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The increased demand and consumption of fossil fuels have raised interest in finding renewable energy sources throughout the
globe.Much focus has been placed on optimizingmicroorganisms and primarilymicroalgae, to efficiently produce compounds that
can substitute for fossil fuels. However, the path to achieving economic feasibility is likely to require strain optimization through
using available tools and technologies in the fields of systems and synthetic biology. Such approaches invoke a deep understanding
of the metabolic networks of the organisms and their genomic and proteomic profiles. The advent of next generation sequencing
and other high throughput methods has led to a major increase in availability of biological data. Integration of such disparate
data can help define the emergent metabolic system properties, which is of crucial importance in addressing biofuel production
optimization. Herein, we review major computational tools and approaches developed and used in order to potentially identify
target genes, pathways, and reactions of particular interest to biofuel production in algae. As the use of these tools and approaches
has not been fully implemented in algal biofuel research, the aim of this review is to highlight the potential utility of these resources
toward their future implementation in algal research.

1. Introduction

Biofuel production frommicroalgae has been receiving atten-
tion as an alternative energy source due to its high biomass
productivity and minimal land resource requirement. How-
ever, there is still a need to improve algal productivity in
order to make algal-based bioproducts economically viable.
Metabolic network reconstructions of algae can offer insight
into genetic modification strategies that can be used to
improvemicroalgal strains. A large number of computational
tools have been developed, allowing a range of analyses
and predictions, based on genetic and thermodynamic con-
straints embedded in in the network, to identify bioengineer-
ing strategies that can result in enhanced biofuel production
of the engineered algal strain. Although a fair number of algal
genomes have been fully sequenced, only a few metabolic
network models have been reconstructed for these species,
hampering algal bioengineering progress [1].

The utilities of metabolic network models span over
several types of applications. On one hand, these models

help contextualizing high throughput experimental data, for
example, integrating gene expression data with metabolic
pathways under different growth conditions [2]. Metabolic
models can also unveil targets for metabolic engineering
approaches, which can lead to increased production of target
metabolites [3] or preferentially increase respiration rates
[4]. On the other hand, with the availability of large and
diverse biological data sets, metabolic network models can
provide a framework to integrate such omics data and allow
the formulation and testing of downstream hypotheses. Last,
cross-species metabolic comparison represents one more
utility of such reconstructions through which identification
of differentially activatedmetabolic pathways can be achieved
among other comparative analyses [5]. Herein we review
the reconstruction of metabolic network models and major
computational tools and pipelines that hold the potential
to contribute to the optimization of algal strains for biofuel
production. We describe a number of tools that remain
mostly unused by the algal research community. This is
reflected from the observation that only 7 algal-based PGDBs
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Table 1: Databases and tools for metabolic network reconstruction.

Database Link
Algal Functional Annotation Tool http://pathways.mcdb.ucla.edu/algal/index.html
BiGG http://bigg.ucsd.edu/
BioCyc http://biocyc.org/
Biomart http://www.biomart.org/index.html
BRENDA http://www.brenda-enzymes.info/
COBRA http://opencobra.sourceforge.net/openCOBRA/
ExPASy http://www.expasy.org/
KBASE http://kbase.us
KEGG http://www.genome.jp/kegg/
Model SEED http://www.theseed.org/wiki/Main Page
MetaCyc http://metacyc.org/
Pathway Tools http://pathwaytools.org/
Reactome http://www.reactome.org/PathwayBrowser/
UniProt http://www.uniprot.org

(Pathway/Genome Database) are available in Pathway Tools
[6], while approximately 3,500 PGDBs are available for non-
algal species (please see below formore information).The use
of some of the herein discussed tools, already applied to the
multitude nonalgal organisms, ranging fromhuman toE. coli,
provides strategies for algal biofuels optimization with major
enhancement potential.

2. Metabolic Network Model Reconstruction

Metabolic network reconstruction from genomic and large-
scale experimental data can help understand and predict
metabolic processes and pathways. A number of tools
and databases have been developed specifically to facili-
tate metabolic network reconstruction. In addition, new
analysis tools and approaches are being developed along
with the expansion of relevant databases and resources.
Table 1 presents some of the existing databases and tools for
metabolic network reconstruction.

Metabolic network reconstruction requires informa-
tion on gene-protein-reaction associations to reconstruct
evidence-based, species-specific networks. Protein database
resources and tools help to link information between
enzymes, EC numbers, genes, proteins, pathways, and sub-
strates.These include BRENDA [7], ExPASy [8], and UniProt
(Universal Protein Resource) [9]. BRENDA (BRaunschweig
ENzyme DAtabase) enzyme portal is the enzyme infor-
mation system, which integrates information from seven
databases to provide functional biochemical and molecu-
lar data. To explore and visualize metabolic networks as
maps of metabolic pathways, a number of freely available
pathway databases exist. For example, BioCyc, MetaCyc
[10], KEGG (Kyoto Encyclopedia of Genes and Genomes)
[11], Reactome [12], and BiGG [13] can be named. In turn,
common metabolic reconstruction tools include COBRA
(more specifically its rBioNet component) [14–16], Model
SEED [17], and Pathway Tools [6].

Pathway Tools [6, 18] is an integrated software tool that
can create in a semiautomated manner organism-specific

network and pathways databases (called Pathway/Genome
Database, or PGDB). The PGDBs are essentially knowledge
bases that users can query and visualize. For instance,
dead-end metabolite analysis and visualization of predicted
reaction fluxes can be done easily under “cellular overview”
option of the software (Figure 1(a)). A collection of approxi-
mately 3,530 PGDBs can be found in BioCyc, which users can
visualize, manage, and analyze. Out of these 3,530 PGDBs,
only 7 relate to algae (both prokaryotic and eukaryotic),
namely,Thalassiosira pseudonana, Nannochloropsis gaditana,
Acaryochloris marina, Anabaena cylindrica, Anabaena vari-
abilis, Synechococcus elongatus, and Chlamydomonas rein-
hardtii. None of the aforementioned algal PGDBs are well-
curated with most of them having had slight validation.
One of the intensively curated PGDBs is MetaCyc [19–21],
which serves as a generic knowledge base that organism-
specific networks can be reconstructed from. Homo sapiens
(HumanCyc), E. coli (EcoCyc), and Arabidopsis (AraCyc)
are some examples of curated, species-specific knowledge
bases that can be found in BioCyc (http://biocyc.org/). Kbase
(http://kbase.us/) and Biomart [22] are other examples of
knowledge bases and knowledge-management platforms that
are freely available and allow integration and reconciliation of
a variety of data sources.

Genome-scale metabolic reconstructions have continued
to expand along with the increased availability of sequenced,
annotated genomes. Recent reviews describe the timeline
of the appearance of publicly available metabolic models
since 1999 for eukaryotes, prokaryotes and archea, and the
algorithms that were used [23, 24]. The processes require
inputs from different databases and experimental validations.
A standard procedure for the reconstruction of genome-scale
metabolic networks has been described in detail byThiele and
Palsson [25].

The process of network reconstruction, starting from
genome sequences to the finished reconstructed network,
is generally time-consuming and labor-intensive. Therefore,
automation of the process has been of interest. A limited
number of software tools for automated reconstruction are
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Figure 1: A screen shot of (a) Pathway Tools based on C. Reinhardtii (unpublished data) (b) Metdraw (based on the C. reinhardtii iRC1080
metabolic model [82]) (c) Paint4net visualization of C. reinhardtii central metabolism (based on iAM303 model [84]) flux distribution is
shown with forward and reverse fluxes (green and blue, respectively).

Table 2: Selected software for genome-scalemetabolic reconstruction (adapted fromLiao et al., 2012 [27]; Agren et al., 2013 [33]; andHamilton
and Reed, 2014 [34]).

RAVEN Model SEED SuBliMinal GEMSiRV Pathway Tools COBRA toolbox

Input
Annotated
genome
sequence

Genome annotated
in RAST Species name Model in sbml

format
Annotated genome
sequence

Model in sbml
format

Reference
databases KEGG SEED KEGG, MetaCyc KEGG MetaCyc N/A

Interface MatLab Web Command line Software Web, software MatLab

License Free (requires a
MatLab license) Free Free Free

Free for academic
and government
use

Free (requires a
MatLab license)

Simulation Yes Yes No Yes Yes Yes

Visualization Yes Yes (with
Cytoscape plug-in) No Yes Yes Yes

(with plug-in)

currently available (some examples are given in Table 2); for
instance, AUTOGRAPH [26], GEMSiRV [27], MicrobesFlux
[28],MetRxn [29],Model SEED [17, 30], SuBliMinaLToolbox
[31], FAME [32], and RAVEN Toolbox [33] can be named. A
systematic comparison between some of these platforms can
be found in [34]. While draftmetabolic models can be gener-
ated through such software tools, intensive manual curation

is still needed to resolve errors; wrong assignments, fill gaps
and reconcile inconsistencies in the generated network.

3. Pathway Visualization

Visualization is a powerful approach to leverage understand-
ing of pathways and reconstructed metabolic networks. In
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metabolic networks, nodes represent metabolites and edges
denote reactions. There are a number of web-based tools to
visualize biochemical and metabolic pathways; for example,
Biocarta (http://www.biocarta.com/), ExPaSy (Expert Pro-
tein Analysis System, http://www.expasy.org/), and KEGG
(Kyoto Encyclopedia of Genes and Genomes) can be named;
however, most are static pages with only a few resources
allowing authorized users to edit the pathways. The advan-
tages that BioCyc/MetaCyc offer compared to KEGG include
the ability to carry out pathway analysis, operon prediction,
or comparative pathway analysis (for more details see [35])
and visualize the results.

Cytoscape [36, 37] is a biological network visualization
and data integration tool that can be used to visualize
the results from FBA studies (please see Constraint Based
Analysis section for information on FBA). CytoSEED [38] is a
Cytoscape plug-in to visualize results from the Model SEED.
Fluxviz [39] is another Cytoscape plug-in to visualize flux
distribution in the molecular interaction network. VANTED
[40, 41] is another data visualization and data integration tool
which can be utilized as a stand-alone tool. FluxMap [42] and
FBA-SimVis [43] are VANTED plug-in for visualization of
metabolic flux after FBA analysis. In addition, Paint4net [44]
is a tool to automatically generate maps of reaction fluxes in
conjunction with COBRA toolbox (Figure 1(c)).

Most recently, MetDraw [45], a new tool for visualization
of genome-scale metabolic networks, has been developed
(Figure 1(b)). This tool is compatible with systems biology
markup language (SBML) file inputs and allows export of
the map image as SVG files. It also allows visualization
of metabolomics and reaction fluxes added to gene-protein
expression data and overlays all of them on the reconstructed
network map. The range of file formats available for data
export render the postmodification of the maps, with com-
monly used image editing software, a simple task.

4. Model Refinement and Gap Filling

Although the generation of metabolic network models has
been gaining momentum, these models may not provide a
complete or accurate representation of metabolism. Particu-
larly, automated modeling has allowed the faster generation
of network models, yet reconciliation between the model
itself and the biochemical and genomic data is invariably
needed. Such model refinements lead to a more accurate
reconstruction, allowing more accurate downstream analy-
ses. A common step in such reconstruction refinements is
filling reaction gaps to decrease the numbers of dead-end
metabolites and enhance the network connectivity. Several
tools and algorithms have been set in place to address gap
finding and gap filling in metabolic network reconstructions.
Some of these tools include, but are not limited to, Gapfill,
MEP, GrowMatch, BNICE, and the hole filler in Pathway
tools.

4.1. Gapfind and Gapfill. These tools have been developed
using two distinct algorithms that initially identify (Gapfind)
what the authors have called a “no production” or “no

consumption” metabolites [46] through analyzing the pro-
duction or consumption fluxes in the metabolic model.
Subsequently, the identified no production/consumption
metabolites are considered as “gaps” and theGapfill algorithm
will attempt to fill them through four major ways. Initially,
the algorithm will consider all of the available reactions in
the model and reverse them; it will then attempt to import
reactions that involve the metabolites from well-curated
databases such as MetaCyc [10]. Lastly, it will attempt to
fill these gaps by adding transport reactions either internal
transport ones, as in from one cellular compartment to the
other, or external transport reactions that can either take from
or excrete to the extracellular medium.

4.2. MEP and Pathway Tools Hole Filler. On the other hand
MEP and Pathway Tools hole filler represent an alternative
approach that tackles the gap filling issue identifying missing
genes rather than missing reactions, and these tools achieve
this goal using expression data and species homology, respec-
tively. As such, this will eventually lead to the expansion of the
reconstructedmodel to includemore genes and enzymes and
possibly rewire the connectivity of the network [47, 48].

4.3. GrowMatch. This tool has been developed as a model
refinement tool rather than a gap filler tool where the aim
of such an application would be to reconcile inconsistencies
between metabolic model predictions in silico and growth
data in vivo. This computational tool can suggest suppression
of specific genes to resolve what is referred to as Growth
No Growth (GNG) inconsistencies and alternatively adds
functionalities to genes to resolveNoGrowth/Growth (NGG)
inconsistencies [49].

4.4. BNICE. It is a framework that considers specific path-
ways rather than the full-scale model and allows for the
optimization of the pathways. It identifies all possible chem-
ical compounds that can be produced by the reactions and
enzymes of the pathway [50]. Although this tool is not a
model refinement tool per se, the outcome of the pathway
optimization can ultimately lead to provisional addition of
compounds to the metabolic model and subsequent searches
(independently from the tool) for the corresponding genes to
provide genomic evidence for the pathway. This approach is
similar in outcome to the Gapfind/Gapfill approach.

All of the above and many more tools are of critical
importance in the manual curation of metabolic network
models. Although the above-mentioned tools ultimately lead
to a similar outcome, each may present unique advantages
and has specific requirements (Table 3).The choice and use of
such tools would thus lead to a higher quality reconstruction
and most importantly a higher predictive power.

5. Constraint-Based Modeling, FBA, and
Integration of Expression Data

Subsequent to generation of well-curated metabolic network
models of organisms, several downstream applications can
be used to explore the emergent system’s properties. Having
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Table 3: A comparative table contrasting some of the major model refinement tools.

Gapfind and
Gapfill GrowMatch BNICE MEP Pathway Tools

hole filler
Require a
reconstructed
metabolic model

Yes Yes No Yes Yes

Additional
requirements

External databases,
e.g., MetaCyc

Requires in vivo
data collection

Requires the
translation of
reactions and
substrates into
mathematical
matrices

Requires
expression data
analysis

Requires species
homology
analysis

Refinement
strategy

Identifies missing
reactions or
reverses available
reactions

Suppresses
genes or adds
functionalities
associated with
genes in the
initial model to
reconcile the
model with in
vivo data

Optimizes
pathways in a
way that can
provide
feedback into
the model
adding
compounds and
substrates

Identifies
missing genes in
the model

Identifies
missing genes in
the model

a network set in place, the fluxes of each of the compo-
nent reactions can be evaluated and moreover modified
in an attempt to increase or decrease the production or
consumption of key metabolites. In the case of algal biofuel
optimization, it is of high interest to achieve directional
overproduction of lipids that constitute the basis for algal
biofuels. Making use of the known metabolic networks and
via a constraint based modeling approach, the identification
of genes, pathways, and knockout strategies, that interfere
or alter, the expression profiles relevant to production of
enzymes related to lipid synthesis and metabolites involved
in lipid synthesis pathways is readily achievable. This can
be done through a number of computational tools with the
outcomes evaluated in silico using flux balance analysis (FBA)
[51] and further validated by in vivo experiments.

FBA constrains the metabolite fluxes and their bio-
chemical reactions by four main parameters: mass con-
servation, thermodynamics (reaction reversibility), steady
state assumption for internal metabolite concentrations, and
nutrient availability. Based on these constraints, reaction
boundaries are set, and a system of linear differential equa-
tions is solved with a biologically relevant objective function
optimized. The solution space for an FBA can be reduced
in size by more constraints and boundaries imposed on
reactions and fluxes where the optimal flux distribution
achieving the optimized function is a feasible solution for the
problem.

Some of the available tools and algorithms that are able
to perform such tasks include (but are not restricted to)
Optknock, Optstrain, Optflux, MTA, iMAT, BioMet toolbox,
PROM, GIMME, E-Flux, MADE, SIMUP, and TIGER, with
some allowing the integration of expression data to the
metabolic model. These tools are described below.

5.1. GIMME, iMAT, and MADE. Gene inactivity moderated
by metabolism and expression (GIMME) [52] is a tool that

allows for the integration of expression data to metabolic
networks yet optimizing the functionality of the model
towards a set objective function by minimizing the use of
reaction categorized as inactive. GIMME reduces the sets
of reactions to a binary on/off mode whereas each reaction
flux is compared to a set threshold and deemed “off” if the
flux does not reach that value [53, 54]. Similarly, integrative
metabolic analysis tool (iMAT) [55] performs the same task
as GIMME in such a way that transcript levels of genes are
compared and the corresponding reactions are then assigned
value of −1, 0, and 1 to refer to low, moderate, or high levels of
expression. Further ahead, the algorithm will then optimize
the model to make use of as many reactions having “1”
coefficient and decreases the reactions with “−1” coefficient
in order to achieve a set objective function. Here too, a
threshold needs to be set for expression data comparison to
be done. As both iMAT and GIMME require a manually set
threshold, this gives rise to biases. In an attempt to evade
such a complication, MADE [56], or metabolic adjustment
by differential expression, has been developed to carry out
similar tasks as the previous two tools yet without the
need of manual assignment of a threshold. It will rather
require as input expression data originating from more than
one condition and will then comparatively, based on the
differential expression of each of the genes under each of the
conditions, set a threshold based on which the reactions will
then be reduced to binary on/off code [53, 54].

5.2. E-Flux. While the above-mentioned tools allow the
incorporation of expression data to metabolic model recon-
structions and subsequently allow optimization of these
models towards a set objective function by suppressing
reactions categorized as inactive or of low activity, E-flux
allows for this optimization through constraining the upper
bounds of the metabolite fluxes based on the expression data
by imposing tight constraints on metabolites and reactions
where the fluxes will not reach a set value and vice versa [57].
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Table 4: A comparative table contrasting major constraint based modeling tools (adapted from Blazier and Papin 2012 [53]).

GIMME iMAT MADE E-Flux SIMUP MTA

Description

Determines sets of
active versus
inactive reactions
comparing
expression levels to
a set threshold
optimizing the
model towards a
set objective
function

Categorizes
reactions into high,
moderate, and low
expression and
solves
mathematical
equation to
optimize for an
objective function

Establishes a
differential
expression profile
using several
datasets
originating from
different growth
conditions

Sets upper
bounds for
lowly expressed
reactions using
an externally set
threshold to
evaluate
expression data
sets

Identifies
bioengineering
strategies that
force the cell to
coutilize
substrates
achieving a state
of “synthetic
survival”

Predicts gene
knockout
strategies that
would alter the
metabolic fluxes
in a cell in order
to achieve the
objective
function
assumed

Advantages Requires one set of
expression data

Requires no
knowledge of
metabolic
functions

Requires no
externally set
threshold for
expression levels

Requires no
reduction of
expression data
to an on/off
categorization

Achieves the
coutilization of
two sugars

Categorizes cell
metabolism as
“source” or
“target” with no
necessary a
priori
knowledge of
functionalities

Disadvantages

Requires an
externally set
threshold for
mRNA transcript
values

Categorizes genes
into high,
moderate, and low
expression

Requires more
than one dataset of
expression data to
establish
differential
expression profiles

Sets an upper
bound on fluxes
using a specific
function
converting
expression data

So far only
applicable to
sugars

Requires gene
expression
profiles in order
to identify
knockout
strategies

5.3. Optknock, Optstrain, and Optflux. These tools have been
used to identify gene knockout strategies (Optknock) [58]
that lead to the overproduction of a target metabolite or
overexpression strategies (Optstrain) [59] that result into an
optimized strain with respect to a set objective function.
Optflux on the other hand uses evolutionary algorithms
and the previously mentioned Optknock algorithm to iden-
tify metabolic engineering targets as well as a range of
other applications from phenotype simulations to metabolic
flux analysis and calculation of elementary flux mode
[60].

5.4. BioMet Toolbox. It is a web-based resource that can
be used to perform stoichiometric analyses and integra-
tion of transcriptome and interactome data to a metabolic
network. It also allows performing linear programming
simulations, optimizing for an increased or decreased
growth rate, as well as substrate consumption and pro-
duction. Single or double knockout simulations can also
be achieved as well as the detection of key metabo-
lites around which high transcriptional activity is noted
[61].

5.5. MTA. Metabolic transformation algorithm [62] is an
alternative approach that leads to the prediction of gene
knockout strategies able to shift the metabolism of a cell and
alter its state from a “source” state to a “target” state. Gene
expression profiles are used in order to predict knockouts that
modify the flux distribution of the source state in a way to
match the desired target state.

5.6. TIGER. It is a toolbox that can be used to integrate
expression, metabolic and regulatory information into a
genome scale model. It also accounts for gene-protein-
reaction associations and couples it with its regulatory profile.
One of its added values is its ability to identify model
inconsistencies and thus it allows for a modification of the
reconstructed network above and beyond being an integra-
tion tool [63].

5.7. SIMUP. Most recently, this algorithm was reported
offering one unique feature with respect to all of the above
introduced tools.The algorithm aids in identifying metabolic
engineering strategies that can force the cell to coutilize two
different sugar substrates thus, in effect, placing the cell in a
“synthetic survival” state in a way that the cell is now forced
to metabolize two different sugars simultaneously instead
of preferentially consuming one. The net effect can be to
simplify the fermentation cycle [64, 65].

In the context of biofuels, all of the above algorithms and
tools present huge potential for achieving higher production
of the desired bioproducts in microorganisms. The preferen-
tial use of one tool over the other may depend on the nature
of data available rather than the ultimate goal (Table 4).
The identification of knockout strategies that could alter the
lipid metabolism by overproducing it, or the detection of
highly regulated key metabolites in the lipid pathway, or even
achieving a strain able to coutilize two separate sources of
energy for its survival, all represent promising outcomes of
such applications and several attempts have been already
made making use of such algorithms (the results could be
found in more detail in the published articles [66, 67]).
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Figure 2: A schematic representation of a comparative design of electrical and analogous biological circuit. (a) and (d) represent the initial
states of the circuits in presence and absence of the input. (b), (c), (e), and (f) represent the designed circuit, addressing the issue raised by
the “wild type” design of (a) and (d) when the input signal is interrupted or is not present.

6. Omics Data Integration Tools

Beyond the integration of expression data to networkmodels,
a deeper understanding of the functional model requires
further integration of proteomics, metabolomics, fluxomics,
and phenotypic data with transcriptomics data. Computa-
tional tools and algorithms have been recently set forth to
achieve the aforementioned integrations. IOMA, MASS, and
MBA are examples of such endeavors.

6.1. IOMA. Integrative omics-metabolic analysis is an algo-
rithm that allows the integration of metabolomics and
proteomic data to the metabolic network model and also
evaluates the kinetics of the reactions included [68].

6.2. MASS. Mass action stoichiometric simulation [69]
achieves integration of fluxomic data on top of the

metabolomics and proteomics data sets which leads to
the dynamic reconstruction of the model in place.

6.3. MBA. Model-building algorithm [70] has been recently
reported with an added feature allowing it to also integrate
phenotypic data on top of all the above-mentioned omics
data sets, thus potentially leading to tissue-specific model
reconstruction.

With respect to phenotypic data, one interesting tool
that may generate such type of data and can be used in
conjunction with MBA, for example, is the Biolog phenotype
microarray technology [71, 72]. The Biolog is a powerful
technology providing high-throughput quantitation of phe-
notypic data, useful in identifying additional biochemical
assays and improving a metabolic model reconstruction.

The phenotype microarray (PM) technology developed
by Biolog (Hayward, CA, USA) can be used for the
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Figure 3: A conceptual representation of algal model reconstruction and refinement, integrating various sets of omics data and experimental
validation of predictions (based on Manichaikul et al., 2009 [84]).

phenotypic analysis. Biolog is an in vitro assay that measures
the respiration of cells as a function of time in hundreds
of microwells simultaneously. Each PM plate contains 96
wells seeded with different metabolite and monitored auto-
matically over time via the OmniLog machine. Metabolite
utilization within the cell is determined by the amount of
color development produced by a tetrazolium-based redox
dye. Various 96-well metabolite plates (or PMs) can be used
to measures carbon source, nitrogen, sulfur, and phosphorus
utilization phenotypes. Some plates were used to test for
osmotic/ion and pH effects. Data analysis is performed using
the opm software package [73]. The Biolog technology has
also been successfully used to fill gaps in metabolic networks
to enhance models [74].

7. Bioengineering, Parts and Circuits

With all of the above tools readily available to use and
many others currently in use but not described in this
review, the identification of new pathways and reactions
has been made easier than ever before. In the context of
bioengineering, the significance of these computational tools
is in guiding wet-bench experimental design as opposed to
providing solely theoretical insight into the system as awhole.
More specifically, with regard to biofuel production, the
identification of knockout strategies or differential expression
of genes or enzymes that might lead to overproduction of

biofuels would be only of theoretical value if not coupled with
more applicable approaches to achieve the targets in vivo.This
is where the contributions of synthetic biology approaches
are of crucial importance and significance. Once the target
pathways have been identified, the parts forming those
pathways, in engineering terms, are to be made available
in order to mimic the cell metabolic circuitry and alter
it. Parts are defined as genes and ribosomal binding sites,
promoters, terminators, and polymerases [75]. Most recently,
Talebi et al. have successfully achieved a 12% increase in
the total lipid content of the microalgae Dunaliella salina,
transforming it witha bioengineered plasmid comprising
specific parts, genes, and inducible promoters, driving the
cellular carbon flux into the fatty acids biosynthesis pathway
[76].

Biological circuits are furthermore defined as a designed
device made out of a set of parts and engineered in a way to
confer an added functionality to a system. Figure 2 illustrates,
in a comparative approach to electrical circuits, what a
newly designed biological circuit can achieve. A number of
biological circuits have been previously realized [77–79] and
genetic parts are now made available through a number of
databases such as the MIT Registry of Standard Biological
Parts’ (http://partsregistry.org/). A more in-depth review on
the tools and applications that lead to the design of circuits
was published by Marchicio et al. and can be referred to for
more details [80].
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Figure 4: A summary figure representing recombinational transferring of an ORF from a gateway vector in which the initial cloning was
done into destination vectors for downstream applications, including high throughput experiments and biochemical assays. Once an ORF is
cloned into an “entry vector,” the ORF can easily be transferred into many “destination vectors” with desired expression capabilities and tags
[87].

8. Emerging Algal-Specific Computational and
Experimental Resources

Optimizing algae for biofuel production requires a deep
understanding of algal metabolic networks with genomic,
fluxomics, proteomics, and metabolomics data integration.
Figure 3 conceptualizes an integrative approach to build,
refine, and validate an algae based metabolic model with
predictive power to guide potential bioengineering targets
aimed at optimizing algae for biofuel production.

Furthermore, a better understanding of the biological
system through functional modeling using data generated
from the sequencing technologies is still one of the research
challenges. Functional modeling requires gene ontology
(GO) annotation for enrichment analysis. GO enrichment
analysis tools identify GO terms with statistical significance
in the reference set. Algal Functional Annotation Tool is
the algae-specific genome annotation tool that uses gene
lists from AUGUSTUS, JGI, or phytozome gene models
for Chlamydomonas reinhardtii and Chlorella NC64A [81]
to perform functional term enrichment. This functional
annotation tool provides analytical power for interpretation
of obtained large-scale experimental data.

Interestingly, a new approach in bioengineering, tran-
scription factor engineering approach (TFE) [67], is regarded
as a highly promising approach and considers transcrip-
tion factors as parts able to modify biological circuits. An
ongoing work (in the authors’ laboratory) is now attempting

to systematically clone transcription and chromatin factors
(TF and CF) of C. reinhardtii thus making available to
the scientific community a full library of TF and CF parts
that can easily be introduced as part of a new design.
Figure 4 represents one step further downstream the initial
cloning and describes the transfer of cloned ORFs from
the entry vector to the destination vector of choice. These
ORFs can be considered as potential parts to be used in
bioengineering endeavorswhenmodel-based predictions call
for their use. Furthermore, the metabolic ORFeome of C.
reinhardtii has been previously generated and the reconstruc-
tion of its central metabolic network has been done [82–
84]. Following that, genome-scale reconstructed networks
of C. reinhardtii were released accounting for around 2000
reactions and their associated genes and metabolites [82,
85]. Added to these models, a PGDB for C. reinhardtii
has been made available as ChlamyCyc [86] making use of
Pathway Tools platform and thus making the investigations
of the metabolic and regulatory networks of such algae far
more at hand. Prior and in parallel to these advances a
species specific resource, Chlamydomonas Resource Center
(http://chlamycollection.org/), has served the algal commu-
nity offering a library of Chlamydomonas strains amongst
other parts and tools, which provide needed resources for
experimental protocols targeting various aspects of algal
biology, including the metabolism of lipids and biofuels in
this organism.
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9. Conclusion

The above reviewed computational tools and approaches in
conjunction with the high interests of the scientific commu-
nity in synthetic biology offer a new perspective in accelerat-
ing biofuel production andmicroalgal optimization research.
The pressing economical and environmental challenges of
the use of fossil fuels will furthermore lead to a positive
selective pressure towards the use of these strategies aiming
at the optimization of biofuel producing strains. A large set
of biofuel types can serve as alternative energy sources which
currently include ethanol, n-butanol, iso-butanol, short chain
alcohols, short chain alkanes, biodiesel (FAMEs), and fatty
alcohols.These tools and applications are promising yetmuch
more optimizations need to be achieved in order for biofuel
production to compete with available fossil fuels. With the
“green revolution” and the more environmentally conscious
population, we expect this field to expand significantly in the
coming years, building on the available resources for systems
and synthetic biology and achieving the generation of strains
optimized for biofuel production.
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