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Introduction

The misfolding of proteins is a common event in cells. This 
can be caused by chance, by environmental factors or by muta-
tions that make the native protein conformation less stable. 
When proteins misfold, they expose hydrophobic segments that 
are normally buried in the core of their native conformation. 
This exposure promotes the formation of intermolecular binding 
and subsequent aggregation. It is generally accepted that these 
aggregates are toxic and their accumulation is the cause of neu-
rodegenerative disorders like Alzheimer disease (AD), Parkinson 
disease (PD), Huntington disease (HD), and prion disease.1

To avoid accumulation of these neurotoxic species, cells have 
evolved a protein quality control (PQC) system which supervises 
protein folding and eliminates misfolded proteins before they can 
exert toxic effects.2 Unfortunately, as we age, the delicate bal-
ance of the synthesis, folding, and degradation of proteins can 
be altered and the load of misfolded protein may overwhelm the 
PQC system allowing the accumulation of toxic protein aggre-
gates. Under this cellular stress, the unfolded protein response 
(UPR) is activated.2 Through this response, the cell tries to 
restore its normal function by stopping protein synthesis and 
increasing the production of chaperones involved in protein fold-
ing. If this response is not sufficient to stop the accumulation 
of unfolded protein, the UPR directs the cell toward apoptosis. 
Improving the efficiency of the PQC system, therefore, is one 
approach to combating protein folding diseases.

Chaperones are one of the major players of the PQC system. 
As traditionally defined, they oversee the correct folding and 
assemble of proteins, thus preventing their degradation or aggre-
gation and ensuring their appropriate trafficking and function. 
The overall proteostatic function of chaperones makes them 
prime candidates for therapeutic agents for neurodegenerative 
disease. They are classified into 3 groups: molecular, pharmaco-
logical, and chemical.

Molecular chaperones are proteins that interact with the non-
native state of other proteins to assist them in their folding or 
unfolding and their assembly or disassembly. They are not pres-
ent in the final functional protein structure. They represent the 
first and most potent line of defense against protein misfolding 
and the aggregation process.3 For example, overexpression of heat 
shock proteins (Hsps), the major molecular chaperones in cells, 
has been shown to be neuroprotective in neurodegenerative dis-
eases,4 and this has led to studies of Hsps as potential therapies.5

Pharmacological chaperones are low molecular weight com-
pounds which specifically bind proteins and induce refolding or 
structure stabilization, restoring protein function.6 They can be 
enzyme or receptor ligands or molecules which selectively bind 
to a particular native conformation of a protein to increase its 
stability.
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Several neurodegenerative diseases are caused by defects 
in protein folding, including Alzheimer, Parkinson, Huntington, 
and prion diseases. Once a disease-specific protein misfolds, it 
can then form toxic aggregates which accumulate in the brain, 
leading to neuronal dysfunction, cell death, and clinical symp-
toms. Although significant advances have been made toward 
understanding the mechanisms of protein aggregation, there 
are no curative treatments for any of these diseases. Since pro-
tein misfolding and the accumulation of aggregates are the 
most upstream events in the pathological cascade, rescuing or 
stabilizing the native conformations of proteins is an obvious 
therapeutic strategy. In recent years, small molecules known as 
chaperones have been shown to be effective in reducing lev-
els of misfolded proteins, thus minimizing the accumulation of 
aggregates and their downstream pathological consequences. 
Chaperones are classified as molecular, pharmacological, 
or chemical. In this mini-review we summarize the modes of 
action of different chemical chaperones and discuss evidence 
for their efficacy in the treatment of protein folding diseases in 
vitro and in vivo.
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Chemical chaperones can be divided into 2 groups: osmo-
lytes and hydrophobic compounds.7 They are also low molecular 
weight compounds but they have a nonspecific mode of action 
and in some cases cannot bind directly to the proteins. Unlike 
the pharmacological chaperones, these molecules usually only 
have effect at high concentrations (molar), so they have been 
largely neglected as therapeutic agents. However, recently some 
of these molecules are receiving increasing attention as potential 
treatments for neurodegenerative conditions given their complex 
mechanisms of action which likely act at different levels of the 
neuropathology cascade.

In this mini-review we will focus on the role and therapeu-
tic potential of chemical chaperones in protein folding diseases, 
including prion disease.

Osmolyte Chaperones

Cellular osmolytes are ancient members of stress responses. 
They play an important role for organisms exposed to stress con-
ditions such as fluctuating salinity, desiccation, or extreme tem-
peratures.8 The major osmolytes in eukaryotes are restricted to a 
few classes of low molecular weight compounds: free amino acids 
and amino acid derivatives (e.g., glycine, taurine, β-alanine), 
polyols (e.g., glycerol, sucrose), and methyl-amines (e.g., trimeth-
ylamine N-oxide [TMAO]).

Mechanism of action
Under denaturing environmental stresses, the intracellular 

milieu is enriched with organic osmolytes and these osmolytes 
increase the stability of proteins without affecting their activity.8 
Particular osmolytes appear to be involved in particular stress 
conditions. For example, polyols protect cells against extreme 
temperature and dehydration, amino acids protect against extra-
cellular environments that are high in salt concentration, and 
methylamines are present in urea-rich cells, protecting against 
the deleterious effect of urea on protein structure.8

Despite these differences, osmolytes share the same non-
selective mechanism for stabilization of protein structure; they 
alter solvent properties. A peptide backbone is hydrophilic but 
amino acid side chains vary in their hydrophobicity. Thus there 
is a balance of backbone and side chain interaction in a given 
solvent that determines the free energy of a folded or unfolded 
state. Osmolytes sequester water molecules, leaving a hydro-
phobic environment around the protein. This increases the free 
energy of the protein’s unfolded state more than its folded state, 
thereby shifting the folding–unfolding equilibrium toward the 
folded state, where the hydrophilic protein backbone minimizes 
its exposure to the hydrophobic surroundings.9-11

In addition to their direct effect on the protein conformation 
and folding, osmolytes modulate the function of molecular chap-
erones,12,13 further improving the efficiency of the PQC system.

Evidence for therapeutic effects in vitro
The effect of osmolyte chaperones on neurodegenerative-

related protein misfolding has been well studied in vitro.

Experiments with α-synuclein, the protein associated with 
PD, demonstrated that the methylamine TMAO induced con-
version of the unfolded protein into its native state.14 Polyols and 
TMAO also modulated the aggregation properties of Aβ pep-
tide, which accumulates in AD, accelerating the conformational 
change from random coil to β-sheet.15,16

Within prion diseases, TMAO and glycerol prevented conver-
sion of the cellular form of prion protein (PrPC) into its infec-
tive form (PrPSc) in scrapie-infected mouse neuroblastoma cells, 
without affecting the existing population of PrPSc.17 In a PrP 
H187R (PrP187R) cell model, which is a prototype of familial 
Creutzfeldt Jakob disease (CJD), glycerol also reduced the lyso-
somal accumulation of PrP187R and facilitated its transport to 
the cell surface.18 Molecular dynamics simulations studying the 
conversion of PrP at low pH revealed that TMAO prevented resi-
dues that are key to conversion from assuming an extended sheet 
structure.19

Evidence for therapeutic effects in vivo
Oral administration of 2% of trehalose solution (starting at 21 

d of age and continuing until the day the mice were killed) has 
been shown to improve motor dysfunction and extend lifespan in 
a transgenic mouse model of HD by minimizing the aggregation 
propensity of the disease-associated polyglutamine-containing 
protein Huntingtin.20

Although not a naturally occurring chaperone, the well-stud-
ied osmolyte DMSO significantly prolonged disease incubation 
time and delayed the accumulation of PrPSc in hamsters intra-
cranially inoculated with prions. This was achieved with oral 
administration of a 7.5% solution (starting at day 0 or 14 dpi). It 
should be noted however, that clear adverse effects such as weight 
loss were observed.21

Future therapeutic potential
Despite their high efficiency as anti-aggregation agents and 

beneficial effects in animal models of neurodegenerative diseases, 
very few of these osmolytic chaperones have entered into clini-
cal trials because of issues related to their toxicity (the majority 
of these chemical chaperones require high concentrations for 
effectiveness) and their lack of specificity. Instead, the group of 
hydrophobic chaperones, which are much less toxic, are being 
increasingly examined as therapeutic agents.

Hydrophobic Chaperones

Several molecules have been classified as hydrophobic chaper-
ones, including sodium 4-phenylbutyrate (PBA) and bile acids. 
The general mechanism of action proposed for chemical chap-
erones involves the interaction of hydrophobic regions of the 
chaperone with exposed hydrophobic segments of the unfolded 
protein. This interaction protects the protein from aggregation. 
However, whether PBA and bile acids truly demonstrate this 
behavior is unclear. They do reduce aggregate accumulation in 
vivo and in vitro and revert endoplasmic reticulum (ER) stress, 
but it has been recently demonstrated that these molecules have 
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more complex mechanisms of action which influence many levels 
of regulation.

4-phenylbutyrate
Sodium 4-phenylbutyrate (PBA) is an orally bioavailable, 

blood brain barrier (BBB) permeable, short-chain fatty acid that 
has been approved by the Food and Drug Administration (FDA) 
for treatment of urea cycle disorders. PBA has potential benefit 
for a wide variety of diseases like cancer, cystic fibrosis, thalas-
semia, spinal muscular atrophy as well as protein folding diseases 
such as type 2 diabetes mellitus, amyotrophic lateral sclerosis 
(ALS), HD, AD, and PD.22-30

Although PBA has been classically described as a chemical 
chaperone, based on its effects on ER stress and aggregate accu-
mulation, the actual molecular mechanisms involved in its ben-
eficial effects are not completely clear.

Mechanisms of action
Two primary mechanisms of action have been proposed for 

PBA: chemical chaperone and histone deacetylase (HDAC) 
inhibitor. Modifications to PBA structure that remove HDAC 
inhibitory activity do not abolish its effects on protein aggrega-
tion or ER stress, suggesting that the protective effects are not 
based on HDAC inhibition alone but rather may involve direct 
chaperone-like interactions.31 At the same time, the HDAC 
inhibitory property of PBA allows it to regulate the transcrip-
tion of many genes involved in the UPR system; PBA induces the 
synthesis of molecular chaperones32 while downregulating gen-
eral protein synthesis.33 Also of note, epigenetic regulators related 
to histone acetylation are critical regulators of neuronal gene 
expression. It has been recently suggested that HDAC inhibitory 
activity may be related to the enhancement of synaptic plastic-
ity, learning, and memory, indicating that compounds like PBA 
might be a useful class of therapeutic agents for neurodegenera-
tive disorders.34 Indeed, PBA has been studied as a therapeutic 
agent in vitro and in vivo.

Evidence for therapeutic effects in vitro
PBA can inhibit the aggregation of recombinant α-synuclein 

aggregation in vitro, likely through its chaperone effect on hydro-
phobic interaction.35 PBA also has neuroprotective effects in cell 
culture studies, likely mediated through HDAC inhibition. In 
neuronal cell culture models of AD, treatment with PBA led to 
neuroprotection associated with a decrease in tau phosphoryla-
tion. It also modulated the processing of the amyloid precur-
sor protein (APP).36,37 In a cell model of PD, PBA increased the 
expression of genes important for moderating oxidative stress and 
protein aggregation, thereby reverting the pathology.28

Evidence for therapeutic effects in vivo
There have been encouraging results from PBA treatment of 

several animal models of neurodegenerative disease.
Oral administration of 0.5% PBA solution to AD mouse 

models significantly reduced the number of plaques in the hip-
pocampus and reversed cognitive deficits.38,39 It has been sug-
gested that at least part of this neuroprotective effect is due to the 
chaperone-like activity of PBA.36

Neuroprotective effects of PBA were also assessed on rote-
none-induced PD mouse models. Protection against neurode-
generation was observed when PBA at a dose of 120 mg/kg was 

intraperitoneally injected 30 min before each oral administration 
of rotenone.35 Additionally, oral administration of PBA (200 mg/
kg/day 3h after injection with MPTP) in an acute 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of 
PD inhibited the expression of proinflammatory molecules and 
attenuated the production of reactive oxygen species from acti-
vated microglia.40

In HD mouse models, daily intraperitoneal injections of PBA 
(100 mg/kg/day) ameliorated the neurodegenerative phenotype, 
significantly extending survival and attenuating both gross brain 
and neuronal atrophy.27,41 Through its HDAC inhibitory activ-
ity, PBA increased mRNA for components of the ubiquitin-
proteosomal pathway and downregulated caspases implicated in 
apoptotic cell death. Of note, suberoylanilide hydroxamic acid, 
another HDAC inhibitor, has been also able to ameliorate motor 
deðcits in a mouse model of HD.42

Future therapeutic potential
While PBA can be utilized with a good efficiency by oral 

supplementation and treatment seems to have no severe side 
effects, the main drawback to its therapeutic use is the high dos-
age required. If a direct translation of the effective dosage in AD 
mice (200 mg/kg) is done, up to 15 g/day would be required for 
AD treatment in humans. This concentration was the maximum 
tolerated in a human tolerability study of HD patients.43 It is pos-
sible that modifications of this molecule can be made in order to 
improve its efficiency. In one study, 4-PBA derivatives carrying a 
p-nitro, p-amino, or p-methoxy group on the benzene ring were 
able to influence anti-aggregation activity, although the effects 
were mild.31

Lipids and detergents (bile acids)
Bile acids (BAs) are acidic steroids that are synthesized from 

cholesterol in the liver. They are secreted into the intestine where 
they can be dehydroxylated by bacteria to become secondary BAs 
like deoxycholic acid (DCA) or ursodeoxycholic acid (UDCA). 
Secondary BAs can then be returned to the liver and conjugated 
with amino acids to generate conjugated BAs such as taurourso-
deoxycholic acid (TUDCA) which is UDCA conjugated with the 
amino acid taurine. BAs are the major constituents of bile. While 
their main role is the solubilization of dietary fats and fat-soluble 
vitamins to improve absorption from the intestinal lumen, in 
recent years, neuroprotective functions have been attributed to 
BAs.44,45

Mechanisms of action
TUDCA and UDCA can reduce the accumulation of toxic 

aggregates in different experimental models of neurodegenerative 
diseases. As such, they have been classified as chemical chaper-
ones. However, as is the case for PBA, the observed treatment 
benefits may also be the result of other functions attributed to 
these bile acids.46

The cytoprotective effects of UDCA and TUDCA have been 
attributed to the reduction of reactive oxygen species formation,47 
the prevention of mitochondrial dysfunction,48 and the inhibi-
tion of apoptosis through both the intrinsic49 and the extrinsic 
pathway.50

These steroids can also activate specific nuclear receptors and 
G protein–coupled receptors influencing the expression of genes 
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that encode proteins involved in the regulation of glucose, fatty 
acid, lipoprotein synthesis, energy metabolism, and the regula-
tion of their own synthesis.51

In vitro data
There is in vitro evidence to support a chaperone activity 

for BAs. Studies of millimolar concentrations of TUDCA and 
UDCA have demonstrated their inhibitory effects on the thermal 
aggregation of different proteins.52,53 This effect may have been 
secondary to the direct stabilization of the protein in question 
or through direct interaction with other molecular chaperones, 
enhancing their function.52,54 However, this chaperone effect is 
not observed for all proteins; when neurodegenerative disease-
related proteins like Aβ peptide were tested, TUDCA was found 
ineffective at preventing aggregation in vitro,55 although these 
latter experiments were performed with lower concentrations 
of TUDCA (micromolar). Also of note, the cytotoxic steroid 
DCA actually enhanced the in vitro aggregation of prion protein 
(PrP).56

Despite the lack of effect on aggregation of Aβ peptide in vitro, 
TUDCA strongly inhibited apoptosis in a cell culture model of 
AD in which cells expressed the Dutch mutation (E22Q) in 
amyloid precursor protein.55 Thus the ability of BAs to directly 
interact with and influence protein misfolding could be protein 
specific and they may exert protective effects via other mecha-
nisms when used in cellular environments.

In vivo data
The neuroprotective action of BAs has been tested in sev-

eral animal models of neurodegenerative diseases. In transgenic 
mouse models of Familial Amyloidotic Polyneuropathy, TUDCA 
significantly reduced transthyretin (TTR) toxic aggregates with-
out affecting TTR aggregation in vitro,57 again suggesting that 
this effect was not due to a direct stabilization of the native struc-
ture of the protein but rather an effect on other cellular processes 
such as apoptotic or oxidative mechanisms involved in the early 
stages of pathology. Feeding APP/PS1 transgenic mice with a diet 
supplemented with TUDCA reduced the accumulation of Aβ 
deposits and ameliorated memory deficits. This effect was asso-
ciated with but not limited to a reduction of γ-secretase activ-
ity.58 Administration of TUDCA led to a significant reduction in 
neuropathology and improved the locomotor and sensorimotor 
deficits of a transgenic HD mouse model.44 Additionally, intra-
peritoneal injection of TUDCA in mouse model of PD prevented 
dopaminergic cell death through the activation of pro-survival 
pathways.59

Future therapeutic potential
Bile acids, in particular TUDCA and UDCA, have received 

increasing attention as potential treatments for neurodegenera-
tive conditions given their anti-amyloidogenic activity and their 
ability to modulate apoptotic pathways.60 TUDCA and UDCA 
have therapeutic advantages over other compounds with chap-
erone activity. These BAs are orally bioavailable, BBB perme-
able, and have a low toxicity profile. In addition, TUDCA has 
been FDA-approved for use in humans to treat primary biliary 
cirrhosis.

Translation to Clinical Trials

There have been many efforts to develop small molecules that 
can inhibit the aggregation of proteins. Numerous anti-amy-
loidogenic compounds have been discovered either by screening 
large libraries of organic molecules or by rationally designing 
compounds based on the structure and dynamics of the protein 
involved.61,62 The use of these molecules can partially overcome 
and in some cases complete reverse the pathology in vitro and in 
vivo using models of neurodegenerative diseases. Unfortunately, 
those compounds which have been tested in clinical trials have 
had discouraging results to date.63

There are several factors that could explain why these com-
pounds have failed in humans so far. A major problem is that no 
effective preclinical diagnoses are readily available for these dis-
eases. It may be that once clinical symptoms appear, the level of 
protein aggregation and accumulation is too high to be affected 
by prevention of further misfolding. Compounds designed to act 
exclusively at the initiation of aggregation will be effective only 
if given very early in disease. Chaperones, as protein stabilizing 
molecules, may have less effect on pre-formed aggregates than 
on the monomer proteins themselves. Designing chaperones 
that more directly affect the aggregates is challenging because 
the structure of the toxic aggregates and their mechanism(s) of 
conversion remain unclear. As newer research begins to reveal 
more of this structural information, there may be more success 
in inhibitory molecule design. For example, the extent of β sheet 
content within a toxic oligomeric species may direct the planar 
attributes of the inhibitory molecule.64 Finally, if an effective 
anti-aggregation molecule is discovered or successfully synthe-
sized, this drug must cross the BBB and cannot be toxic at the 
effective concentration.

The most effective treatment regimen may involve a combi-
nation of drugs, some which stop protein accumulation, some 
which promote clearance of toxic aggregates, and others which 
act downstream to offset the neurodegenerative cascade. In this 
context, compounds which themselves have a multi-modal/
multi-target mechanism would be ideal. TUDCA, UDCA, and 
PBA may fulfill this role, in that they are not only able to coun-
terattack the misfolding step but also modulate apoptosis, gene 
expression, and probably other biological processes involved in 
the neuropathogenesis. These natural compounds also have the 
advantage of being orally bioavailable, being BBB permeable, 
having a low toxicity profile, and already being FDA-approved 
drugs. Clinical trials are currently underway to study the tolera-
bility and efficacy of TUDCA and UDCA in patients with ALS, 
TTR amyloidosis, and HD.

Conclusion

As our life expectancy and population numbers continue to 
increase, so will the prevalence and socioeconomic burden of 
neurodegenerative diseases. Given this, it is of some urgency to 
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find viable therapeutic strategies. Since the accumulation of mis-
folded host proteins in the brain is the putative cause for many 
of these diseases, stabilizing native protein structure is a logical 
approach. TUDCA and UDCA, which can have anti-aggrega-
tion effects as well as effects on apoptosis regulation, may rep-
resent safe and effective compounds which act at more than one 
level of the neuropathogenic cascade. More studies with these 
promising compounds should be pursued to fully understand 

their mechanism(s) of action and to expand the repertoire of 
treatable neurodegenerative diseases.
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