Hindawi Publishing Corporation
BioMed Research International

Volume 2014, Article ID 159078, 23 pages
http://dx.doi.org/10.1155/2014/159078

Research Article

Evolution of Network Biomarkers from Early to
Late Stage Bladder Cancer Samples

Yung-Hao Wong, Cheng-Wei Li, and Bor-Sen Chen

Lab of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan

Correspondence should be addressed to Bor-Sen Chen; bschen@ee.nthu.edu.tw

Received 11 April 2014; Revised 9 July 2014; Accepted 10 July 2014; Published 18 September 2014

Academic Editor: Tzu-Hao Chang

Copyright © 2014 Yung-Hao Wong et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We use a systems biology approach to construct protein-protein interaction networks (PPINs) for early and late stage bladder
cancer. By comparing the networks of these two stages, we find that both networks showed very significantly different mechanisms.
To obtain the differential network structures between cancer and noncancer PPINs, we constructed cancer PPIN and noncancer
PPIN network structures for the two bladder cancer stages using microarray data from cancer cells and their adjacent noncancer
cells, respectively. With their carcinogenesis relevance values (CRVs), we identified 152 and 50 significant proteins and their PPI
networks (network markers) for early and late stage bladder cancer by statistical assessment. To investigate the evolution of network
biomarkers in the carcinogenesis process, primary pathway analysis showed that the significant pathways of early stage bladder
cancer are related to ordinary cancer mechanisms, while the ribosome pathway and spliceosome pathway are most important for
late stage bladder cancer. Their only intersection is the ubiquitin mediated proteolysis pathway in the whole stage of bladder cancer.
The evolution of network biomarkers from early to late stage can reveal the carcinogenesis of bladder cancer. The findings in this
study are new clues specific to this study and give us a direction for targeted cancer therapy, and it should be validated in vivo or in

vitro in the future.

1. Introduction

Cancer is the leading cause of death worldwide and its
etiology occurs at the DNA, RNA, or protein level. It is a very
complex disease involving cascades of spatial and temporal
changes in the genetic network and metabolic pathways
[1]. Various research studies have revealed that cancers are
caused by multiple factors and intertwined events. Thus, in
cancer therapy, it is important to dissect the diverse molecular
mechanisms of cancer to identify potential cancers. Bladder
cancer is amongst the 10 most common carcinomas in the
USA, with 72,570 newly diagnosed cases, and it was the cause
of 15,120 deaths in 2013 [2]. In particular, Kaufman et al.
pointed out to it as the second most common form of cancer
in 2008 [3]. In this study, we compared the early and late
stages of bladder cancer to reveal additional mechanisms of
bladder cancer development [4].

Biomarker discovery of various cancers is one of the key
topic areas of cancer research. It can aid investigations into

carcinogenesis and novel drug designs for cancer therapy.
Several bioinformatics methods have been developed and
applied to compare normal tissue with cancerous tissue
to determine what cancer driving genes can act as cancer
biomarkers [5-12].

Genes and proteins function cooperatively to regulate
common biological cell processes by coregulating each other
[13]. Generally, molecular regulation and interaction proceed
with time and vary in different tissues. There must exist great
differences in these variations between cancer and normal
tissue. Proteins mutually interact with each other in the
cell, and they form the PPI networks (PPINs). Currently, a
lot of the research has focused on the relationship between
PPINs and cancer development. For example, analysis of the
cancer-related PPINs of apoptosis has unraveled the molec-
ular mechanisms of cancer, which has helped to identify
potential novel drug targets [14]. Our previous work [14] had
successfully identified the network markers of lung cancer. In
this study, we modified our previous method and applied the
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novel concept to study the evolution of network markers from
early to late stage bladder cancer.

Based on their PPI information and the gene expression
profiles from cancer and surrounding normal samples, two
PPI networks with quantitative protein association abilities
for each cancer stage (early stage and late stage) and the sur-
rounding noncancerous tissue are constructed, respectively.
For each stage, the network structure and protein association
abilities of the cancer and noncancer PPI networks are then
compared to obtain sets of significant proteins which play
important roles in the carcinogenesis process of bladder
cancer.

Recently, PPI targets seem to have become a paradigm
for the drug discovery of cancer therapy and precision
medicine [15]. Unlike conventional drug design focusing
on the inhibition of a single protein, usually an enzyme
or receptor, small-molecule inhibition of direct PPIs that
mediate many important biological processes is an emerging
and challenging concept in drug design, especially for cancer.
Extensive biological and clinical investigations have led to
the identification of PPI hubs and nodes that have been
critical for the acquisition and maintenance of characteristics
for cell transformation in cancer. Such cancer-enabling PPIs
will become promising therapeutic targets in anticancer
strategies as the technologies in PPI modulator discovery and
validating agents in the clinical setting advance in the future
[15].

Therefore, future research directed at PPI target discov-
ery, PPl interface characterization, and PPI-focused chemical
libraries are expected to accelerate the development of the
next generation of PPI-based anticancer agents. However,
the PPI networks of cancer are very complex and quite
differ between early and late stage cancer. In such circum-
stances, we will focus on the PPI network markers with their
significant carcinogenesis relevance value (CRV) to exploit
the important targets and their PPI interface for early and
late stage cancer characterization. Then, we will not only
gain insight into the crucial common pathways involved
in bladder carcinogenesis, but we will also obtain a highly
promising PPI target for bladder cancers. If we are then
able to develop various combined anticancer strategies to
target PPIs in the early and late stage network markers in the
future, it may provide emerging opportunities for anticancer
therapeutic approaches.

Chen et al. developed a dynamical network biomarker
(DNB) that can serve as a general early warning signal to
indicate an imminent bifurcation or sudden deterioration
before the critical transition occurs; that means it can identify
predisease state by time series microarray data. We use
different approach from their methods by sample microarray
data from bladder cancer patients of different stages. Our
approach could also be extended to predict some similar
results as their research. That is, in this study, we simply
divided the cancer into early and late stages, but there are
more stages of cancer, such as stages I, II, III, and IV. If we
could observe the time evolution of the cancer biomarkers
at these more different stages, we could also predict the
predisease state by comparing it with these cancer biomarkers
at different stages [16-18].
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2. Materials and Methods

2.1. Overview of the Bladder Cancer Network Markers Con-
struction Process. A flowchart representing the construction
of network biomarkers for early and late stage bladder cancer
is shown in Figurel. We combined two data sources: (1)
microarray data of bladder cancer and noncancer samples
from the GEO database, while the cancer samples were
divided into two groups: early stage and late stage bladder
cancer. (2) The PPI database was required to construct
the PPINs for bladder cancer. This data was used for PPI
pool selection and the selected PPIs and the microarray
data were then used for PPI network (PPIN) construction.
Through regression modeling and the maximum likelihood
parameter estimation method, a cancer PPIN (CPPIN) and
a noncancer PPIN (NPPIN) was then obtained. The two
constructed cancer and noncancer PPINs were compared
to obtain the sets of significant proteins for bladder cancer
based on the carcinogenesis relevance value (CRV) for
each protein and the statistical assessment. The signifi-
cant proteins and PPIs within these proteins were used to
construct network markers at early and late stage bladder
cancer.

2.2. Data Selection and Preprocessing. The microarray gene
expression dataset of bladder cancer was obtained from the
NCBI gene expression omnibus (GEO) [19]. In this study,
we chose GSE13507 [20] and its corresponding platform
GPL6012 as our research object. The same dataset contained
the early and late stage bladder cancer and noncancer
samples. We only used the data derived from nonprocessed
primary biopsies to avoid the discrepancies in gene expres-
sion that are intrinsic to cell culture and fixation. Therefore,
the dataset utilized contained primary tumor samples of both
stages from patients and adjacent nontumor tissue samples
from the same cancer patients, which could be considered as
control samples. To describe the extent of a patient’s cancer,
the cancers were classified into four stages according to their
degree of invasion and migration using the TNM staging
system, as defined by the American Joint Committee on
Cancer (AJCC) and the International Union against Cancer
(UICC). We then divided the cancer samples into two groups.
In general, stages I and II described early stage cancers
that have higher curability rates with medical treatment,
while stages IIT and IV described the late stages. However,
there were no corresponding noncancer samples in the
surrounding area for each stage and we had only one group
of surrounding noncancer samples (Table 1). We built CPPIN
and NPPIN for both early and late stage bladder cancer in
this study. We obtained 37 and 106 samples for the early
and late stage cancer, respectively, and 58 noncancer samples.
To avoid overfitting in network construction, the maximum
degree of the proteins in the PPI network should be less than
the cancer/noncancer sample number [14]. In this dataset,
we had a greater number of cancer and noncancer samples
to overcome the sample size restriction on the size of the
network. Prior to further analysis, the gene expression value,
h;;, was normalized to z-transformed scores, g;;, for each
gene, i, and then the normalized expression value resulting
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TABLE 1: Descriptive information on datasets extracted from the GEO database used in this study.

Platform
GPL6102

Cancer GEO accession number Early stage Late stage Adjacent normal

GSE13507 106 37 58

Cases are grouped by cancer and surrounding normal tissues came from human patients of early stage and late bladder cancer.

Bladder cancer

Early and late
bladder cancer
microarray data

BioGRID
protein-protein interactions

! !

Selection of protein pool

|

Construction of candidate PPI network

!

Construction of PPI networks by identified parameter and AIC method

Noncancer

The gene ontology microarray data

Early (or late) stage Early (or late) stage refined
refined cancer PPI noncancer PPI networks

networks (CPPINs) (NPPINs)

| |

Two differential PPI networks for two stage bladder cancers by
comparing refined CPPINs with NPPINs, respectively

Determination of significant proteins in two stages bladder cancers
based on carcinogenesis relevance value (CRV) for each protein

|

Discuss the evolution of network biomarker from early to late stage

bladder cancer

FIGURE 1: The flowchart of constructing both stages of network marker of bladder cancer and the investigation of the carcinogenesis
mechanisms. We integrate microarray data, GO database, and PPI information to construct the PPI network. These data are used for pool
selection, and then the selected proteins and the microarray data are used for the contribution of protein-protein interaction network (PPIN)
by maximum likelihood estimation and model order detection method, resulting in bladder cancer PPIN (CPPIN) and noncancer PPIN
(NPPIN) of early and late stage. The two constructed PPINs can be used for the determination of significant proteins of tumorigenesis by the
difference between two PPI matrices of two constructed PPINs. With the help of the differential PPI matrix (network) between CPPIN and
NPPIN, carcinogenesis relevance value (CRV) is computed for each protein, and significant proteins in carcinogenesis are determined based
on P value the CRVs of these proteins in the differential PPI matrix between CPPIN and NPPIN. These significant proteins are obtained for
early and late stage bladder cancers.

had a mean y; = 0 and standard deviation 0; = 1 over sample
j (11, 14].

from more than 30 model organisms [21]. The above two
databases were mined for bladder cancer and noncancer

The PPI data for Homo sapiens were extracted from
the Biological General Repository for Interaction Database
(BioGRID, downloaded in October 2012). BioGRID is an
open-access archive of genetic and protein interactions that
are curated from the primary biomedical literature of all
major model organisms. As of September 2012, BioGRID
houses more than 500,000 manually annotated interactions

PPI networks using their corresponding microarray data.
These early and late stage bladder cancer and noncancer PPI
networks were then compared to obtain network markers.

2.3. Selection of Protein Pool and Identification of the Protein-
Protein Interaction Networks (PPINs) for Cancerous and Non-
cancerous Cells. To integrate gene expression with PPI data



to construct the corresponding CPPINs and NPPINSs, we set
up a protein pool containing differentially expressed proteins.
The gene expression values were reasonably assumed to
correlate with protein expression levels. We used one-way
analysis of variance (ANOVA) to analyze the expression of
each protein and select for proteins with differential expres-
sion levels. This method allowed determination of significant
differences between cancer and noncancer datasets. The null
hypothesis (Ho) was based on the assumption that the mean
protein expression levels of cancer and noncancer sets are the
same. Bonferroni adjustment [22], a type of multiple testing,
was used to detect and correct proteins with discrepancy.
Proteins with a P value of less than 0.01 were included in
the protein pool. However, if the proteins in the protein
pool did not have PPI information, they were eliminated. In
addition, proteins that were not already in the protein pool
were included if their PPI information could determine that
they had a tight relationship with proteins already in the
pool. As a result, the protein pool contained proteins that had
certain differences in expression levels and proteins that had
tight relationships with the aforementioned proteins. In this
case, the protein pool in bladder cancer consisted of 2,245
proteins in the early stage and 1,101 proteins in the late stage.

On the strength of the significant pool and PPI informa-
tion, candidate PPI networks for early and late stage bladder
cancer were constructed for bladder cancer and noncancer
by linking the proteins that interacted with each other. In
other words, the proteins that had PPI information through
the pool were linked together, resulting in candidate PPI
networks.

As the candidate PPIN included all possible PPIs under
various environments, different organisms, and experimen-
tal conditions, the candidate PPIN needed to be further
confirmed by microarray data to identify appropriate PPIs
according to the biological processes that are relevant to
cancer. To remove false positive PPIs from each candidate
PPIN for different biological conditions, we used both a PPI
model and a model order detection method to prune each
candidate PPIN using the corresponding microarray data to
approach the actual PPIN. Here, the PPIs of a target protein
i in the candidate PPIN can be depicted by the following
protein association model:

M;
x; [n] = thijxj (1] + w; 1], @
=1

where x;[n] represents the expression levels of the target
protein i for the sample n; x;[n] represents the expression
level of the jth protein interacting with the target protein i for
the sample ; o;; denotes the association interaction ability
between the target protein i and its jth interactive protein;
M; represents the number of proteins interacting with the
target protein 7; and w; [n] represents the stochastic noise due
to other factors or model uncertainty. The biological meaning
of (1) is that the expression levels of the target protein i are
associated with the expression levels of the proteins interact-
ing with it. Consequently, a protein association (interaction)
model for each protein in the protein pool can be built as (1).
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After constructing (1) for the PPI model of each protein
in the candidate PPIN, we used the maximum likelihood
estimation method [23] to identify the association parameters
in (1) by microarray data as follows (see Supplementary Mate-
rials S.1 available online at http://dx.doi.org/10.1155/2014/
159078):

M;
X (n) = Y &;x; (n) +w; (n), )
j=1

where &;; is identified using microarray data in accordance
with the maximum likelihood estimation method (see Sup-
plementary Materials).

Once the association parameters for all proteins in the
candidate PPI network were identified for each protein, the
significant protein associations were determined using the
interaction model order detection method based on the esti-
mated association abilities. The Akaike information criterion
(AIC) [23] and Student’s ¢-test [24] were employed for both
model order selection and significance determination of the
protein associations in &;; (see Supplementary Materials S.2).

2.4. Determination of Significant Proteins and Their Network
Structures in the Carcinogenesis of Four Types of Cancers.
After P values were determined using the AIC order detection
and Student’s t-test, spurious false positive PPIs a;; in (2) were
pruned away and only the significant PPIs that remained were
refined as follows:

M
X, (m) =Y &x;(m+w (n), i=12..M, (3)
j=1

where M] < M; denotes the number of significant PPIs of
PPIN, with the target protein i. In other words, a number of
M, — M (or false positives) are pruned in the PPIs of target
protein i. One protein by one protein (i.e.,i = 1,2,..., M for
all proteins in the refined PPIN in (3)) results in the following
refined PPIN:

X(n)=AX ) +wn)

2&”3 & ... Ay
Xm=| " |, A=] i o]
xM.(n) % Apim
[ wi (n) T (4)
w} (n)
w(n) = ,
_wfw (n) |

where the interaction matrix A denotes the PPIs.
If there is no PPI between proteins i and j or it is pruned
away by AIC order detection due to insignificance in the

refined PPIN then &;; = 0. In general, @;; = &;;, but if this is
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not the case, the larger one will be chosen as &;; = &; to avoid
the situation where &;; # @&;;. The above PPIN construction
method was employed to construct the refined PPINs for each
stage of bladder cancer (early and late) and noncancer cells.
The interaction matrices A of the refined PPINs in (4) for
cancer and noncancer cells of both the early and late stages
of bladder cancer were constructed, respectively, as follows:

ok _k
X1c X Mmc

k . .

Ac= : . : >
~k ~k
| Avmic T YMmc
- . (5)
XN XIMN

k . .

Ay = : . : >
~k _k
L AMLN T MmN

where k = early and late stage bladder cancer; AkC and A’;V
denote the interaction matrices of refined PPIN of the kth
cancer and noncancer, respectively; M is the number of pro-
teins in the refined PPIN. Therefore, the protein association
model for CPPIN and NPPIN in the kth stage bladder cancer
and noncancer can be represented by the following equations
according to (4) and (5):

xlé (n) = Akcxc (n) + wé (n),

(6)
xlf\, (n) = A];,xN (n) + wi, (n),
where k = early and late stage bladder cancer;
T
xlé (n) = [xlfc X xlzcv[c] ’
k . )
xy (n) = [x’fN Xan xI;vIN]

denote the vectors of expression levels; and wg (n) and wf,(n)
indicate the noise vectors of PPINs in the kth cancer and
noncancer cells, respectively.

The different matrix AkC - A];\, of the differential PPI
network between CPPIN and NPPIN in the kth cancer is
defined as follows:

r gk k

de . dky,

Di=| -
k k
-dMl dMM

k k k ®)
X1,c ~ %N %mc ~ %imN

_k _k s> ~k
L Xvic ~ MmN T Yvve T YMmN

where k = early and late stage bladder cancer; df.‘j denotes

the protein association ability difference between CPPIN
and NPPIN in the kth stage bladder cancer; and the matrix

D indicates the difference in network structure between
CPPIN and NPPIN in the kth stage bladder cancer. In order

to investigate carcinogenesis from the difference matrix D

between CPPIN and NPPIN of the kth stage bladder cancer
in (8), a score, which we named the carcinogenesis relevance
value (CRV), was presented to quantify the correlation of

each protein in D¥ with the significance of carcinogenesis as
follows [14]:

[ CRVF ]

CRV* = | CRVF [, ©)

: k
| CRVE, |

where CRV¥ = Z?ﬁl Idf.‘jl, and k = early and late stage bladder
cancer.

The CRV;‘ in (9) quantifies the differential extent of
protein associations of the ith protein (the absolute sum of
the ith row of D¥ in (8)) and the CRV* can differentiate
CPPIN from NPPIN in the kth stage bladder cancer. In
other words, the CRVﬁC in (9) could represent the network
structure difference of the ith protein between the cancer and
noncancer networks in the kth stage bladder cancer.

In order to investigate what proteins are more likely
involved in the kth stage bladder cancer, we needed to cal-
culate the corresponding empirical P value to determine the
statistical significance of CRV;‘. To determine the observed

P value of each CRVf.‘, we repeatedly permuted the network
structure of the candidate PPIN of the kth stage bladder
cancer as a random network of the kth stage bladder cancer.
Each protein in the random network of the kth stage bladder
cancer will have its own CRV to generate a distribution of
CRVi< for k = early and late stage bladder cancer. Although
there was random disarrangement of the network structure,
the linkages of each protein were maintained. In other words,
the proteins with which a particular protein interacted were
permuted without changing the total number of protein
interactions. This procedure was repeated 100,000 times and
the corresponding P value was calculated as the fraction of
random network structure in which the CRVY is at least as
large as the CRV of the real network structure. According
to the distributions of the CRVF of the random networks,
the CRV:‘ in (9) with a P value of less than or equal to 0.01
was regarded as a significant CRV and the corresponding
protein was determined to be a significant protein in the
carcinogenesis of the kth stage bladder cancer: a protein with
a P value greater than 0.01 was removed from the list of
significant proteins in carcinogenesis (in other words, if the
P value of CRVF was greater than 0.01, then the ith protein
was removed from the CRV? in (9) and the remainder in the
CRV* with P values of CRVs less than 0.01 were considered
significant proteins of the kth stage bladder cancer).

Based on the P value of the CRVs for all proteins (i =
1,2,..., M) and the two stages of bladder cancer (k = early
and late stage bladder cancer), we generated two lists of
significant proteins for each of the two stages according to
the CRV and the statistical assessment of each significant
protein in CRV in (9). We found 152 significant proteins



in early stage bladder cancer and 50 significant proteins in
late stage bladder cancer. These proteins showed significant
changes between the CPPIN and NPPIN in the carcinogenic
process according to their corresponding stage of cancer and
we suspected that these changes might play important roles in
the carcinogenesis process of bladder cancer. These findings
warrant further investigation.

The intersections of these significant proteins in the early
and late stages of bladder cancer and their PPIs are known as
the core network markers appearing in all stages of bladder
cancer. In contrast, the unique significant proteins and their
PPIs in each stage of bladder cancers are known as the specific
network markers for each stage of cancer. We found that
there were 18 significant proteins that could be classified as
a core network marker in the whole carcinogenesis process
of bladder cancer. We also found 134 significant proteins in
the specific network marker of early stage bladder cancer and
32 significant proteins in the specific network marker of late
stage bladder cancer.

2.5. Pathway Analysis. Much valuable cellular information
can be found in the known pathways, which are useful
for describing most “normal” biological phenomena. All of
these known pathways are the result of repeated testing and
verification and the entire pathway network has given defi-
nitions for most links. Therefore, the proteins we identified
to be significant in the above network markers were mapped
onto the known pathway networks (e.g., the KEGG or
PANTHER pathway) to investigate significant pathways with
the network marker and to explore the relationships between
these pathways and the carcinogenesis of bladder cancer.
This approach supports the view that systems biology can
help identify significant network biomarkers in both normal
and cancerous pathways to their roles in the pathogenesis of
cancer.

Together with comprehensive pathway databases such as
the Kyoto Encyclopedia of Genes and Genomes (KEGG),
we used a series of bioinformatics pathway analysis tools to
identify biologically relevant pathway networks [25]. KEGG
includes manually curated biological pathways that cover
three main categories: systems information (e.g., human
diseases and drugs), genomics information (e.g., gene cat-
alogs and sequence similarities), and chemical information
(e.g., metabolites and biochemical reactions). At present,
KEGG contains 134,511 distinct pathways generated from 391
original reference pathways [26]. Therefore, to investigate
the pathways involved in carcinogenesis, the bioinformat-
ics database DAVID [27, 28], which generates automatic
outputs of the results from KEGG pathway analysis [27],
was used for the pathway analysis of significant proteins
identified in network markers to determine their roles in
the pathogenesis of early and late stage bladder cancer.
Our methodology does not contain the pathway analysis
and gene set enrichment analysis. To complete our research
results, we used the NOA software to do the pathway
analysis and gene set enrichment analysis on biological
processes, cellular components, and molecular functions
(19, 29].
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2.6. The Contribution of Protein Interaction Network Will
Affect the Results of Biomarkers and the Evolution of Network
Biomarkers. Our cancer PPI model is constructed from the
differential expression of cancer and noncancer microarray
data and data mining of PPI information from BioGRID
database. So, the early and late stage bladder cancer CPPINs
(cancer PPI networks) and NPPINs (noncancer PPI net-
works) are the results of our systems biology model using the
original microarray data and PPI databases. There are three
key factors that will affect the final results.

(i) The effect of different microarray data: we know
that the microarray data has the shortage of irre-
producible. That means even in the same case the
microarray data does not promise to produce the
same result as the previous ones. Also, for the same
cancers, patients of different ethnics, different age, or
different sex will give the different microarray data.
This is the first factor to affect the final results.

(ii) The effect of different original PPI databases: we
know that PPI databases, such as BioGRID and
MIPS, are constructed from putative and validated by
wet-lab experiments. Due to the advances of many
high-throughput experimental skills, the original PPI
databases are evolved with time growing. The new
updated original PPI databases are the second factor
to affect the final results.

(iii) The effect of systems biology model: microarray
data, PPI databases, and PPI interaction model in
(1) are employed to construct the PPI networks of
normal and cancer cells by the maximum likeli-
hood parameter estimation method (see Supplemen-
tary Material S.1). The AIC system order detection
method (Supplementary Materials S.2) is employed
to prune the false positive PPIs to obtain the real
PPI networks of normal and cancer cells; that is,
we use the so-called reverse engineering method to
construct PPI networks of normal and cancer cells.
Then the differential PPI network between cancer PPI
network and normal PPI network is obtained in (8)
to investigate PPI variations of each protein in the
differential PPI network due to the carcinogenesis.
Finally, the carcinogenesis value (CRV) based on PPI
variations is also proposed to evaluate the significance
of carcinogenesis for each protein of differential PPI
network. Proteins with significant CRV (P value <
0.01) are considered as significant proteins of the
cancer. The significant proteins in Table 3 are these
significant proteins of early and late stage bladder
cancers, and these proteins and their PPIs construct
the interaction network in Figure 2. Finally, from the
early to late stage bladder cancer network markers,
we investigate the mechanism of carcinogenesis pro-
cess with the help of databases (e.g., GO database,
DAVID, and KEGG pathway database) and try to
find multiple network target therapy of cancer. Unlike
the conventional theoretical methods, which always
give a single mathematical model for cancer network
for a more detailed theoretical analysis, this study
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(A) CPPIN for early stage bladder cancer

F1GURE 2: Continued.
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(A) CPPIN for late stage bladder cancer

FI1GURE 2: Continued.
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(B) CPPIN for late stage bladder cancer
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FIGURE 2: The constructed cancer PPIN (CPPIN) and noncancer PPIN (NPPIN) for early and late stage bladder cancer. The protein association

numbers of CPPIN and NPPIN with respect to early and late bladder cancers are listed below (CPPIN/NPPIN): early stage bladder cancer
(3388/3151) and late stage bladder cancer (634/1185). The figures are created using Cytoscape.
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1

TaBLE 2: The 18 identified significant proteins of core network marker in both early and late stage bladder cancers.

Common network marker of early and late stage bladder cancer

Protein CRV-early P value-early CRV-late P value-late
UBC 29.91709 <le-5 158.5321 <le-5
CUL3 27.96694 <le-5 13.0117 <le-5
CUL5 14.97713 <le-5 4.834916 0.002872
RPL22 10.47367 <le-5 8.110447 <le-5
SUMO2 8.391421 <le-5 10.34113 <le-5
APP 6.933807 <le-5 11.47363 <le-5
SH3KBP1 6.765387 <le-5 4.447911 0.00619
PTBP1 6.740458 <le-5 4.511016 0.005506
ELAVLIL 6.635085 <le-5 10.77056 <le-5
SIRT7 5.55441 3.13E-05 7.656515 <le-5
MYC 4.6109 0.00072 13.0423 <le-5
HSP90AA1 4.60136 0.00072 6.513345 0.000123
COPS5 3.898548 0.003163 6.601779 9.22E - 05
ESR1 3.873735 0.003383 5.6189 0.000614
BRCA1 3.788256 0.00415 11.5863 <le-5
TERF2IP 3.680287 0.00487 5.202998 0.00149
SOX2 3.534024 0.007219 5.495338 0.00076
CULL 3.521039 0.00736 13.2669 <le-5

is to introduce a systems biology approach to can-
cer network markers based on real microarray data
through the so-called reverse engineering, theoret-
ical statistical method and data mining method in
combination with big databases. These are the novelty
and significance of our paper. Although we described
the novelty of our systems biology model, we have
validated our results by literature surveying in the
research. In the future, our results will be validated
by other researchers’ wet-lab experiments, and we will
modify our mathematical model again and again. This
is the third key factor to affect the results. Although
not directly, it will also have the influence on protein
interaction network.

We also know that the biosystems are evolved with time.
It is obvious that the early stage and late stage patients have
very different symptoms; they are the key features for us to
classify early and late stage bladder cancers. Since the two
stage bladder cancer patients have great different symptoms,
it is undoubted that the microarray data of these two stage
patients will show to be quite different. As described above,
the protein expression from microarray data is one of the key
factors of our systems biology model to give the final CPPINs
and NPPINs. And the CPPINs and NPPINs give the final
network biomarkers from our systems biology model. So, the
most important thing for the network biomarkers evolving
is due to the evolution of microarray data at both stages of
bladder cancer, which is inherent in the exhibition of cancer-
related genes due to DNA mutations in the carcinogenesis
process.

3. Results and Discussion

3.1. Time Evolution of the Network Biomarker from Early to
Late Stage Bladder Cancer. In the first instance, we built the

CPPIN and NPPIN for early and late stage bladder cancer
(Figure 2). From the differential networks between CPPIN
and NPPIN of early stage and late stage bladder cancer, we
then calculated the CRV of each protein in the network
structure. Screening in accordance with the P value of CRV,
we determined the significant proteins of network markers
for the two stages of bladder cancer. In the following, we will
discuss the significant proteins identified in both stages and
their intersection to reveal the carcinogenesis mechanisms
from early to late stage bladder cancer.

3.2. Network Marker of Early and Late Stage Bladder Cancer.
After P value (0.01) screening, we found that there were
152 and 50 significant proteins for early and late stage
bladder cancer, respectively. In addition, their corresponding
CRV values ranged between 4.1 and 158.5 and 3.4-29.9,
respectively. These significant proteins and their PPIs were
used to construct the network markers at early and late stage
bladder cancer. The intersection network marker of both
stages was a core feature that contained 18 significant proteins
in carcinogenesis. We listed the 18 significant proteins and
their corresponding CRV and P value in both stages of
bladder cancer (Table 2). From this, we separately identified
the 10 most significant proteins in early and late stage bladder
cancer (Table 3). The full list of the 152 and 50 significant
proteins for the two stages of bladder cancer is detailed in
supplementary tables (Tables S1 and S2).

3.3. Pathway Analysis of Early Stage Bladder Cancer. We
analyzed the pathway of early stage bladder cancer using the
DAVID database. Our initial observation revealed that sev-
eral cancer pathways were hit by the 152 key proteins, includ-
ing 11 genes in hsa05200: pathways in cancer (Figure 3(a)),
7 genes involved in prostate cancer, 6 genes involved in
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TaBLE 3: The identified top 20 significant proteins in both early and late stage bladder cancer individually.
Early stage bladder cancer (N =107) Late stage bladder cancer (N =107)
CRV Name P value CRV Name P value
UBC 29.91709 <le-5 UBC 158.5321 <le-5
CUL3 27.96694 <le-5 VCAMI1 20.98798103 <le-5
RIOK2 16.02326 <le-5 RPS13 20.09693015 <le-5
CUL5 14.97713 <le-5 TP53 19.5883 <le-5
RPS23 12.13218 <le-5 HDAC1 19.2879 <le-5
RPLI2 10.87102 <le-5 HSPAS 17.24137906 <le—-5
RPL22 10.47367 <le-5 RPS27A 17.23738059 <le-5
RANBP2 9.8086 <le-5 TUBB 17.03734405 <le-5
PAN2 9.521207 <le-5 CDK2 16.7366 <le—-5
DHX9 9.47832 <le-5 VIM 15.89214155 <le-5
RPS8 8.722495 <le-5 KIAAO0101 15.8188 <le-5
RPL27 8.641642 <le-5 ITGA4 15.69058519 <le-5
SUMO2 8.391421 <le-5 GSK3B 15.44597966 <le-5
HNRNPH3 8.011681 <le-5 EEF1A1 14.21690842 <le-5
CDC5L 7.950851 <le-5 RUVBL2 13.63207486 <le-5
RUVBLI 7.887244 <le-5 PCNA 13.3217 <le-5
SF3A1 7.468209 <le-5 CUL1 13.2669 <le—-5
APP 6.933807 <le-5 MYC 13.0423 <le-5
CCT3 6.860228 <le-5 CUL3 13.0117 <le-5
SH3KBP1 6.765387 <le-5 HNRNPAO 12.15264603 <le-5

chronic myeloid leukemia, 5 genes involved in small cell
lung cancer, 4 genes involved in bladder cancer, and 3 genes
involved in thyroid cancer, respectively (Table 3). The four
genes of hsa05219 involved in bladder cancer (TP53, MDM2,
RN1, and MYC) are principal genes altered in urothelial
carcinoma, which is highly related to metastatic bladder
cancer and are significant targets of metastatic bladder cancer
therapies [30] (Figure 3(b)). Thus, we now note that the 152
candidate proteins are not only related to bladder cancer, but
also to other cancers and chronic myeloid leukemia. This
would mean that common mechanisms exist between the
development of the different cancers in the early stage of
carcinogenesis.

Next, we proceeded to analyze the important pathways
related to early stage bladder cancer (Table 4). Firstly, the cell
cycle is composed of two consecutive periods (Figure 3(c))
characterized by DNA replication, sequential differentiation,
and segregation of replicated chromosomes into two separate
daughter cells. Both positive-acting and negative-acting pro-
teins control the cells’ entry and advancement through the
cell cycle, which is composed of four distinct phases: G1 (Gap
1), S (synthesis), G2 (Gap 2), and M (mitosis) [31]. The Gl
phase, where the cell grows in size, acts as a quality control
check to determine whether the cell is ready to divide. The S
phase is where the cell copies its DNA. The G2 phase involves
cell checking as to whether all of its DNA has been correctly
copied. The M phase is the cell division phase where the
cell divides in two. Find out more about how cells prepare
to divide and then share out their DNA and split in two.
There are many reported discussions in regards to the cell
cycle regulators and checkpoint functions involved in bladder

cancer [32, 33]. Dysregulation of the cell cycle governs deviant
cell proliferation in cancer. Losing the ability to control cell
cycle checkpoints induces abnormal genetic instability. This
may be due to the activation of tumorigenic mutations, which
have been recognized in various tumors at different levels
in the mitogenic signal transduction pathways: (1) ligands
and receptors (receptor mutations of HER2/neu [ErB2] or
the amplification of the HER2 gene), (2) downstream sig-
nal transduction networks (Raf/Ras/MAPK or PI3K-AKT-
mTOR), and (3) regulatory genes of the cell cycle (cyclin
D1/CDK4, CDK®6, and cyclin E/CDK2) [34]. Increasing
evidence convincingly implicates aberrant expression of cell
cycle regulators in multiple cancers. Especially the restriction
point (R) is the so-called Gl checkpoint. It separates the
cell cycle into a mitogen-dependent phase and a growth
factor-independent phase from the commitment to enter S
phase. The GI checkpoint commitment process integrates
various and complex extracellular and intracellular signal
transduction into the cell nucleus. Any malfunction of the
G1 checkpoint may result in uncontrolled cell proliferation
or genetic instability, possibly the origin of cancer or other
diseases development [35].

The Wnt/f-catenin signaling pathways (Figure 3(d)) are
composed of many functional networks, including a bundle
of signaling pathways consisting of various proteins that
transduce signals from the outside of a cell through the
receptors on the cell surface and into the cell interior.
They contribute significantly to the developmental process,
particularly to direct cell attachment and proliferation. They
are one of the most powerful signaling pathways and play crit-
ical roles in human development by controlling the genetic
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FIGURE 3: Overview of significant pathways in network marker of early stage bladder cancer. Among these KEGG pathways via DAVID tool
(Table 4) showing a significant association with specific proteins of early stage bladder cancer, these molecular pathways are entitled with P
value < 0.05. It shows that these pathways are identified to play an important role in the carcinogenesis mechanism of early stage bladder
cancer. The proteins in network markers of early stage bladder cancer highlighted by stars show potential targets in the pathways. Due to the
different naming system, the same proteins in both these tables and in our text show the different names.

programs of embryonic development and adult homeostasis
[36]. Under normal conditions, the Wnt signaling pathway
is critical for healthy and normal development, while in
adult cells, a dysregulated Wnt signaling pathway can lead
to tumorigenesis. For this purpose, cancer cells must have
the ability to switch from quiescent mode to proliferation
mode, as well as switching between cell proliferation and
cell invasion modes. Therefore, the Wnt signaling pathway

participates in each of the stages of malignant cancer devel-
opment and clearly contributes to human tumor progression.
Much research has been reported on the relationship between
Wnt signaling pathways and urological cancers (including
bladder cancer) [37, 38].

Other pathways identified in early stage bladder cancer,
such as the Notch signaling pathway, adherens junctions,
the TGF-f signaling pathway, ubiquitin-mediated proteolysis
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FIGURE 4: Continued.
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FIGURE 4: Overview of significant pathways in network marker of late stage bladder cancer. Among these KEGG pathways via DAVID tool
(Table 5) showing a significant association with specific proteins of late stage bladder cancer, these molecular pathways are entitled with P
value < 0.05. It shows that these pathways are identified to play an important role in the carcinogenesis mechanism of late stage bladder cancer.
The proteins in network markers of late stage bladder cancer highlighted by stars show potential targets in the pathways. Due to the different
naming system, the same proteins in both these tables and in our text show the different names.

(Figures 3(e) and 4(c)), and the p53 signaling pathway are also
associated with cancer [39-43].

The NOA analysis results of the pathway and gene
enrichment analysis of the early stage bladder cancer is
shown in Table 4(b): (1) Biological processes (2) Cellular
components (3) Molecular functions. We saw that most of

the biological processes are related to the metabolic processes.
Second, about the cellular components, there are three of
them related to the ribosome. Finally, about the molecular
functions, there are RNA binding, heparin binding and cyclin
binding, which are very different from the late stage bladder
cancer.
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TABLE 4: (a) The pathways analysis for 152 early stage significant proteins in carcinogenesis. (b) The pathway analysis and gene set enrichment
analysis of the top 20 proteins of early stage bladder cancer on (1) biological processes, (2) cellular components, and (3) molecular functions
by NOA.

(a)
Rank Term Count Symbol P value

YWHAZ, CREBBP, TP53,
PRKDC, RB1, CDK2, HDAC2,

1 : 1 1.50E - 14
hsa04110:Cell cycle 3 EP300, HDACL PCNA, MDM?2, 50
MYC, andCULI
TRAF2, EP300, HDAC2,
2 hsa05200:Pathways in cancer 1 HDACI, CREBBP, TP53, MDM2, 3.51E - 07
RB1, MYC, CDK2, and CTNNB1
EP300, CREBBP, TP53, MDM2
: > ? ’ > 1.45E —
3 hsa05215:Prostate cancer 7 RBL CDK?2, and CTNNBI 5E - 06
4 hsa0522.0:Chronic myeloid 6 HDAC2, HDACI, TP53, MDM2, 132F — 05
leukemia RB1, and MYC
EP300, CREBBP, TP53, MYC
5 : i i 6 > > i i 3.78E - 04
hsa04310:Wnt signaling pathway CULL and CTNNBI
6 hsa05222:Small cell lung cancer 5 TRAF2, TP53, RB1, MYC, and 4.04E - 04
CDK2
7 hsa05219:Bladder cancer 4 TP53, MDM2, RBIL, and MYC 724E - 04
EP300, HDAC2, HDACI, and
8 : i i 4 > ? ? 0.001008
hsa04330:Notch signaling pathway CREBBP
EP300, CREBBP, SRC, and
9 : j i 4 > ’ ? 0.00418
hsa04520:Adherens junction CTNNEL
10 hsa04350:TGF-beta signaling 4 EP300, CREBBP, MYC, and 0.005889
pathway CULIL
EP300, HDAC2, HDAC1
1 : i ’s di 5 > > i 0.006736
hsa05016:Huntington’s disease CREBBP, and TP53
12 hsa05216:Thyroid cancer 3 TP53, MYC, and CTNNBI 0.00676
13 hsa04120iUbiquitin mediated 4 CUL3, MDM2, BRCAL, and 0.020254
proteolysis CULL
14 hsa05213:Endometrial cancer 3 TP53, MYC, and CTNNBI 0.020793
15 hsa05214:Glioma 3 TP53, MDM2, and RB1 0.029762
16 hsa04115:p53 signaling pathway 3 TP53, MDM2, and CDK2 0.034267
17 hsa05218:Melanoma 3 TP53, MDM2, and RB1 0.037091
18 hsa05210:Colorectal cancer 3 TP53, MYC, and CTNNB1 0.050311
19 hsa04210:Apoptosis 3 TRAF2, IRAK]1, and TP53 0.053574
20 hsaO:’;zl'S('):Non-homologous 2 XRCC6and PRKDC 0.05487
end-joining
21 hsa04916:Melanogenesis 3 EP300, CREBBP, and CTNNBI1 0.067353
22 hsa04114:Oocyte meiosis 3 YWHAZ, CDK2, and CUL1 0.080913
23 hsa04722:Neurotrophin signaling 3 IRAKL, YWHAZ, and TP53 0.099295

pathway

The significant pathways via DAVID Bioinformatics database are selected for the 152 significant proteins in carcinogenesis. Black background indicates P value
> 0.05.

(b)

GO:term P value Corrected P value R T G O Term name
(1) Biological processes
0044260 53E-11 1L7E-8 14791 19 3428 18 Cellular macromolecule metabolic

process
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(b) Continued.

GO:term P value Corrected P value R T G (0] Term name
0043170 7.3E —10 24E -7 14791 19 3975 18 Macromolecule metabolic process
0044237 3.6E -8 1.2E-5 14791 19 4963 18 Cellular metabolic process
0006414 14E -7 4.7E -5 14791 19 101 5 Translational elongation
0019538 1.0OE-6 32E-4 14791 19 2528 13 Protein metabolic process
0008152 1LIE-6 3.6E—-4 14791 19 6033 18 Metabolic process
0044238 1.7E-6 5.6E — 4 14791 19 5258 17 Primary metabolic process
0016071 44E -6 0.0014 14791 19 364 6 mRNA metabolic process
0044267 33E-5 0.0110 14791 19 1883 10 Cellular protein metabolic process
0009987 1.2E-4 0.0406 14791 19 9216 19 Cellular process

(2) Cellular components
0030529 79E - 10 78E -8 16768 18 510 9 Ribonucleoprotein complex
0032991 1.8E-7 1.8E-5 16768 18 3312 14 Macromolecular complex
0043228 1.2E-6 1.2E-4 16768 18 2051 1 Non-membrane-bounded organelle
0043232 12E-6 1.2E - 4 16768 18 2051 1 Intracellular

non-membrane-bounded organelle

0005840 15E-6 15E-4 16768 18 196 Ribosome
0005829 20E-6 20E-4 16768 18 1269 9 Cytosol
0043229 83E-6 82E -4 16768 18 8759 18 Intracellular organelle
0043226 8.5E-6 8.4FE -4 16768 18 8773 18 Organelle
0044445 1.7E-5 0.0016 16768 18 150 4 Cytosolic part
0033279 2.8E -4 0.0287 16768 18 123 3 Ribosomal subunit

(3) Molecular functions
0003735 1.0OE-6 11IE-4 15767 19 161 5 Structural constituent of ribosome
0003723 1.8E -4 0.0193 15767 19 755 6 RNA binding
0005198 8.0E—-4 0.0825 15767 19 643 5 Structural molecule activity
0031625 0.0013 0.1360 15767 19 45 2 Ubiquitin protein ligase binding
0003678 0.0013 0.1360 15767 19 45 2 DNA helicase activity
0004535 0.0024 0.2480 15767 19 2 1 Poly(A)-specific ribonuclease

activity

0033130 0.0048 0.4956 15767 19 4 1 Acetylcholine receptor binding
0008201 0.0079 0.8140 15767 19 112 2 Heparin binding
0030332 0.0096 0.9890 15767 19 8 1 Cyclin binding
0004386 0.0129 1 15767 19 145 2 Helicase activity

R: number of genes in reference set.

T: number of genes in test set.

G: number of genes annotated by given term in reference set.
O: number of genes annotated by given term in test set.

3.4. Pathway Analysis of Late Stage Bladder Cancer. The
most important results in this study as compared to our
previous work are that we reveal related pathways of late stage
bladder cancer in comparison to early stage cancer to reveal
the evolution of network biomarkers in the carcinogenesis
process. From Table 5, we observed that only three pathways,
ribosome, spliceosome, and ubiquitin-mediated proteolysis
pathways, were hit by the 50 candidate proteins identified in
late stage bladder cancer. This is indicative of the evolution of
cancer mechanisms from early stage bladder cancer.

The nucleolus is the site of ribosome biogenesis
(Figure 4(a)). Due to the higher concentration of both RNA
and proteins in the nucleolus than in the nucleoplasm,

the nucleolus is easily detected by microscopy in living
cells. From electron microscopy images, three major
components were constantly exhibited by mammalian
cells. They include fibrillar centers (FCs), which appear
as surrounding structures of various sizes, with a very low
electron opacity; the dense fibrillar component (DFC), which
always constitutes a rim intimately accompanied with the
fibrillar centers, composed of densely packed fibrils; and the
granular component (GC), which is composed of granules
that surround the fibrillar components. There is evidence
that changes in nucleolar morphology and function may
depend on both the rate and status of ribosome biogenesis
and on the proliferative activity of cycling cells [44]. In
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TABLE 5: (a) The pathways analysis for 50 significant proteins in late stage bladder cancer carcinogenesis. (b) The pathway analysis and gene set
enrichment analysis of the top 20 proteins of late stage bladder cancer on (1) biological processes, (2) cellular components and (3) molecular
functions by NOA.

()

Rank Term Count Symbol P value
RPS28, RPS16, RPL22, RPL27, RPL12
1 :Ri 8 ? ? i ’ ’ 2.26E - 07
hsa03010:Ribosome RPS6, RPSS, and RPS23
HSPAIL, CDC5L, SF3A1, SNRPE, and
2 . : > > > > X 4 4 1
hsa03040:Spliceosome 5 HNRNPU 0.004054716
3 hsa04120:Ubiquitin 4 CUL3, CUL5, BRCAI, and CULI 0.034906958

mediated proteolysis

The significant pathways via DAVID Bioinformatics database are selected for the 50 significant proteins in carcinogenesis.
(b)

GO:term P value Corrected P value R T G (@) Term name

(1) Biological processes

GO:0045786 1.8E-6 0.0010 14791 18 178 5 Negative regulation of cell cycle
GO:0022402 24E -6 0.0014 14791 18 562 7 Cell cycle process
G0:0007050 84E-6 0.0049 14791 18 111 4 Cell cycle arrest
GO:0051726 85E-6 0.0049 14791 18 435 6 Regulation of cell cycle
GO:0060710 13E-5 0.0080 14791 18 5 2 Chorioallantoic fusion
G0:0044260  14E-5 0.0081 14791 18 3428 13 Cellular macromolecule metabolic
process
GO:0051052 1.5E -5 0.0091 14791 18 130 4 Regulation of DNA Metabolic process
GO:0008629 26E—5 0.0155 14791 18 49 3 Induction of apoptosis by intracellular
signals
GO:0006917 28E-5 0.0162 14791 18 313 5 Induction of apoptosis
GO:0012502 28E-5 0.0165 14791 18 314 5 Induction of programmed cell death
(2) Cellular components
GO:0032991 52E —-10 55E-8 16768 18 3312 16 Macromolecular complex
GO:0005829 14E -7 1.5E-5 16768 18 1269 10 Cytosol
GO:0043234 25E-6 2.6E -4 16768 18 2748 12 Protein complex
GO:0005654 6.1E—-6 6.4E — 4 16768 18 465 6 Nucleoplasm
GO:0044428 6.4E -5 0.0067 16768 18 1932 9 Nuclear part
GO:0000307  9.8E—5 0.0102 16768 18 14 2 Cyclin-dependent protein kinase
holoenzyme complex
G0:0030529 1.5E -4 0.0163 16768 18 510 5 Ribonucleoprotein complex
GO:0031461 49E - 4 0.0516 16768 18 31 2 Cullin-RING ubiquitin ligase complex
GO:0022627 74E — 4 0.0777 16768 18 38 2 Cytosolic small ribosomal subunit
GO:0043626 0.0010 0.1116 16768 18 1 1 PCNA complex
(3) Molecular functions
GO:0019899 31E-5 0.0037 15767 18 584 6 Enzyme binding
GO:0005515 LIE-4 0.0129 15767 18 8097 17 Protein binding
GO:0030337 0.0011 0.1335 15767 18 1 1 DNA polymerase processivity factor
activity
GO:0000701 0.0011 0.1335 15767 18 1 1 Purine-specific mismatch base pair DNA
N-glycosylase activity
GO:0031625 0.0011 0.1384 15767 18 45 2 Ubiquitin protein ligase binding
GO:0000166 0.0021 0.2510 15767 18 2283 8 Nucleotide binding

GO:0035033 0.0022 0.2669 15767 18 2 1 Histone deacetylase regulator activity
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(b) Continued.

GO:term P value Corrected P value R T G O Term name

GO:0004696 0.0022 0.2669 15767 18 2 1 Glycogen synthase kinase 3 activity

G0:0000700 0.0022 0.2669 15767 18 2 1 Mismatch base pair DNA N-glycosylase
activity

G0:0005200 0.0031 0.3705 15767 18 74 2 Structural constituent of cytoskeleton

R: number of genes in reference set.

T: number of genes in test set.

G: number of genes annotated by given term in reference set.
O: number of genes annotated by given term in test set.

TABLE 6: The pathways analysis for 18 significant proteins in early and late stage bladder cancer carcinogenesis.

Rank Term Count

Symbol P value

1 hsa03010:Ribosome 4

CUL3, CUL5, BRCAL and CUL1 1.4E-3

cancer cells the upregulated ribosome biogenesis leads to an
increased demand of ribosomal proteins for rRNA binding.
In this way, after ribosome biogenesis alterations, cycling
cells can activate the p53 pathway to ensure cell cycle arrest or
alternatively to start the apoptotic program [45]. According
to our analysis, there were eight significant proteins in the
late stage cancer to hit the ribosome pathway.

Alternative splicing is a modification of the premessenger
RNA (pre-mRNA) transcript in which internal noncoding
regions of pre-mRNA (introns) are removed and then the
remaining segments (exons) are joined (Figure 4(b)). The for-
mation of mature messenger RNA (mRNA) is subsequently
capped at its 5’ end and polyadenylated at its 3’ end, and
transported out of the nucleus to be translated into protein
in the cytoplasm. Most genes use alternative splicing to
generate multiple spliced transcripts. These transcripts con-
tain various combinations of exons resulting from different
mRNA variants and then are synthesized as protein isoforms.
The exons are always around 50-250 base pairs, whereas
introns could be as long as several thousands of base pairs.
For nuclear encoded genes, splicing takes place within the
nucleus after or simultaneously with transcription. Splicing
is necessary for the eukaryotic messenger RNA (mRNA)
before it can be translated into a correct protein. The spliceo-
some is a dynamic intracellular macromolecular complex
of multiple proteins and ribonucleoproteins (snRNPs). For
many eukaryotic introns, the spliceosome carries out the two
main functions of alternative splicing. First, it recognizes the
intron-exon boundaries and second it catalyzes the cut-and-
paste reactions that remove introns and concatenate exons.
The various spliceosomal machinery complex is formed from
5 ribonucleo-protein (RNP) subunits, termed uridine-rich
(U-rich) small nuclear RNP (snRNP), transiently associated
with more than 760 non-snRNPs splicing factors (RNA
helicases, SR splicing factors, etc.) [46, 47]. Each spliceosomal
snRNP (Ul, U2, U4, U5, and U6) consists of a uridine-rich
small nuclear RNA (snRNA) complexed with a set of seven
proteins known as canonical Sm core or SNRP proteins. The
seven Sm proteins (B/B', D1, D2, D3, E, E and G) form a
core ring structure that surrounds the RNA. All Sm proteins
contain a conserved sequence motif in two segments (Sml

and Sm2) that are responsible for the assembly and ordering
of the snRNAs. They form the Sm core of the spliceosomal
snRNPs [48] and process the pre-mRNA [49]. Spliceosomes
not only catalyze splicing by a series of reactions, but they
are also the main cellular machinery that guides splicing.
Recently, scientists have found two natural compounds that
can interfere with spliceosome function that also display
anticancer activity in vitro and in vivo [50, 51]. Therefore, it is
believable that inhibiting the spliceosome could act as a new
target for anticancer drug development [52], and it should be
validated in vivo or in vitro in the future.

The NOA analysis results of the pathway and gene enrich-
ment analysis of the late stage bladder cancer is shown in
Table 5(b): (1) Biological processes (2) Cellular components
(3) Molecular functions. We saw most of the biological
processes are related to cell cycle, which are different from
the metabolic processes of early stage. Second, about the
cellular components, there are complex evolution behav-
iors of the network compared with the early stage bladder
cancer; there is only one intersection of these two stages
that is ribonucleoprotein complex. It gives us many clues
to develop evolutionary strategies for cancer target therapy.
Finally, about the molecular functions, there are enzyme
binding, protein binding and nucleotide binding, which are
very different from the early stage bladder cancer. All the
evolutionary behaviors from early to late stage bladder cancer
let us reveal more hidden carcinogenesis mechanism.

3.5. Pathway Analysis of Both Early and Late Stage Bladder
Cancer. The only pathway to intersect between early and late
stage bladder cancer is the ubiquitin-mediated proteolysis
pathway (Table 6). This means it is the only housekeeping
pathway for bladder cancer and that the mechanisms of
early and late stage bladder cancer are completely different.
We hypothesize that this may be a novel concept for target
therapy. Various other researches have never built a model in
accordance with the network markers at the different stages
of cancer. Our results show that the network markers of early
stage hit common mechanisms and fundamental pathways,
such as cell cycle, cell proliferation, and Wnt signaling, among
others, which are implicated in various cancers. These provide
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clues in that early stage bladder cancer is active in many
related pathways and we can assume that it is an active
process to change the cell. In contrast, in the late stage of
bladder cancer, the cells were inactive and close to silence.
This may mean that the cells are close to death. Should we
attempt to save these cells, we should aim to focus on the
ribosome and spliceosome pathways. Of course ubiquitin-
mediated proteolysis pathways are both active in early and
late stage cancer.

4. Conclusions

Bladder cancer is among the 10 most common forms of
carcinoma in the USA and worldwide. It is a lethal disease
like other cancers and understanding the carcinogenesis
mechanism can help to develop new therapeutic strategy.
Identifying the PPI interface to develop small molecule
inhibitors has become a new direction for targeted cancer
therapy. This study, which follows from our prior work, ana-
lyzes the carcinogenesis mechanism from early to late stage
bladder cancer using a network-based biomarker evolution
approach. Other research studies do not distinguish network
markers between these two stages of bladder cancer. Thus, our
approach is advantageous in that it can provide added insight
into the significant network marker evolution of the carcino-
genesis process of bladder cancer. The network markers and
their related pathways identified in early stage bladder cancer
are mostly related to ordinary cancer mechanisms, which
just show a highly active state of the early stage and cannot
reveal additional novel results. All of these results should be
validated in vivo or in vitro in the future. However, from the
two specific and significant pathways identified in late stage
bladder cancer, ribosome pathway and spliceosome pathway,
we identified a novel result, which has potential to become a
target for cancer therapy. The only core pathway in these two
stages is the ubiquitin-mediated proteolysis pathway, which
is a significant cue of carcinogenesis from early to late stage
bladder cancer. Applying our method to study more cancers
and more classification groups (such as stage, age, ethics, and
sex) will give us further insight into the various pathogenesis
mechanisms.
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