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Protein misfolding and aggregation 
underlie the pathogenesis of many 

neurodegenerative diseases. In addition 
to chaperone-mediated refolding and 
proteasomal degradation, the aggresome-
macroautophagy pathway has emerged 
as another defense mechanism for 
sequestration and clearance of toxic pro-
tein aggregates in cells. Previously, the 
14-3-3 proteins were shown to be indis-
pensable for the formation of aggresomes 
induced by mutant huntingtin proteins. 
In a recent study, we have determined 
that 14-3-3 functions as a molecular 
adaptor to recruit chaperone-associated 
misfolded proteins to dynein motors for 
transport to aggresomes. This molecular 
complex involves a dimeric binding of 
14-3-3 to both the dynein-intermediate 
chain (DIC) and an Hsp70 co-chaperone 
Bcl-2-associated athanogene 3 (BAG3). 
As 14-3-3 has been implicated in various 
neurodegenerative diseases, our findings 
may provide mechanistic insights into its 
role in managing misfolded protein stress 
during the process of neurodegeneration.

Introduction

A common feature of various 
neurodegenerative diseases is the 
accumulation of misfolded and 
aggregated proteins. Protein misfolding 
can be caused by genetic mutations, 
environmental insults or oxidative stress. 
In neurodegenerative diseases, there is 
often a chronic imbalance between the 
generation and clearance of misfolded 
proteins. This leads to the failure of nerve 

cells to cope with excess aggregation-prone 
misfolded proteins, which impede cell 
functions and viability through a variety 
of mechanism, including pore formation, 
proteasome inhibition and disruption of 
intracellular transport.1-3

To prevent aggregation of misfolded 
protein, cells have evolved an elaborate 
protein quality-control system that 
includes molecular chaperone assisted 
refolding and proteasomal degradation. 
When the production of misfolded proteins 
exceeds the capacity of these cellular 
processes, misfolded and aggregated 
proteins can be actively transported into 
a perinuclear structure referred to as the 
aggresome and subsequently degraded by 
lysosome-dependent macroautophagy.4-6 
This short review will discuss recent 
evidence in our understanding of the 
aggresome formation process with special 
emphasis on the 14-3-3 proteins, which 
we have shown to play an important role 
in this process.

Aggresome: An Active Cellular 
Response to Misfolded Protein 

Aggregates

Proteins must attain appropriate three-
dimensional conformations to become 
functional molecules. As an inevitable 
byproduct of biogenesis, some proteins 
do not fold correctly. More than just 
being nonfunctional, misfolded proteins 
are prone to forming aggregates that 
perturb normal cellular functions, and 
ultimately lead to cell death. Therefore, 
cells of all kingdoms of life have 
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developed sophisticated quality control 
systems to maintain protein homeostasis 
(proteostasis).7 Based on our current 
understanding, an important line of 
cellular defense appears to be mediated 
by the molecular chaperones, also known 
as heat-shock proteins (Hsps). Hsps 
are important for assisting the folding 
of nascent proteins in the endoplasmic 
reticulum (ER). They also associate with 
damaged proteins and help their refolding 
by acquiring energetically favorable 
conformations. The chaperone-assistance 
pathways function in both cytoplasm and 
intracellular trafficking processes, thereby 
ensuring that only the correctly folded 
proteins are involved in cellular activities. 
Once they fail to fold properly, however, 
proteins are then eliminated from cells 
through the ubiquitin-proteasome 
system.5,8,9 This cellular process begins 
with the recognition and modification of 
the misfolded protein (polyubiquitination) 
by a complex set of enzymes, and ends 
with the degradation of ubiquitinated 
proteins by the proteasome.10

In general, these protein quality-
control systems are effective in 
maintaining the cellular proteostasis. 
However, the accumulation of misfolded 
protein does occur under certain 
pathological conditions. This could be 
a result of genetic mutation that renders 
the misfolded protein inaccessible to 
cytoplasmic proteasome proteolysis, 
or a defect in the proteolytic capacity 
of the cell. Once accumulated in the 
cell, misfolded proteins tend to interact 
with other unfolded or partially folded 
proteins, resulting in the formation of 
aggregates. While the cellular pathway 
for the clearance of protein aggregates is 
poorly understood, evidence accumulated 
in the last two decades suggests that a 
cellular structure, termed aggresome, 
may play an important role in managing 
misfolded protein aggregates in the cell.7,11

The aggresomes is a single prominent 
inclusion body localized at the perinuclear 
region of the cell. It has a poor solubility 
in aqueous or detergent solvents and 
is mainly composed of aggregated, 
undegraded misfolded proteins. The 
formation of aggresomes is an active 
cellular process, whereby misfolded and 
aggregated proteins are recruited to the 

dynein-dynactin motor and retrogradely 
transported on microtubules to the MTOC 
(microtubule organization center).12,13 It 
was previously proposed that aggresomes 
protect cells by sequestering cytotoxic 
misfolded proteins and small aggregates. 
More recently, emerging evidence 
indicates that aggresome formation 
is a cellular mechanism that helps 
concentrate misfolded and aggregated 
proteins for their eventual clearance by 
macroautophagy, a process that leads to 
the targeted degradation of aggresome 
contents through the formation of the 
autophagosome and subsequent fusion 
with the lysosome.14-16

14-3-3: A Molecular Adaptor  
for Aggresomal Targeting  

of Misfolded Proteins

14-3-3 refers to a family of ubiquitous 
proteins that are most abundantly 
expressed in the brain.17 They are highly 
conserved from yeast to human and 
consist of seven genetically distinct but 
structurally homologous isoforms (β, γ, 
ε, η, ζ, σ, and τ) in mammals.18 14-3-3 
proteins exist as homo- and/or hetero-
dimers and exert their functions by 
binding to and regulating target proteins 
containing specific phosphoserine 
motifs.19,20 To date, 14-3-3 proteins have 
been known to interact with over 200 
proteins that are involved in a wide range of 
biological processes.21 The involvement of 
14-3-3 proteins in the aggresome pathway 
was first indicated by an observation 
that 14-3-3 proteins colocalize with 
aggresome-like perinuclear inclusions in 
the cells ectopically expressing a mutant 
huntingtin protein.22 Subsequently, 
two studies showed that certain 14-3-3 
isoforms are indispensable in the 
aggresome formation process: in yeast 
cells, deletion of the bmh1 gene, which 
encodes one of two yeast 14-3-3 homologs 
Bmh1, blocks aggresomal targeting of 
a disease-related huntingtin protein 
(Htt103QP).23 Likewise, suppression of 
14-3-3ζ by siRNAs (small interfering 
RNA) in mammalian cells significantly 
inhibits aggresome formation induced by 
the expression of another polyglutamine-
expanded huntingtin protein (Htt86Q).24 
In both studies, 14-3-3 was found to 

interact with the mutant huntingtin 
proteins, but it was not yet clear how 
14-3-3 might regulate the aggresome 
formation pathway at a molecular level.

We have recently performed a series of 
analyses in both yeast and mammalian 
cells to investigate the molecular 
mechanism underlying 14-3-3-dependent 
regulation of the aggresome formation 
process. In this study, we found that 
14-3-3 is capable of promoting the 
formation of aggresomes induced by 
ectopic expression of several aggregation-
prone proteins, including a GFP-tagged 
α-synuclein (α-Syn-EGFP), a mutant 
form of the cystic fibrosis transmembrane 
conducting regulator (CFTR-ΔF508), 
GFP-250, a mutant superoxide dismutase 
(SODG85R) and Htt103QP.25 Thus, 
14-3-3 appears to have a broad function 
in the aggresome formation process, a 
role that is likely beyond its binding to 
a particular misfolded protein (e.g., the 
mutant Htt protein). Moreover, some of 
the substrates tested here (such as GFP-
250 and SODG85R) are known to be non-
ubiquitinated, suggesting that aggresome 
targeting by 14-3-3 does not dependent 
on the ubiquitination of misfolded 
proteins.26,27

Our results further revealed that 14-3-3 
serves as a molecular adaptor that couples 
chaperone-associated misfolded and 
aggregated proteins to the dynein motor, 
and thereby facilitates their transport to 
the aggresome.25 First, we identified a 
novel protein-protein interaction between 
14-3-3 and the dynein intermediate chain 
(DIC), and utilized truncation analyses 
to further define the region at DIC that 
is required for 14-3-3 binding. Second, 
we determined that dimerization of 
14-3-3 is a functional requirement for 
aggresome formation in both yeast and 
mammalian cells. This finding is in line 
with published reports showing that the 
14-3-3 dimer can function as a molecular 
adaptor to bridge the interaction of two 
different proteins.28,29 Furthermore, we 
discovered that 14-3-3 recruits misfolded 
proteins through its binding to an Hsp70 
co-chaperone Bcl-2-associated athanogene 
3 (BAG3). Previous studies have 
established the importance of the Hsp70 
complex in targeted macroautophagic 
degradation of misfolded and aggregated 
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proteins.30-32 Particularly, BAG3 has been 
shown to play a critical role in chaperone-
based aggresome targeting and selective 
autophagy of misfolded proteins.5,30 Our 
biochemical analyses revealed that 14-3-3 
binds directly to phosphorylated BAG3, 
thus forming a complex with Hsp70 as 
well as chaperone-associated misfolded 
proteins. Consistently, we found that 
14-3-3 binding to BAG3 is crucial 
for aggresomal targeting of misfolded 
proteins. Together, these data suggest that 
14-3-3 is a key linker between chaperone-
associated misfolded proteins and the 
dynein motor.

Based on these results, we propose a 
working model for a 14-3-3-mediated 
aggresome formation pathway. As 
depicted in Figure  1, misfolded proteins 
form toxic aggregates under conditions 
of genetic mutations or external stress. 
As a cellular stress response, misfolded 
and aggregated proteins are generally 
recognized and bound by molecular 
chaperones, such as the Hsp70 complex 
(Step 1). 14-3-3 interacts with the Hsp70 
complex via a phosphorylation-dependent 
binding to the Hsp70 co-chaperone BAG3 
and loads the misfolded protein cargo 
onto the cytoplasmic dynein complex. We 
postulate that this coupling is mediated by 

a dimeric binding of 14-3-3, in which each 
monomer interacts with BAG3 or DIC 
respectively (Step 2). The cargo complex 
is then transported along microtubule 
toward the MTOC to form the aggresome 
(Step 3). Subsequently, the aggresome 
can turn into an autophagosome through 
the recruitment of autophagic membrane 
(Step 4). Finally, fusions between the 
autophagosome and lysosome will result in 
the degradation and clearance of cytotoxic 
protein aggregates (Step 5).

It is worth noting that several recent 
reports have provided evidence linking 
the chaperone-associated aggresome 
formation to targeted degradation 
of misfolded/aggregated proteins by 
selective macroautophagy.33,34 Specifically, 
BAG3 was shown to promote substrate 
degradation by macroautophagy in a 
p62/SQSTM1-dependent manner.35 In 
light of our identified protein-protein 
interaction between 14-3-3 and BAG3, 
future studies should be directed to 
investigate a potential role of 14-3-3 in the 
macroautophagy process. On the other 
hand, we have demonstrated that the 
phosphorylation of BAG3 is critical for 
14-3-3 binding as well as the formation 
of aggresomes. This is consistent with 
previous studies showing the importance 

of protein kinase activation in promoting 
aggresome formation.36-39 It will be of 
interest to further identify the cellular 
factors (protein kinase/phosphatase) 
that regulate BAG3 phosphorylation, 
as these studies may potentially define 
novel cellular signaling cascades activated 
during misfolded protein stress.

14-3-3, Aggresomes,  
and Neurodegenerative Diseases

Many neurodegenerative diseases 
are characterized by the presence of 
intracellular inclusion bodies that share 
similar biochemical and morphological 
characteristics with the aggresome.40 
As suggested by recent evidence, the 
formation of inclusion bodies is likely 
mediated by a cellular process that is 
analogous to the aggresome formation 
pathway, representing a cytoprotective 
mechanism for coping with accumulation 
of misfolded and aggregated proteins in 
pathological conditions.26 Interestingly, 
14-3-3 proteins have previously been 
identified as a component of inclusion 
bodies in a number of neurodegenerative 
diseases, such as Lewy bodies in 
Parkinson disease, neurofibrillary tangles 
in Alzheimer disease, mutant huntingtin 

Figure 1. Model for 14-3-3’s role in the aggresome-macroautophagy pathway. Numbers denote various steps during aggresome formation and clear-
ance. A 14-3-3 dimer simultaneously binds to phosphorylated BAG3 and the dynein motor, thereby targeting chaperone-associated misfolded proteins 
and aggregates to the aggresome.
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aggregates in Huntington’s disease, and 
aggresome-like inclusions of mutant 
superoxide dismutase in Amyotrophic 
lateral sclerosis.41-47 The observation that 
14-3-3 is also present in the aggresome 
further establishes the similarity between 
inclusion bodies and aggresomes. As 
14–-3-3 protects cells by targeting 
misfolded proteins to aggresomes in the 
cell-based assays, we expect that this 
family of proteins is an important factor 
in promoting neuronal survival during 
the process of neurodegeneration. Indeed, 
such a function of 14-3-3 was proposed 
several years ago by Kaneko and Hachiya, 
who hypothesized that 14-3-3 may act as a 
sweeper to facilitate the sequestration and 

deposition of misfolded proteins in disease 
conditions.48

Considering the potential importance 
of 14-3-3 proteins in cellular responses to 
aggregation-prone misfolded proteins, it 
is conceivable that the 14-3-3-dependent 
molecular pathway may be a novel 
target for the prevention and therapy of 
neurodegenerative diseases, particularly 
those stem from protein aggregations.49 
Encouragingly, recent effort has led to the 
discovery of some natural and synthetic 
compounds that enhance 14–-3-3 
functions by stabilizing its interactions 
with target proteins.50-52 A challenge for 
their in vivo application, however, lies in 
selective targeting of specific molecular 
complex (s) in which 14-3-3 operates. 

Based on our study, 14-3-3 bindings to 
BAG3 and DIC are crucial for depositing 
misfolded proteins to the aggresome. 
Thus, chemicals that selectively promote 
these two protein-protein interactions 
might have important implications for 
the treatment of some neurodegenerative 
diseases.
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