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able and willing to travel abroad to a proton facility. 
Commonly accepted indications for referral include 
chordoma and chondrosarcoma, intraocular mela-
noma, and solid tumours in children and adolescents 
who have the greatest risk for long-term sequelae. 
Current data do not provide sufficient evidence to 
recommend routine referral of patients with most 
head-and-neck, breast, lung, gastrointestinal tract, 
and pelvic cancers, including prostate cancer. It is 
recommended that all referrals be considered by a 
multidisciplinary team to select appropriate cases.
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1.	 INTRODUCTION

In proton-beam therapy (pbt), high-energy protons 
enter the body, depositing less radiation dose at the 
body surface and most at the end of their range, 
deep in tissue (called the Bragg peak). The result is 
a minimal dose deep to the target, sharply contrast-
ing with the exponential attenuation of dose along 
the beam path of photons (X-rays). The result is that 
pbt can spare radiation dose to healthy uninvolved 
tissues outside the target, potentially reducing the 
risk of radiation injury1.

By December 2013, 111,088 patients worldwide 
had been treated with pbt2. Historically, the high capi-
tal cost of proton facilities equipped with rotational 
gantries (exceeding US$160 million)3 has limited 
the number of facilities in operation; however, that 
number is now increasing rapidly (see Table  i). In 
the 10 years up to 2014, the number of facilities in 
the United States alone grew to thirteen from two3. 
Compact single-room cyclotron centres have drasti-
cally reduced the capital cost (estimated at less than 
US$50 million) and account for 10 of the 22 facilities 
under construction worldwide2. In Canada, the tri-
umf Proton Treatment Facility in Vancouver, British 
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Background

Compared with photon therapy, proton-beam therapy 
(pbt) offers compelling advantages in physical dose 
distribution. Worldwide, gantry-based proton facili-
ties are increasing in number, but no such facilities 
exist in Canada. To access pbt, Canadian patients 
must travel abroad for treatment at high cost. In the 
face of limited access, this report seeks to provide 
recommendations for the selection of patients most 
likely to benefit from pbt and suggests an out-of-
country referral process.

Methods

The medline, embase, PubMed, and Cochrane da-
tabases were systematically searched for studies 
published between January 1990 and May 2014 
that evaluated clinical outcomes after pbt. A draft 
report developed through a review of evidence was 
externally reviewed and then approved by the Al-
berta Health Services Cancer Care Proton Therapy 
Guidelines steering committee.

Results

Proton therapy is often used to treat tumours close 
to radiosensitive tissues and to treat children at risk 
of developing significant late effects of radiation 
therapy (rt). In uncontrolled and retrospective stud-
ies, local control rates with pbt appear similar to, or 
in some cases higher than, photon rt. Randomized 
trials comparing equivalent doses of pbt and photon 
rt are not available.

Summary

Referral for pbt is recommended for patients who 
are being treated with curative intent and with an 
expectation for long-term survival, and who are 

 
Curr Oncol, Vol. 21, pp. 251-262; doi: http://dx.doi.org/10.3747/co.21.2207



PATEL et al.

252
Current Oncology—Volume 21, Number 5, October 2014
Copyright © 2014 Multimed Inc. Following publication in Current Oncology, the full text of each article is available immediately and archived in PubMed Central (PMC).

Columbia, makes a fixed beam suitable for the treat-
ment of intraocular melanomas available episodically 
through the year4. Gantry-equipped facilities capable 
of treating a broad range of tumour sites are not cur-
rently available in Canada.

Patients with diagnoses other than intraocular 
melanoma must travel outside Canada to access pbt. 
In most cases, decisions to fund referrals are made 
case-by-case by the provincial ministries of health. 
The mean cost per referral is estimated at $200,000 
for treatment including daily anesthesia, concurrent 
chemotherapy, and hospitalization when required. 
Additional costs, including those for travel, accom-
modation, and meals, can be incurred by patients.

The present report reviews the latest clinical 
evidence on the efficacy of pbt, provides recommen-
dations for the selection of patients most likely to 
benefit from referral, and proposes an out-of-country 
referral process for Canadian patients.

2.	 METHODS

2.1	 Literature Search

The medline, embase, PubMed, and Cochrane Li-
brary databases were systematically searched for 
studies published in the English language between 
January 1, 1990, and May 25, 2014. Search terms 
were “protons” (mesh) and “radiotherapy” (mesh), 
“proton therapy” (mesh), “proton beam” (key word), 

“particle beam therapy” (key word), or “charged 
particle therapy” (key word). Two reviewers (XK, 
SP) screened citations for studies evaluating clini-
cal outcomes after pbt (Figure  1). Reference lists 
of publications and personal files were searched for 
additional citations.

A search for ongoing trials at http://clinicaltrials.
gov/, performed May 25, 2014, identified 218 trials 
involving pbt, including 20 randomized controlled 
trials (rcts), of which only 6 are comparing pbt with 
photon radiation therapy (rt).

2.2	 Recommendation Development

The present report was produced by the Alberta 
Health Services (ahs) Cancer Care Proton Therapy 
Guidelines working group through review and inter-
pretation of evidence. The working group was tasked 
with drafting guidelines and clinical pathways for the 
care of patients who could potentially be candidates 
for pbt. The draft report was distributed by electronic 
survey to 17 Alberta physicians (59% response rate) 
from across tumour groups for external review. 
Feedback was incorporated into the draft, which was 
then approved by the steering committee and posted 
on the external ahs Web site in March 2013 (updated 
in June 2014).

table i	 Proton-beam facilities equipped with rotational gantries 
at March 24, 20142

Country Facilities (n)

In Under Planned
operation constructiona

United States 13 9 1
Japan 8 4
Germany 3 1
France 1 1
South Korea 1 1
China 1 1
Switzerland 1 1
Czech Republic 1
Austria 1
Italy 1
Poland 1
Saudi Arabia 1
Sweden 1
Taiwan 1
Netherlands 4
England 2
TOTAL 29 22 9

a	 First patient to be treated during or before 2016.
figure 1	 Literature search, draft preparation, and validation 
process.

http://clinicaltrials.gov/
http://clinicaltrials.gov/
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The report was developed as part of the mandate 
of the ahs Proton Therapy Referral Committee to 
provide advice to the Out-of-Country Health Ser-
vices Committee that considers funding for patients 
referred for medical care to facilities outside Canada.

3.	 RESULTS

3.1	 Pediatrics

Childhood cancer survivors who undergo rt are at 
high risk of deleterious effects on growth and devel-
opment and of tissue late effects, including second-
ary malignancies5. Models strongly suggest a lower 
risk of secondary malignancies in children treated 
with pbt because of improved dose distribution and a 
lower volume of normal tissue exposed to radiation6,7. 
Preliminary data from a review of 86 children with 
retinoblastoma demonstrated a lower 10-year cumu-
lative incidence of rt-associated or in-field secondary 
malignancies with pbt than with photon rt (0% vs. 
14%, p = 0.015)8. A review of 558 patients treated at 
the (then) Harvard Cyclotron Laboratory, matched 
to 558 patients from the Surveillance, Epidemiology, 
and End Results database who received photon rt, 
demonstrated fewer subsequent cancer events after 
pbt (4.2% vs. 7.5%; adjusted hazard ratio: 0.52; p = 
0.009)9. However, limitations in epidemiologic data 
prevent conclusions being drawn10.

The rational for using pbt for central nervous 
system (cns) lesions is compelling. Compared with 
photon intensity-modulated rt (imrt), pbt can achieve 
substantial sparing of normal tissue during cranio-
spinal irradiation in medulloblastoma (including 
the cochlea and heart11) and during boost therapy 
(hippocampus12 and subventricular zone13). In Monte 
Carlo simulations comparing pbt with photon rt for 
predicted reductions in ototoxicity, endocrine defi-
ciencies, cardiac disease, and secondary malignan-
cies in medulloblastoma survivors, pbt was found to 
be cost-effective and to be associated with greater 
quality-adjusted life years14. In 96% of simulations, 
pbt outperformed photon rt. The significant intel-
lectual and academic decline that follow cranial rt15 
were not modelled because of a lack of cost data for 
productivity loss secondary to cognitive decline. 
Despite concerns that linear energy transfer varia-
tions in proton beams can alter patterns of failure, a 
review of 109 children with medulloblastoma treated 
with pbt suggested that the patterns of failure were 
similar to those with photon rt16.

For craniopharyngiomas, planning studies show 
that, compared with imrt, pbt delivers a lower integral 
dose to the hippocampus, dentate gyrus, and subven-
tricular zone17 and a lower dose to the optic chiasm, 
cochlea, brain, and scanned body18. In 5 children and 
10 adults treated with combined proton–photon rt, 
Fitzek et al.19 reported actuarial 5- and 10-year local 
control rates of 93% and 85% respectively.

Young age, proximity to critical structures, and 
expectation for a high tumour control rate make pbt 
an ideal modality for children with ependymoma20. A 
review of 70 children with intracranial ependymoma 
treated with pbt reported high rates of 3-year local 
control and overall survival (83% and 95% respec-
tively) at a median follow-up of 46 months20. Few 
children treated with pbt developed growth hormone 
deficiency (n = 2), central hypothyroidism (n = 1), or 
hearing loss (n = 2). Amsbaugh et al.21 reported local 
control and overall survival rates of 100% at a mean 
follow-up of 26 months in 8 children with spinal ep-
endymoma treated with pbt. No patients experienced 
grade 3 or greater adverse events.

Studies of tumours outside the cns—including 
skull base chordoma and chondrosarcoma22,23, uveal 
melanoma23,24, germ-cell tumours25, high-risk neuro-
blastoma26,27, parameningeal rhabdomyosarcoma28, 
bladder and prostate rhabdomyosarcoma29, other soft 
tissue sarcomas30, Ewing sarcoma31, and mediastinal 
Hodgkin lymphoma32—uniformly showed that pbt is 
well tolerated, with local control rates similar to or 
higher than those achieved with photon rt. Although 
planning studies and early clinical results are promis-
ing, long-term data supporting a clear advantage of 
pbt over photon rt are not yet available. Increased 
enrollment into clinical trials, including multicentre 
and registry trials with appropriate statistical designs 
and long-term follow-up, is needed33.

3.2	 Chordoma and Chondrosarcoma

Chordoma and chondrosarcoma often occur in close 
proximity to critical neural tissues such as the optic 
pathway, brainstem, or sacral plexus, posing chal-
lenges in the delivery of curative doses of rt. His-
torical series of photon rt demonstrated 5-year local 
control rates in the 20% range34,35, which improved in 
small series of stereotactic36 and image-guided rt37 
(published only in abstract form) to 50% and 77% 
respectively for skull base chordoma and to 100% 
and 93% respectively for skull base chondrosarco-
mas. A review of 621 patients treated with combined 
proton–photon rt at the Harvard Cyclotron Labora-
tory reported 5-year local relapse-free and overall 
survival rates of 73% and 80% respectively for 
skull base chordoma and 98% and 91% respectively 
for skull base chondrosarcomas38. Similar results 
from the Paul Scherrer Institute were reported with 
spot-scanned intensity-modulated proton therapy, 
including 94% freedom from grade 3 or 4 toxicity 
at 5 years39. Full-dose re-irradiation for recurrent 
or progressive chordoma, with or without salvage 
surgery, demonstrated encouraging 2-year rates of 
local control (85%) and overall survival (80%), with 
late grade 3 or 4 toxicity occurring in 3 of 16 cases40.

Delaney et al. reported long-term results of a 
phase ii study of combined proton–photon rt for spinal 
chordoma, chondrosarcoma, and other sarcomas. The 
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8-year actuarial local control was 85% for primary 
tumours41. Randomized data comparing proton with 
photon rt are not available. Differences in outcome 
for those rt modalities are confounded by extent of 
resection, dose escalation, and patient selection biases.

3.3	 Intraocular Melanoma

Management of intraocular melanoma aims to pre-
serve the eye and functional vision while achieving 
a high rate of tumour control. Protons are useful in 
treating larger tumours or tumours close to the fovea 
or optic disc that are not suitable for plaque brachy-
therapy. Local control and eye preservation rates 
exceed 90% at 5 years42–46. In 59 patients treated 
with pbt at triumf in Vancouver, the 5-year actuarial 
local control rate was 91% (97% in patients treated 
with 60 GyE), with an overall eye conservation rate of 
80%46. The 5-year actuarial rate of neovascular glau-
coma was 31% at a median follow-up of 63 months. 
Radiation retinopathy (74%) and optic neuropathy 
(64%) were common in-field adverse events. Those 
results compare favourably with results from series 
using stereotactic photon rt, which spares the patient 
from surgical insertion of localization clips47,48. How-
ever, in the Canadian series, Krema et al.47 reported 
higher actuarial rates of neovascular glaucoma (42% 
after a short median follow-up of 37 months) than 
were reported with proton rt46.

A single-centre review of 2069 patients treated 
with pbt demonstrated a 15-year actuarial local con-
trol rate of 95%49. The cumulative rate of enucleation 
was 16%, most frequently because of neovascular 
glaucoma, blindness with ocular discomfort, or local 
recurrence. In an effort to reduce toxicity, Gragou-
das et al.50 randomized 188 patients to standard or 
reduced-dose pbt and observed less visual field loss, 
with maintenance of local control and metastatic 
death rates, in those receiving the lower dose. In a 
review of 597 patients, Wilson and Hungerford51 
reported similar local control rates with pbt and 125I 
plaque brachytherapy. A review of 73 patients with 
recurrence after pbt suggested that, compared with 
enucleation, re-irradiation with pbt does not compro-
mise overall survival52.

3.4	 Central Nervous System

The dosimetric advantages of pbt compared with pho-
ton rt include the former’s ability to deliver high doses 
with steeper gradients to nearby critical structures. 
Whether those advantages result in a reduction in 
late effects such as neurocognitive function, vascular 
events, and second malignancies requires evaluation. 
For high-grade glioma, pbt has resulted in survival 
times typical for highly selected patients53, but pbt is 
likely more useful in the treatment of benign tumours 
such as arteriovenous malformations (avms), menin-
giomas, acoustic neuromas, and pituitary adenomas, 

where long-term survivors are at risk of significant late 
effects, including secondary malignancies.

Among 248 patients with 254 cerebral avms (23% 
in deep locations) treated with single-fraction proton 
stereotactic radiosurgery (psrs), the median time to 
total obliteration was 31 months, and the 5- and 10-
year cumulative incidences of total obliteration were 
70% and 91% respectively, comparing favourably 
with obliteration rates reported using photon radio-
surgery, including Gamma Knife (Elekta, Stockholm, 
Sweden)54. In 59 patients with high-risk cerebral 
avms treated with two-fraction psrs because of large 
size or eloquent brain location, median time to total 
obliteration was long at 62 months, with a low 5-year 
actuarial total obliteration rate of 33%55. Median time 
to obliteration was similar (49 months) in 44 children 
with high-risk cerebral avms treated with psrs56. Those 
data suggest that avms can be safely treated with psrs; 
however, no randomized comparisons between proton 
and photon rt have been published.

Studies of benign meningiomas treated with pbt 
show local control rates that are comparable to those 
achieved with photon rt57–60. In an older study, the 
use of pbt without modern spot-scanning and image-
guidance appeared to be associated with worse mor-
bidity than was seen with contemporaneous photon 
rt60. For acoustic neuromas, 100% local control at 
a mean follow-up of 34 months was observed in 30 
patients with poor hearing treated with pbt61. Among 
88 patients treated with single-fraction psrs, the 
5-year actuarial local control was 94%62. The 5-year 
actuarial rates for preservation of normal facial and 
trigeminal nerve function were 91% and 89% respec-
tively and appeared to be higher than those seen with 
low-dose photon radiosurgery63, but the differences 
could have been a result of patient selection.

Proton craniospinal irradiation has been pro-
posed to spare dose to vertebral bodies and to reduce 
acute gastrointestinal and hematologic toxicity in 
adults64. In 40 adults with medulloblastoma, less 
nausea and vomiting, weight loss, and hematologic 
toxicity was associated with proton craniospinal 
irradiation than with photon rt, with 2-year overall 
survival being similar65.

3.5	 Head and Neck

Multiple in silico studies have demonstrated dosimet-
ric advantages for pbt in head-and-neck cancers, but 
clinical data are limited1. Data for sinonasal tumours 
are particularly encouraging66–69. Resto et al.66 re-
viewed 102 patients with locally advanced sinonasal 
tumours of varying histologies treated with pbt alone 
or combined with photons. The 5-year rates of lo-
cal control and overall survival were, respectively, 
95% and 90% with complete resection, 82% and 
53% with partial resection, and 87% and 49% with 
biopsy alone. Truong et al.69 reported 2-year local 
control and overall survival rates of 86% and 53% 
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respectively in 20 patients with primary sphenoid 
sinus tumours treated with pbt. A meta-analysis of 
86 observational and 8 in silico studies demonstrated 
that, in paranasal and sinonasal cancer, 5-year local 
control rates were significantly higher for treatment 
with pbt than for treatment with imrt (88% vs. 66%, 
p = 0.035)70. In other head-and-neck cancers, limited 
data indicate that toxicity tends to be lower with pbt 
and that rates of local control and survival are similar 
to those achieved with photon rt70.

3.6	 Prostate

More than 2000 men with prostate cancer treated 
with pbt have been reported, and many patients 
travel considerable distances for pbt71. Three rcts 
to test the efficacy of dose escalation using pbt have 
compared combined proton–photon rt with photon 
rt72,73. Shipley et al.72 treated 202 advanced-stage 
patients with 4-field photon rt (50.4 Gy), then ei-
ther proton (25.2 GyE) or photon (16.8 Gy) boost 
rt. An increase in local control with higher dose 
was noted for subjects with high-grade disease. In 
the prog-9509 study, 393 patients with clinically 
localized prostate cancer received pbt boosts of 
either 19.6  GyE or 28.8  GyE, and 4-field photon 
rt (50.4 Gy)73. Higher rt reduced the 10-year bio-
chemical failure rate (7.1% vs. 28.2%, p < 0.0001) 
without increasing grade 3 or greater late urinary 
or rectal morbidity. A case-match analysis of the 
196 men on the high-dose arm of that trial and 203 
similar men treated with brachytherapy revealed 
similar 8-year biochemical failure rates74. Kim et 
al.75 randomized 88 T1–3 prostate cancer patients 
to 5 hypofractionated arms that showed similar 
biochemical control rates and low rates of grade 3 
or greater toxicity (2%); however, a control arm of 
standard fractionation was not included.

The University of Florida reported 5-year patient-
reported outcomes from three prospective trials of 
image-guided proton-only therapy76. Prospectively 
collected quality-of-life scores during the first 2 years 
were similar in 1243 men after pbt and 204 men af-
ter imrt77. Gray et al.78 reported that pbt, conformal 
photon rt, and imrt all result in similar clinically 
meaningful reductions in bowel (but not urinary) 
quality-of-life scores at 24 months.

Retrospective data from the Surveillance, Epi-
demiology, and End Results database comparing pbt 
with imrt are controversial79,80. A review of 27,647 
Medicare beneficiaries demonstrated no reductions 
in toxicity at 12 months after treatment and sub-
stantially higher cost for pbt compared with imrt71. 
Dosimetric studies suggest that the greatest benefit 
of using pbt is lower mean integral dose, potentially 
reducing the risk of secondary malignancies81, but 
clinical data are lacking. Currently, pbt appears to 
hold no clear benefit over imrt for the management 
of patients with prostate cancer.

3.7	 Other Sites

Other sites—including breast and lung cancers, gas-
trointestinal tract malignancies, and lymphoma—are 
reviewed in the full report available on the external 
Web site http://www.albertahealthservices.ca/hp/
if-hp-cancer-guide-rt002-proton-beam-rt.pdf. For 
those disease sites, pbt demonstrates no clear advan-
tages over photon rt.

4.	 DISCUSSION

Adoption of new technologies in situations of un-
certain clinical benefit is hotly debated82–84. Many 
innovations, including cobalt-60 units, linear accel-
erators, electron beams, imrt, and image-guided rt, 
have entered into clinical practice without phase iii rct 
evidence82. The guiding principle for those advances 
was to deliver doses “as low as reasonably achievable” 
(alara principle). The current situation with respect 
to pbt is similar, with numerous dosimetric studies 
demonstrating potential advantages with pbt85. It has 
been argued that randomization between proton and 
photon rt would be unethical because normal tissues 
would be exposed to extra dose without any anticipated 
gain in the tumour control achieved with photons82. 
Fully informed patients aware that the risk of radia-
tion injury increases with dose and volume irradiated 
might, appropriately, be unwilling to enrol in rcts. 
Goitein and Cox83 have questioned whether equipoise, 
a state of genuine uncertainty about the superiority 
of one arm or the other that ethically justifies a trial 
between two treatments86, can be met in this situation, 
but others disagree84. Uncertainties about the range of 
protons in tissue (arising from patient set-up and mo-
tion, beam delivery, and dose calculation), especially 
in the spot-scanning of moving targets, could limit the 
physical benefits of pbt87.

Despite the controversies, efforts to generate 
high-level evidence are under way, including six rcts 
comparing proton and photon rt. The multicentre 
partiqol rct in patients with low-risk and low-to-
intermediate–risk prostate cancer is comparing 
bowel quality-of-life as the primary endpoint (http://
clinicaltrials.gov/show/NCT01617161). The Radiation 
Therapy Oncology Group is comparing overall sur-
vival in patients with inoperable non-small-cell lung 
cancer (http://clinicaltrials.gov/show/NCT01993810). 
These studies include cost effectiveness and quality-
of-life as secondary endpoints. Enrollment at the 
MD Anderson Cancer Centre into four rcts of 
intensity-modulated proton therapy compared with 
imrt for glioblastoma (http://clinicaltrials.gov/show/
NCT01854554), head-and-neck cancer (http://clinical​
trials.gov/show/NCT01893307), and esophageal 
cancer (http://clinicaltrials.gov/show/NCT01512589), 
and stereotactic body proton versus photon rt for 
non-small-cell lung cancer (http://clinicaltrials.gov/
show/NCT01511081) include late effects as a primary 

http://www.albertahealthservices.ca/hp/if-hp-cancer-guide-rt002-proton-beam-rt.pdf
http://www.albertahealthservices.ca/hp/if-hp-cancer-guide-rt002-proton-beam-rt.pdf
http://clinicaltrials.gov/show/NCT01993810
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endpoint. Large registry studies collecting quality-
of-life data in pediatric (http://clinicaltrials.gov/show/
NCT01115777) and adult patients (http://clinicaltrials.
gov/show/NCT01255748) have proceeded. In silico 
trials, such as those from the rococo consortium88, 
could help to guide clinical trial development.

The lack of rcts comparing proton with photon rt 
required our working group, like other authors1,89–97, 
to make recommendations based on prospective co-
hort and retrospective data. Loeffler et al.1 suggested 
that patients with the highest priority for charged-
particle therapy include those with chordomas or 
chondrosarcomas of the skull base, large uveal and 
mucosal melanomas, large unresectable sarcomas, 
renal cell carcinoma, pancreatic and liver cancers, 
and most pediatric patients. In 2012, the emerging 
technology committee of the American Society for 
Radiation Oncology reported on the benefits of pbt 
for large ocular melanomas and chordomas and the 
dosimetric benefits for craniospinal irradiation in 
pediatric patients89. That report suggested the su-
periority of proton over photon rt for pediatric cns 
tumours; however, the data were insufficient to sup-
port a firm recommendation. The authors suggested 
that evidence was also insufficient to recommend 
pbt outside of clinical trials in head-and-neck, lung, 
gastrointestinal, and non-cns pediatric cancers. 
Three systematic reviews published in 2007 reported 
insufficient evidence to recommend pbt for most 
disease sites90–92; however, one concluded that the 
evidence was sufficient to support pbt in chordomas 
and large ocular tumours, while not reviewing pe-
diatric indications92.

In June 2014, the American Society for Radia-
tion Oncology released a model policy to address 
coverage for pbt93. Their policy considers pbt reason-
able when clinical benefit can be expected from the 
sparing of surrounding normal tissue that cannot be 
adequately achieved using photon rt—for example, 
when the target volume is close to one or more criti-
cal structures and a steep dose gradient outside the 
target must be achieved, when a decrease in dose 
inhomogeneity is needed to avoid an excessive dose 
hotspot, when a photon technique would increase the 
risk of clinically meaningful normal-tissue toxicity, 
or when the same or an immediately adjacent area 
has previously been irradiated. England, Denmark, 
and the Netherlands have released national guidelines 
for pbt referral (Table ii).

Factors other than diagnosis should be taken 
into account when deciding whether pbt confers a 
reasonable expectation of benefit over photon rt. The 
working group recommends that, to ensure that re-
ferred patients will have sufficient risk of late effects 
that could be reduced with pbt, the treatment intent 
should be curative and the patient’s expected sur-
vival should be 5 years or more. In Alberta, criteria 
do not specifically exclude patients with metastatic 
disease or cases involving re-irradiation (which are 

excluded in the English guidelines94). Not all patients 
will be able and willing to relocate to a foreign city, 
often for 6–8 weeks, for pbt treatment planning and 
delivery. The psychosocial, occupational, and finan-
cial consequences patients endure while away from 
home cannot be overstated85. Fully informed patients 
should be told of the lack of high-level evidence sup-
porting pbt. Patients or parents of pediatric patients 
who cannot travel for pbt for whatever reason could 
potentially be left with lifelong guilt that they did not 
undergo “optimal” treatment85. The working group 
recommends that every referral be discussed by a 
multidisciplinary team to provide transparency and 
accountability in the selection process. In Alberta, 
that team requests generation of proton and photon rt 
treatment plans for an assessment of the magnitude 
of the potential benefit of pbt in cases in which the 
dosimetric benefit of pbt is unclear.

Proton-beam technology is an evolving field. 
Passive scattering to produce a proton field is used 
in most facilities currently in operation98,99. Most 
published clinical studies are of patients treated with 
such fields. Faster energy changes between neighbor-
ing layers and overall dose delivery are advantages 
of passive scattering, but the need for patient-specific 
collimators (apertures) to laterally shape the beam 
reduces clinical efficiency100. In uniform scanning, a 
proton pencil beam is magnetically scanned in lateral 
directions to produce a large field101,102. Because no 
scattering material is in the beam path, the maxi-
mum range of such beams is slightly higher, but as 
in passive scattering, patient-specific collimators are 
needed for uniform scanning100. In spot scanning, a 
proton pencil beam is scanned over the target with-
out the need for an aperture or compensator103. This 
technology, available in a limited number of facilities, 
allows for the delivery of intensity-modulated proton 
therapy. Relative to imrt, neutron contamination 
from passively-scattered proton beams potentially 
increases the risk of secondary malignancies5, but 
spot-scanning drastically reduces neutron produc-
tion104. An evaluation of whether young children 
should be referred only to spot-scanning facilities 
is required.

The economics of referral will become increas-
ingly important as patient volumes increase. In 
Alberta, the number of referrals more than doubled 
in the year after recommendations were posted on 
the external Web site (Table iii). The working group 
recommends that patients with intraocular mela-
nomas be sent to the triumf facility in Vancouver 
to minimize out-of-country costs. Cost savings for 
other diagnoses could potentially be achieved by 
negotiation of provincial contracts with one or more 
preferred pbt providers. Referral to a single facility 
could also potentially promote communication and 
research collaboration105. Pediatric referrals should 
be made to a facility with a multidisciplinary pe-
diatric oncology team. A national contract with a 
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preferred provider incorporating provincial cancer 
agencies and ministries of health could be negoti-
ated, but would depend on the support of all stake-
holders. If the 2013 Alberta rates of pbt utilization 

and health expenditure (11 referrals at a mean 
cost per referral of approximately $200,000) are 
extrapolated to Canada (based on 2013 population 
estimates106), the nationwide cost for an estimated 

table ii	 Recommended indications for proton-beam therapy from other nations

Nation Recommendations

United States Group 1: Group 2:
  (astro)a,93 •	 Ocular tumours, including intraocular melanomas

•	 Skull base tumours, including chordoma and  
chondrosarcoma

•	 Primary or metastatic spinal tumoursb

•	 Primary or benign solid tumours in children,  
including occasional palliative treatments

•	 Patients with genetic syndromes such as  
neurofibromatosis type 1and retinoblastoma

•	 Hepatocellular cancer with hypofractionated regimens

All other indications are suitable when the patient is  
enrolled in a clinical trial or patient registry.

Englandc,94 All ages: Pediatric (<16 years of age):
•	 Skull base chordoma or chondrosarcoma, spinal 

chordoma
•	 Spine and paraspinal bone and soft-tissue sarcomas 

(non-Ewing)

•	 Ependymoma
•	 Selected low-grade gliomas
•	 Craniopharyngioma
•	 Pineal parenchymal tumours (not pineoblastoma)
•	 Rhabdomyosarcoma
•	 Ewing sarcoma
•	 Pelvic sarcoma
•	 Retinoblastoma
•	 Esthesioneuroblastoma

Denmarka,95 Adults: Children and young adolescents:
•	 Chordoma and chondrosarcoma, other skull base 

sarcomas
•	 Ependymoma
•	 Primitive neuroectodermal tumour
•	 Pituitary adenoma and sphenoidal meningioma
•	 Acoustic neuroma
•	 Arteriovenous malformation
•	 Germinoma (brain, thorax, and abdomen)
•	 Eye and orbital tumours
•	 Lymphoma
•	 Selected sarcomas
•	 Nasopharyngeal cancer recurrences

•	 Medulloblastoma
•	 Ependymoma
•	 Craniopharyngioma
•	 Germinoma
•	 Optic pathway glioma
•	 Retinoblastoma
•	 Nephroblastoma
•	 Osteosarcoma or Ewing sarcoma
•	 Other sarcomas

Netherlandsa,96 Standard indications: Potential indications:
•	 Skull base or spinal chordoma and chondrosarcoma
•	 Other intracranial, spinal, and paraspinal tumours, 

including meningioma
•	 Pediatric tumours, including bone tumours,  

soft-tissue sarcoma, low-grade glioma, meningioma,  
medulloblastoma, ependymoma, and neuroblastoma

•	 Re-irradiation (intracranial tumours, head and 
neck cancer)

•	 Paranasal sinus tumours
•	 Nasopharyngeal carcinoma
•	 Retroperitoneal sarcoma

a	� Indications for proton therapy within a clinical trial or patient registry are not listed.
b	� Where the spinal cord would exceed the tolerance with photon therapy or has previously been irradiated.
c	� Additional requirements: curative intent, good performance status (World Health Organization 0–1), no other coincident diagnoses 

likely to limit 5-year survival or to make a prolonged period abroad difficult to manage, no metastatic disease, no re-treatment cases, 
weight 150 kg or less. Rhabdomyosarcoma includes orbital, parameningeal, head and neck, and pelvic sites only.

astro = American Society for Radiation Oncology
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96 referrals would be $19.2 million annually and 
growing. Referral patterns and actual costs across 
Canada have not yet been studied.

5.	 SUMMARY

Evidence from a literature review, consensus of 
expert opinion, feedback obtained through a review 
process, and final approval given by the steering 
committee form the basis of these recommendations, 
which were completed in March 2013 and updated 
in June 2014.

5.1	 Target Population

These recommendations apply to pediatric and adult 
patients being considered for treatment with rt.

5.2	 Recommendations

1.	 Factors other than diagnosis should be taken into ac-
count in assessing whether pbt confers a reasonable 
expectation of clinical benefit over photon therapy 
such as imrt, stereotactic rt, and brachytherapy.

2.	 These general requirements for referral and ap-
proval of funding must all be met:
xx �The treatment is being delivered with cura-

tive intent.
xx �There is a reasonable expectation that overall 

survival will reach or exceed 5 years.
xx �The patient’s Eastern Cooperative Oncology 

Group performance status is 0–2.
xx The patient is able and willing to travel.

3.	 Commonly accepted indications for referral 
include
xx chordoma and chondrosarcoma;
xx �intraocular melanomas that are not suitable 

for plaque brachytherapy; and
xx �tumours of children and adolescents, includ-

ing those requiring craniospinal irradiation, 
low-grade glioma, ependymoma, cranio-
pharyngioma, germ-cell tumours, pituitary 

and pineal tumours (not pineoblastomas), 
rhabdomyosarcoma, Ewing sarcoma, pelvic 
sarcomas, and mediastinal lymphoma.

4.	 Indications in adults with possible benefit from 
referral include
xx �benign tumours of the cns, including avm, 

benign meningioma, acoustic neuroma, 
pituitary and pineal tumours (not pineoblas-
tomas), and craniopharyngioma; and

xx paranasal sinus and nasal cavity tumours.
5.	 Patients with other head-and-neck, breast, lung, 

gastrointestinal tract, and pelvic cancers, includ-
ing prostate cancer, are not recommended for rou-
tine referral because of an insufficient evidence 
base. However, individual cases of any diagnosis 
can be considered in a multidisciplinary setting.

6.	 All referred cases should be discussed by a 
multidisciplinary team that includes a radiation 
oncologist. After that discussion, approval of 
funding is required by most provincial ministries 
of health. Once approved, responsibility for the 
referral, ongoing communication with the pbt 
facility, and post-treatment follow-up remains 
with the referring oncologist (Figure 2).

7.	 Patients with intraocular melanomas should be 
referred to the triumf Proton Treatment Facility 
in Vancouver. Other patients will require refer-
ral to a proton facility outside Canada. A current 
list of facilities in operation is available on the 
Particle Therapy Co-Operative Group Web site2.

5.3	 Qualifying Statement

Funding for referral for pbt is generally considered 
on a case-by-case basis by the Ministry of Health 
in each province. In Alberta, the Out-of-Country 
Health Services Committee, a regulated commit-
tee operating at arm’s length from the Ministry of 
Health and Alberta Health Services, reviews ap-
plications for hospital and physician services that 
are not available in Canada. Applications for pbt 
referral require documentation of case review at 
the ahs Proton Therapy Referral Committee mul-
tidisciplinary rounds, where discussion follows the 
recommendations reported here.
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table iii	 Patients referred out-of-country for proton-beam therapy 
from Alberta, 2009–2013

Fiscal
yeara

Referrals

Funding applications Cases denied Cases funded

2009 5 1 4
2010 4 0 4
2011 7 2 5
2012 4 0 4
2013b 11 0 11

a	� Each fiscal year starts April 1 and ends March 31 of the follow-
ing year.

b	� Recommendations for referral were posted on the external Web 
site in March 2013.
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