depicts how the generic 3-party PAKE protocol,
H3PAKE, is constructed from any given 2-party protocol,
2PAKE. More specifically, H3PAKE is constructed as follows.

𝑃ℎ𝑎𝑠𝑒 1. 𝐴 and 𝑆 establish a shared high-entropy key 𝑘
𝐴𝑆

by running the 2-party protocol 2PAKE. Likewise, 𝐵 and 𝑆

establish a shared high-entropy key 𝑘
𝐵𝑆
.

𝑃ℎ𝑎𝑠𝑒 2. 𝐴 and 𝐵 establish their session key by running
a MAC-based Diffie-Hellman key exchange protocol with
assistance of 𝑆.

Step 1. 𝐴 chooses a random 𝑥 ∈ Z
𝑞
, computes 𝑋 = 𝑔

𝑥

and𝜎
𝐴𝑆

= Mac
𝑘
𝐴𝑆

(𝐴‖𝑋‖pid
𝐴
), and sends ⟨𝐴,𝑋, 𝜎

𝐴𝑆
⟩

to 𝑆. Meanwhile, 𝐵 chooses a random 𝑦 ∈ Z
𝑞
,

computes 𝑌 = 𝑔
𝑦 and𝜎

𝐵𝑆
= Mac

𝑘
𝐵𝑆

(𝐵‖𝑌‖pid
𝐵
), and

sends ⟨𝐵, 𝑌, 𝜎
𝐵𝑆
⟩ to 𝑆.

Step 2. 𝑆 checks thatVer
𝑘
𝐴𝑆

(𝐴‖𝑋‖pid
𝑆
, 𝜎

𝐴𝑆
) = 1 and

Ver
𝑘
𝐵𝑆

(𝐵‖𝑌‖pid
𝑆
, 𝜎

𝐵𝑆
) = 1. If either verification fails,

𝑆 aborts the protocol. Otherwise, 𝑆 computes
𝜎

𝑆𝐴
= Mac

𝑘
𝐴𝑆

(𝑆‖𝑌‖pid
𝑆
) and𝜎

𝑆𝐵
= Mac

𝑘
𝐵𝑆

(𝑆‖𝑋‖pid
𝑆
)

and sends ⟨𝑆, 𝑌, 𝜎
𝑆𝐴
⟩ and ⟨𝑆, 𝑋, 𝜎

𝑆𝐵
⟩ to 𝐴 and 𝐵,

respectively.
Step 3.𝐴 verifies thatVer

𝑘
𝐴𝑆

(𝑆‖𝑌‖pid
𝐴
, 𝜎

𝑆𝐴
) = 1. If the

verification fails, 𝐴 aborts the protocol. Otherwise,
𝐴 sets the session identifier, sid

𝐴
= 𝐴‖𝑋‖𝐵‖𝑌, and

computes the Diffie-Hellman key, 𝐾
𝐴

= 𝑌
𝑥, and

the session key, sk
𝐴
= 𝐻(pid

𝐴
‖sid

𝐴
‖𝐾

𝐴
). Meanwhile,

𝐵 checks if Ver
𝑘
𝐵𝑆

(𝑆‖𝑋‖pid
𝐵
, 𝜎

𝑆𝐵
) = 1 and aborts if

the check fails. Otherwise, 𝐵 sets sid
𝐵
= 𝐴‖𝑋‖𝐵‖𝑌

and computes𝐾
𝐵
= 𝑋

𝑦 and sk
𝐵
= 𝐻 (pid

𝐵
‖sid

𝐵
‖𝐾

𝐵
).

At the end of the protocol execution, 𝐴 and 𝐵 will
compute the same session key sk if they both hold the
same sets of pid and sid and thus compute the same Diffie-
Hellman key 𝐾 = 𝑔

𝑥𝑦.
We do not require 2PAKE to be instantiated with a proto-

col that provides either unilateral or mutual authentication,
as H3PAKE already provides mutual authentication between
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A BS

x ∈ Zq, X = g
x

𝜎AS = Mack𝐴𝑆 (A‖X‖pidA)

⟨A,X, 𝜎AS⟩

y ∈ Zq, Y = g
y

𝜎BS = Mack𝐵𝑆 (B‖Y‖pidB)

⟨B, Y, 𝜎BS⟩

Verk𝐴𝑆 (A‖X‖pidS, 𝜎AS) = 1
Verk𝐵𝑆 (B‖Y‖pidS , 𝜎BS ) = 1
𝜎SA = Mack𝐴𝑆 (S‖Y‖pidS)
𝜎SB = Mack𝐵𝑆 (S‖X‖pidS)

⟨S, Y, 𝜎SA⟩ ⟨S, X, 𝜎SB⟩

Verk𝐴𝑆 (S‖Y‖pidA, 𝜎SA) = 1
sidA = A‖X‖B‖Y

KA = Y
x

skA = H(pidA‖sidA‖KA)

Verk𝐵𝑆 (S‖X‖pidB, 𝜎SB) = 1
sidB = A‖X‖B‖Y

KB = X
y

skB = H(pidB‖sidB‖KB)

(pwA) (pwA, pwB) (pwB)

2PAKE (pwA → kAS) 2PAKE (pwB → kBS)

Figure 5: H3PAKE: our proposed generic 3-party PAKE protocol.

the server and the clients (via the MAC values exchanged in
Phase 2). Hence, any 2-party protocol that provides implicit
key authentication, including one-round protocols, will be
suitable candidates to instantiate 2PAKE.

4.3. Proof of SK Security. We claim that the generic con-
struction H3PAKE described in Figure 5 is SK-secure in the
random oracle model under the GDH assumption in G and
the security of the MAC scheme Σ.

Theorem 15. Let 𝐻 be a random oracle. Then, for any
adversary with time complexity at most 𝑡 and query complexity
at most 𝑄 = ⟨𝑞

𝑒𝑥𝑒𝑐
, 𝑞

𝑠𝑒𝑛𝑑
, 𝑞

𝑟𝑒V𝑒, 𝑞𝑐𝑜𝑟𝑟
, 𝑞

𝑡𝑒𝑠𝑡
⟩, its advantage in

breaking the SK security of H3PAKE is bounded by

Adv
𝐻3𝑃𝐴𝐾𝐸 (𝑡, 𝑄) ≤ 2 ⋅ Adv

2𝑃𝐴𝐾𝐸
(𝑡

󸀠
, 𝑄

󸀠
)

+ 2 ⋅ 𝑞
𝑠𝑒𝑛𝑑

⋅ Adv
Σ
(𝑡

󸀠
, 2, 2)

+ 2 ⋅ Adv
𝐺𝐷𝐻

G (𝑡
󸀠
) ,

(2)

where 𝑄
󸀠
= ⟨2𝑞

𝑒𝑥𝑒𝑐
, 𝑞

𝑠𝑒𝑛𝑑
, 𝑞

𝑠𝑒𝑛𝑑
, 𝑞

𝑐𝑜𝑟𝑟
, 2𝑞

𝑒𝑥𝑒𝑐
+ 𝑞

𝑠𝑒𝑛𝑑
⟩ and

𝑡
󸀠 is the maximum time required to perform the experiment
Exp

0
involving an adversary who attacks H3PAKE with time

complexity 𝑡.

Proof. Assume a ppt adversary A who attacks H3PAKE
with time complexity 𝑡 and query complexity 𝑄 = ⟨𝑞exec,
𝑞send, 𝑞reve, 𝑞corr, 𝑞test⟩. We prove the theorem by making a
series of modifications to the experiment Exp

0
, bounding

the difference in A’s advantage between two consecutive
experiments, and ending up with an experiment in whichA’s
advantage is negligible. By Succ

𝑖
, we denote the event thatA

correctly guesses the hidden bit 𝑏 (chosen by the Test oracle)
in experiment Exp

𝑖
.

Before presenting the first modified experiment, we
define the notion of a clean instance.

Definition 16. We say an instance Π
𝑖

𝑈
is unclean if A has

queried Corrupt (𝑈󸀠
) for some𝑈󸀠

∈ pid𝑖

𝑈
. Otherwise, we say

it is clean.

Experiment Exp
1
. This experiment is different from Exp

0

only in that we replace each differentMACkeywith a random
key drawn uniformly from {0, 1}

ℓ for all clean instances.
The difference in A’s advantage between Exp

0
and Exp

1
is

bounded by the following lemma.

Lemma 17. |Pr
𝐻3𝑃𝐴𝐾𝐸,A[Succ1

] − Pr
𝐻3𝑃𝐴𝐾𝐸,A[Succ0

]| ≤

Adv
2𝑃𝐴𝐾𝐸

(𝑡
󸀠
, 𝑄

󸀠
), where 𝑡󸀠 and𝑄󸀠 are as defined inTheorem 15.

Proof. We prove the lemma by constructing an adversary
A󸀠 attacking protocol 2PAKE from the adversary A whose
advantage in attacking H3PAKE is different between Exp

0

andExp
1
.A󸀠 begins by choosing a bit 𝑏 uniformly at random.

Then,A󸀠 runsA as a subroutine while simulating the oracles
as follows.

Execute Queries. When A makes an Execute (Π𝑖

𝐴
, Π𝑗

𝐵
, Π𝑘

𝑆
)

query, A󸀠 first checks if any of 𝐴, 𝐵, and 𝑆 was previously
corrupted.

(i) If so,A󸀠 answers the Execute query as in experiment
Exp

0
.

(ii) Otherwise, A󸀠 answers the query using its own
oracles. A󸀠 first asks two queries Execute (Π𝑖

𝐴
, Π𝑘

𝑆
)



The Scientific World Journal 11

and Execute (Π𝑗

𝐵
, Π

𝑘
󸀠

𝑆
). LetT

2PAKE andT󸀠

2PAKE be
two transcripts returned in response to the Execute

queries. Next, A󸀠 makes the queries Test (Π𝑖

𝐴
)

and Test (Π𝑗

𝐵
) and receives in return two keys 𝑘

𝐴𝑆

and 𝑘
𝐵𝑆

(either real or random). A󸀠 then generates
the rest of the protocol transcript (i.e., the messages
to be sent in Phase 2), using 𝑘

𝐴𝑆
and 𝑘

𝐵𝑆
as the MAC

keys. Finally, A󸀠 returns these messages together
with T

2PAKE andT
󸀠

2PAKE after ordering them properly.

Send Queries. Whenever A makes a Send (Π𝑖

𝑈
, 𝑚) query,

A󸀠 checks if 𝑚 is a message for initiating a new session
(of H3PAKE) or the Send query belongs to an execution of
2PAKE.

(1) If both conditions are untrue, A󸀠 responds to the
query as in experiment Exp

0
.

(2) Otherwise, A󸀠 answers it by making the same query
to its own Send oracle. If the query prompts Π𝑖

𝑈
to

accept, then A󸀠 checks if anyone in pid𝑖

𝑈
was previ-

ously corrupted.

(a) If so, A󸀠 makes a Reveal (Π𝑖

𝑈
) query and uses

the output of this Reveal query as the MAC key
of Π𝑖

𝑈
.

(b) Otherwise,A󸀠 makes a Test (Π𝑖

𝑈
) query (unless

the partner of Π𝑖

𝑈
has already been tested) and

uses the output of this Test query as the MAC
key of Π𝑖

𝑈
.

Reveal Queries. These queries are handled as in experiment
Exp

0
.

Corrupt Queries.A󸀠 answers these queries in the straightfor-
ward way using its own Corrupt oracle.

Test Queries. A󸀠 answers these queries according to the bit
𝑏 that it has chosen at the beginning of the simulation. That
is,A󸀠 returns real session keys, which it has computed on its
own, if 𝑏 = 1, and otherwise returns random keys chosen
uniformly at random from {0, 1}

𝜅.

At some point in time, A will terminate and output its
guess 𝑏󸀠. When this happens, A󸀠 outputs 1, if 𝑏 = 𝑏

󸀠, and 0
otherwise.

From the simulation, it is obvious that

(i) the probability thatA󸀠 outputs 1when its Test oracle
returns real session keys is equal to the probability
thatA correctly guesses the bit 𝑏 in experiment Exp

0
;

(ii) the probability thatA󸀠 outputs 1when its Test oracle
returns random keys is equal to the probability thatA
correctly guesses the bit 𝑏 in experiment Exp

1
.

This means thatAdv2PAKE (A󸀠
) = |PrH3PAKE,A[Succ1

] −

PrH3PAKE,A[Succ0
]|. Since A󸀠 has at most time complexity

𝑡
󸀠 and query complexity𝑄󸀠

= ⟨2𝑞exec, 𝑞send, 𝑞send, 𝑞corr,
2𝑞exec + 𝑞send⟩, we obtain Lemma 17.

Experiment Exp
2
. Let Forge be the event that the adversary

Amakes a Send query of the form Send (Π𝑖

𝑈
,𝑉‖∗‖𝜎) before

querying Corrupt (𝑈) and Corrupt (𝑉), where 𝜎 is a valid
tag on𝑉‖ ∗ ‖pid𝑖

𝑈
and was not output by a previous oracle

query as a tag on 𝑉‖ ∗ ‖pid𝑖

𝑈
. Then Exp

2
is different from

Exp
1
only in that, if Forge occurs, the experiment is aborted

and the adversary does not succeed. We claim the following
lemma.

Lemma 18. |Pr
𝐻3𝑃𝐴𝐾𝐸,A[Succ2

] − Pr
𝐻3𝑃𝐴𝐾𝐸,A[Succ1

]| ≤

𝑞
𝑠𝑒𝑛𝑑

⋅ Adv
Σ
(𝑡

󸀠
, 2, 2), where 𝑡󸀠 is as defined in Theorem 15.

Proof. Given the adversaryA attacking H3PAKE and assum-
ing that the event Forge occurs, we construct an algorithm
F that outputs, with a nonnegligible probability, a forgery
against the MAC scheme Σ. The algorithmF is given oracle
access toMac

𝑘
(⋅) andVer

𝑘
(⋅). The goal of F is to produce a

message/tag pair (𝑚, 𝜎) such that (1) Ver
𝑘
(𝑚, 𝜎) = 1 and (2)

𝜎was not previously output by theMac
𝑘
(⋅) oracle on input𝑚.

Let 𝑛 be the number of all different MAC keys that are
established via a Send query of A. Clearly, 𝑛 ≤ 𝑞send. F
begins by choosing a random 𝛼 ∈ {1, . . . , 𝑛}. Let 𝑘

𝛼
denote the

𝛼th key among all the 𝑛 MAC keys, and letSend
𝛼
be a Send

query that should be answered and/or verified using 𝑘
𝛼
. F

invokes A as a subroutine and handles the oracle calls of A
as in experiment Exp

1
except that it answers all Send

𝛼
queries

by accessing its MAC generation and verification oracles.
As a result, the 𝛼th MAC key 𝑘

𝛼
is never used during the

simulation. If Forge occurs against an instance that holds
𝑘

𝛼
, F halts and outputs the message/tag pair generated by

A as its forgery. Otherwise, F halts and outputs a failure
indication.

If the guess 𝛼 is correct, then the simulation is perfect
and F achieves its goal. Namely, Adv

Σ
(F) = Pr[Forge]/𝑛.

Since 𝑛 ≤ 𝑞send, we get Pr[Forge] ≤ 𝑞send ⋅ AdvΣ
(F). Then,

Lemma 18 follows by noticing that F has at most time
complexity 𝑡󸀠 and makes at most two queries toMac

𝑘
(⋅) and

Ver
𝑘
(⋅).

Experiment Exp
3
. This experiment is different from exper-

iment Exp
2
only in that the Execute and Send oracles are

simulated as in “the Exp
3
modification” described in Box 2.

Since the view of A is identical between Exp
2
and Exp

3
,

following Lemma 19 is clear.

Lemma 19. Pr
𝐻3𝑃𝐴𝐾𝐸,A[Succ3

] = Pr
𝐻3𝑃𝐴𝐾𝐸,A[Succ2

].

In experiment Exp
3
, the advantage of A in attacking

H3PAKE is bounded by the following lemma.

Lemma 20. Pr
𝐻3𝑃𝐴𝐾𝐸,A[Succ3

] ≤ (1/2) + Adv𝐺𝐷𝐻

G (𝑡
󸀠
) where

𝑡
󸀠 is as defined in Theorem 15.

Proof. The proof is via a reduction from the GDH problem
which is believed to be hard. Assume that the advantage ofA
in attackingH3PAKE is nonnegligible.Thenwe can construct
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The Exp3 Modification
WhenA asks an Execute or Send query, the simulator answers it exactly as in experiment Exp2,
except that it modifies the way of generating the public Diffie-Hellman values (denoted as𝑋 and
𝑌 in the protocol) as follows:

(i) The simulator chooses two random V
1
, V

2
∈ Z

𝑞
and computes 𝑉

1
= 𝑔

V1 and 𝑉
2
= 𝑔

V2 .
(ii) For each instance Π𝑖

𝐶
, the simulator chooses a random 𝑟 ∈ Z

𝑞
, computes

𝑅 = {
𝑉

1

𝑟 if 𝐶 appears first in pid𝑖

𝐶

𝑉
2

𝑟 if 𝐶 appears second in pid𝑖

𝐶
,

and uses 𝑅 as the public Diffie-Hellman value (i.e., as 𝑋 or 𝑌) of Π𝑖

𝐶
.

Box 2

Deciding𝑚 ?

= kds𝑖
𝐶

Given a string𝑚 and a tuple (pid𝑖

𝐶
, sid𝑖

𝐶
, 𝑅, ∗, 𝑅

󸀠
, ∗),AGDH first checks if the bit-length of𝑚 is

equal to the bit-length of key derivation strings. If it is, thenAGDH checks that (1) pid𝑖

𝐶
‖sid𝑖

𝐶
is

a prefix of𝑚 and (2) O(𝑅, 𝑅󸀠
, 𝑚G) = 1 where𝑚G is a |G|-bit string that is a suffix of𝑚. If both

are true, then𝑚 = kds𝑖
𝐶
.

Box 3

an algorithm AGDH that has a nonnegligible advantage in
solving the GDH problem in G. The goal of AGDH is to
compute and output the value𝑊

3
= 𝑔

𝑤
1
𝑤
2 ∈ G when given a

CDH-problem instance (𝑊
1
= 𝑔

𝑤
1 ,𝑊

2
= 𝑔

𝑤
2) ∈ G as well as

an oracle O(⋅, ⋅, ⋅) that solves the DDH problem in G. AGDH
runsA as a subroutine while simulating all the oracles on its
own.

When A asks an Execute and Send query, AGDH
answers it as specified in the Exp

3
modification but using𝑊

1

and𝑊
2
instead of𝑉

1
and𝑉

2
. In this way,AGDH can embed the

CDH-problem instance (𝑊
1
,𝑊

2
) into all protocol sessions.

Accordingly, AGDH can compute no session keys but can
still correctly answer Reveal queries by storing all the keying
materials associated with each instance. For each instance
Π

𝑖

𝐶
whose only remaining work is to compute its session

key, AGDH checks if the instance Π
𝑖

𝐶
is clean or unclean.

If it is clean, AGDH stores a tuple (pid𝑖

𝐶
, sid𝑖

𝐶
, 𝑅, 𝑟, 𝑅

󸀠
, 𝑟

󸀠
)

into a list, which we denote as CDHList, where 𝑅 = 𝑊
1

𝑟

and 𝑅
󸀠

= 𝑊
2

𝑟
󸀠

. Here, the exponent 𝑟 (resp., 𝑟󸀠) is the
one chosen for the instance whose user identity comes
first (resp., second) in pid𝑖

𝐶
. If it is unclean, AGDH stores

a tuple (pid𝑖

𝐶
, sid𝑖

𝐶
, 𝑅, 𝑟, 𝑅

󸀠
, ⊥) if 𝐶 comes first in pid𝑖

𝐶
or a

tuple (pid𝑖

𝐶
, sid𝑖

𝐶
, 𝑅, ⊥, 𝑅

󸀠
, 𝑟

󸀠
) if 𝐶 comes second in pid𝑖

𝐶
. Here,

⊥ indicates that the exponent of the received public Diffie-
Hellman value may have been chosen byA.

While imbedding the CDH-problem instance as above,
AGDH has to provideA with the same view as in experiment
Exp

3
. To this end, let 𝑘𝑑𝑠 be a key derivation string from

which a session key is computed by applying the random
oracle 𝐻. Let 𝑘𝑑𝑠𝑖

𝐶
denote the 𝑘𝑑𝑠 of instance Π

𝑖

𝐶
. Then,

𝑘𝑑𝑠
𝑖

𝐶
= pid𝑖

𝐶
‖sid𝑖

𝐶
‖𝐾

𝑖

𝐶
. As is clear from the above simulation,

AGDH cannot compute any 𝑘𝑑𝑠 on its own. But, given a
string𝑚,AGDH can determine whether𝑚 is the 𝑘𝑑𝑠 of some
instance Π

𝑖

𝐶
or not by repeatedly performing the deciding

operation for the tuples in CDHList as in Box 3.

The simulation of other oracles is provided as follows.

HQueries.AGDH uses a list, HList, to maintain input-output
pairs of𝐻. For each𝐻 query on a string𝑚,AGDH first checks
if an entry of the form (𝑚, ℎ) is in HList. If it is,AGDH returns
ℎ to A. Otherwise, AGDH checks if 𝑚 is the 𝑘𝑑𝑠 of some
instanceΠ𝑖

𝐶
by repeatedly performing the deciding operation

above until a match is found.

(i) If a match is found and the corresponding tuple is of
the form (pid𝑖

𝐶
, sid𝑖

𝐶
, 𝑅, 𝑟, 𝑅󸀠, 𝑟󸀠), AGDH computes

𝑊
3
= (𝑚G)

1/𝑟𝑟
󸀠

and terminates outputting𝑊
3
. In this

case,AGDH succeeds in solving the GDH problem.

(ii) If a match is found and the corresponding tuple is of
the form (pid𝑖

𝐶
, sid𝑖

𝐶
, 𝑅, 𝑟, 𝑅󸀠, ⊥) or (pid𝑖

𝐶
, sid𝑖

𝐶
, 𝑅, ⊥,

𝑅
󸀠, 𝑟󸀠),AGDH checks if a tuple of the form (pid𝑖

𝐶
, sid𝑖

𝐶
,

𝑅, 𝑅󸀠, sk) is in the RList which is maintained by
AGDH to store revealed session keys. If it is, AGDH
returns sk toA and adds (𝑚, sk) to HList. Otherwise,
AGDH returns a random 𝜅-bit string 𝑠𝑡𝑟 toA and adds
(𝑚, 𝑠𝑡𝑟) to HList.

(iii) Otherwise,AGDH returns a random 𝜅-bit string 𝑠𝑡𝑟 to
A and adds (𝑚, 𝑠𝑡𝑟) to HList.

Reveal Queries. When A asks a Reveal (Π𝑖

𝐶
) query, AGDH

finds a tuple of the form (pid𝑖

𝐶
, sid𝑖

𝐶
, 𝑅, ∗, 𝑅

󸀠, ∗) in CDHList
and checks if a tuple of the form (pid𝑖

𝐶
, sid𝑖

𝐶
, 𝑅, 𝑅󸀠, sk) is in the

RList. If it is,AGDH returns sk toA. Otherwise,AGDH checks
if HList contains an entry (𝑚, ℎ) such that 𝑚 = 𝑘𝑑𝑠

𝑖

𝐶
. Given

the tuple (pid𝑖

𝐶
, sid𝑖

𝐶
, 𝑅, ∗, 𝑅

󸀠
, ∗), this check can be done by

performing the deciding operation for all entries in HList. If
such entry (𝑚, ℎ) exists in HList,AGDH returns ℎ in response
to the query and adds the tuple (pid𝑖

𝐶
, sid𝑖

𝐶
,𝑅, 𝑅󸀠, ℎ) into
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RList. Otherwise,AGDH returns a random 𝜅-bit string 𝑠𝑡𝑟 to
A and adds the tuple (pid𝑖

𝐶
, sid𝑖

𝐶
, 𝑅, 𝑅󸀠, 𝑠𝑡𝑟) into RList.

Corrupt Queries.AGDH answers these queries in the obvious
way.

TestQueries. For each of these queries,AGDH responses with
a random 𝜅-bit string.

Let Ask be the event thatAmakes an𝐻 query on a string
𝑚 that is the 𝑘𝑑𝑠 of some fresh instance. From the simulation
of𝐻, it can be easily seen that as soon as Ask occurs,AGDH
outputs the desired result 𝑊

3
= 𝑔

𝑤
1
𝑤
2 and thus succeeds in

solving the GDH problem in G. But, since 𝐻 is a random
oracle, A gains no advantage in distinguishing the test keys
from random if the event Ask does not occur. This implies
the assertion of Lemma 20.

This result combined with Lemmas 17–19 concludes the
proof for Theorem 15.

4.4. Proof of Resistance to Undetectable Online Dictionary
Attacks. We now claim that H3PAKE is secure against a UD
online dictionary attack as long as the given 2-party protocol
2PAKE is SK-secure.

Theorem 21. Assume that, for any ppt adversary A󸀠 asking
at most 𝑞

𝑠𝑒𝑛𝑑
Send queries,Adv

2𝑃𝐴𝐾𝐸
(A󸀠

) is only negligibly
larger than 𝑞

𝑠𝑒𝑛𝑑
/|D|. Then, for any ppt adversary A ask-

ing at most 𝑞
𝑠𝑒𝑛𝑑

Send queries, Pr
𝐻3𝑃𝐴𝐾𝐸,A[Undet] is only

negligibly larger than 𝑞
𝑠𝑒𝑛𝑑

/|D|, where Undet is as defined in
Section 3.3.

Proof. Let A be an adversary who asks 𝑞send Send

queries in attacking the protocol H3PAKE. Assume
that Pr H3PAKE,A[Undet] is nonnegligibly larger than
𝑞send/|D|. Given the adversary A, we prove the theorem by
constructing an adversary A󸀠 against 2PAKE who asks at
most 𝑞send Send queries but has an advantage nonnegligibly
larger than 𝑞send/|D|.

A󸀠 invokes A as a subroutine and answers the oracle
queries ofA as follows.

Execute Queries. When A makes an Execute (Π𝑖

𝐴
, Π

𝑗

𝐵
,

Π
𝑘

𝑆
) query, A󸀠 answers the query using its own Execute

and Reveal oracles. A󸀠 first queries Execute (Π𝑖

𝐴
, Π

𝑘

𝑆
)

and Execute (Π𝑗

𝐵
, Π

𝑘
󸀠

𝑆
). LetT2PAKE andT󸀠

2PAKE be two
transcripts returned in response to the Execute

queries. Next, A󸀠 obtains two keys 𝑘
𝐴𝑆

and 𝑘
𝐵𝑆

by
querying Reveal (Π𝑖

𝐴
) and Reveal (Π𝑗

𝐵
). A󸀠 then generates

the rest of the protocol transcript, using 𝑘
𝐴𝑆

and 𝑘
𝐵𝑆

as
the MAC keys. Finally, A󸀠 returns these messages together
withT2PAKE andT󸀠

2PAKE after ordering them properly.

Send Queries. When A makes a Send (Π𝑖

𝑈
, 𝑚) query, A󸀠

checks if 𝑚 is a message for initiating a new session (of
H3PAKE) or the Send query belongs to an execution of
2PAKE.

(1) If both conditions are untrue, A󸀠 responds to the
query as that in the original experiment Exp

0
.

(2) Otherwise, A󸀠 answers it by making the same query
to its own Send oracle. If the query prompts Π𝑖

𝑈
to

accept,A󸀠 checks if Π𝑖

𝑈
is a server instance against

whichA has mounted an online dictionary attack. If
not, A󸀠 makes a Reveal (Π𝑖

𝑈
) query (and later uses

the output of this Reveal query as the MAC key of
Π

𝑖

𝑈
). (How to handle the other case will be explained

below.)

Corrupt Queries. A󸀠 answers these queries using its
own Corrupt oracle.

Reveal/Test Querise. A󸀠 answers these queries as in the
original experiment Exp

0
.

Let Π
𝑡

𝑆
be any server instance against which A has

mounted an online dictionary attack. Let 𝑘𝑡

𝑆
be the session key

that the instanceΠ𝑡

𝑆
has computed in its execution of 2PAKE.

In order for the instanceΠ𝑡

𝑆
to terminate normally, the adver-

saryA has tomake a query of the form Send (Π𝑡

𝑆
, 𝐶‖ ∗ ‖𝜎

𝐶𝑆
)

such thatVer
𝑘
𝑡

𝑆

(𝐶‖ ∗ ‖pid𝑡

𝑆
, 𝜎

𝐶𝑆
) = 1. When A makes such

a Send query (i.e., when the event Undet occurs),A󸀠 makes
a Test query against the instance Π𝑡

𝑆
. Note that the instance

Π
𝑡

𝑆
is fresh as (1) it is partnered with no instance and

(2) 𝑆 and 𝐶 must have not been corrupted. Let 𝑘
𝑡

𝑆
be the

key returned in response to the Test query. A󸀠 outputs
1, ifVer

𝑘
𝑡

𝑆

(𝐶‖ ∗ ‖pid𝑡

𝑆
, 𝜎

𝐶𝑆
) = 1, and outputs 0, otherwise.

If Undet does not occur,A󸀠 outputs a random bit.
From the simulation above, it is clear to see that

Adv
2PAKE (A

󸀠
)

= 2 ⋅ Pr
2PAKE,A󸀠 [Succ] − 1

= 2 ⋅ (PrH3PAKE,A [Undet]

+
1

2
(1 − PrH3PAKE,A [Undet])) − 1

= PrH3PAKE,A [Undet] .

(3)

Then, Theorem 21 immediately follows since the number
of Send queries asked by A󸀠 against 2PAKE is at most
𝑞send.

5. Concluding Remarks

The undetectable online dictionary attacks we presented
against the widely studied GPAKE protocol of Abdalla et
al. [8, 9] are a reminder of the difficulty of designing a
secure yet efficient 3-party PAKE protocol. The GPAKE
protocol was proven secure in a model that does not capture
undetectable online dictionary attacks, and thus, our attacks
do not invalidate the proof of security for GPAKE.

We also presented a simple and intuitive approach of
capturing all classes of dictionary attacks in the framework
of the widely accepted Bellare-Pointcheval-Rogaway model.
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Whatmotivated our approach is the observation that no prior
work has provided a rigorous formal treatment of insider
(online/offline) dictionary attacks in the password-only 3-
party setting and as a consequence 3-party PAKE protocols
insecure against such attacks have proliferated. We believe
that our approach provides protocol designers with an easier
andmore accessible way of proving security of their protocols
against dictionary attacks.

Finally, we presented a generic 3-party PAKE protocol
(H3PAKE) and proved its security in the random oracle
model under the gap Diffie-Hellman assumption. To the best
of our knowledge, H3PAKE is the first 3-party PAKE protocol
proven secure against both insider and outsider dictionary
attacks as well as offline and online dictionary attacks. Future
work includes coming up with a 3-party PAKE protocol
that achieves the same (or even better) level of security and
efficiency as H3PAKE but does not rely its security proof on
the random oracle model.
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