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Abstract

Recent evidence suggests a probabilistic relationship exists between the phonological/orthographic

form of a word and its lexical-syntactic category (specifically nouns vs. verbs) such that syntactic

prediction may elicit form-based estimates in sensory cortex. We tested this hypothesis by

conducting multi-voxel pattern analysis (MVPA) of fMRI data from early visual cortex (EVC),

left ventral temporal (VT) cortex, and a subregion of the latter - the left mid fusiform gyrus (mid

FG), sometimes called the “visual word form area.” Crucially, we examined only those volumes

sampled when subjects were predicting, but not viewing, nouns and verbs. This allowed us to

investigate prediction effects in visual areas without any bottom-up orthographic input. We found

that voxels in VT and mid FG, but not in EVC, were able to classify noun-predictive trials vs.

verb-predictive trials in sentence contexts, suggesting that sentence-level predictions are sufficient

to generate word form-based estimates in visual areas.
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1. INTRODUCTION

Language, like any other temporally ordered behavior, makes use of top-down predictions in

order to reduce uncertainty about upcoming events. The fact that language processing is so

remarkably fast is likely due to our ability to predict the types of structures found in natural

language, whether these be phonological, morpho-syntactic, lexical-semantic, or pragmatic.

Given the immense generative power of language, it is unlikely that linguistic prediction

operates only over the surface statistics of a language; rather, efficiency would dictate that

predictions be based on the language’s “category statistics,” or the likelihood that one set of

elements is followed by another (Hunt & Aslin, 2010). The existence of linguistic categories

such as, say, nouns and verbs, is relatively easy to determine, but the predictive power of

these categories is limited, if not entirely obfuscated, by the apparently arbitrary relationship
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between a word’s syntactic category and the phonological features of that category’s

members. The venerable principle of the “arbitrariness of the sign” has provided not only a

descriptive account of why the phonological similarity of words, such as cat, sat, and fat,

determines neither their semantic meaning nor syntactic category (de Saussure, 1916;

Tanenhaus & Hare, 2007) but also a functional account: if a word’s form is uncoupled from

its meaning, this allows a finite set of forms to combine to denote an infinite set of meanings

(Chomsky, 1965). Thus it would seem that language’s infinite generativity is at odds with

optimal conditions for word form prediction.

However, a study by Farmer et al. (2006) provided evidence that a probabilistic relationship

may indeed exist between the phonological/orthographic form of a word and its lexical

category, which could in principle be used by a reader/listener to predict word form features

during sentence processing. The study was prompted by a renewed interest in research

demonstrating that systematic, probabilistic, form-based regularities exist among the words

of a given lexical category (Arciuli & Monaghan, 2009; Cassidy & Kelly, 1991; Kelly,

1992; Monaghan, Christiansen, & Chater, 2007; but cf. Staub, Grant, Clifton, & Rayner,

2009). In a corpus analysis of the phonological properties of nouns and verbs, Farmer et al.

found these two lexical categories formed distinct clusters when plotted in a

multidimensional form feature space. They calculated the form feature distance between

each possible two-word comparison based on the number of overlapping and non-

overlapping phonetic features. They then obtained a “form typicality score” for each word

by subtracting its distance to all verbs from its distance to all nouns. While many words

were “neutral” – not strongly typical of either nouns or verbs - the centers of noun-typicality

and verb-typicality were separated in this feature space such that clusters of typical nouns

and typical verbs could be distinguished. Furthermore, the noun- or verb-typicality of a word

was found to predict lexical naming latencies and reading times. This typicality measure

also influenced syntactic processing: whether a noun-verb homonym was more typical of a

noun or a verb predicted whether participants expected a noun or verb continuation of a

given ambiguous sentence. The effect of this typicality measure was significant even after

accounting for effects of onset phoneme, frequency, length, neighborhood size, familiarity,

and imageability.

The present work uses fMRI multi-voxel pattern classification to test whether readers

predict word forms corresponding to noun and verb syntactic categories and to examine the

neural instantiation of these putative predictions. There are several candidates for the neural

read-out of such a predictive system. In this study, we will explore areas where this

prediction may engage the brain’s extended visual system. Although Farmer et al. (2006)

quantified form typicality using a phonological feature metric and not a visual orthographic

metric per se, they found evidence that this form typicality metric predicted reading times.

English’s use of a phonemic orthography (in which graphemes have a correspondence to

phonemes) leads one to expect that a syntactic-phonological-orthographic correspondence

could play a role in using lexical category expectations to predict visual word form features.

If so, we would expect such prediction to recruit areas of the brain sensitive to features of

words and letter strings. One such candidate region is the left mid fusiform gyrus, referred to

by some as the “visual word form area” due to its putative specialization in identifying
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visual word forms (Dehaene & Cohen, 2011). Although the functional specificity of this

area is not uncontroversial, and there may be other areas of the brain subserving written

word recognition, the left mid fusiform gyrus is robustly sensitive to visual word stimuli,

and thus could be involved in generating word form predictions. We also looked at a larger

swathe of ventral temporal cortex surrounding mid FG, since the mid FG may be part of a

more diffuse posterior-to-anterior tuning gradient extending along the left ventral temporal

cortex and sensitive to (non-)orthographic line junctions, alphabetic letters, bigrams,

morphemes, and whole words (Haushofer, Livingstone, & Kanwisher, 2008; Vinckier et al.,

2007).

Rather more controversial, however, is evidence that syntactic predictions during reading

may generate form-based estimates as early as occipital cortex (Dikker, Rabagliati, Farmer,

& Pylkkanen, 2010). In an event-related magnetoencephalographic (MEG) study, Dikker et

al. compared brain responses across two syntactic violation conditions. In both conditions,

the syntax of the sentence selected for a verb, but in one case the next word was a form-

typical noun and in the other it was a form-neutral noun, which had form features consistent

with both nouns and verbs. It was found that the amplitude of the MEG component called

the M100 (i.e., 100 ms post-stimulus onset) was significantly greater when a typical noun

violated the sentence continuation than when a neutral noun did. Although the type of

syntactic violation was equivalent in both cases, only the typicality scores predicted this

M100 modulation. In other work, the M100 has been localized to early visual cortex (EVC)

- specifically the cuneus, lingual gyrus, and BA 17 (Itier, Herdman, George, Cheyne, &

Taylor, 2006). Thus, these data compelled us to look at EVC in addition to more anterior

regions in VT.

In the present work, we were concerned not only with the question of where in the brain

lexical-syntactic categories might map onto form features, but also the questions of how and

when. Could the early visual form typicality effect in MEG have marked an in situ violation

detection, or might a lexical class violation generate an error signal elsewhere in the brain

that is then relayed to visual areas via re-entrant pathways? Is the expectation violation

detected first in higher-level areas, after the word has been fully analyzed for lexical

syntactic properties, or do visual areas have enough information about the predicted word

form features to “raise the first alarm”? One hypothesis entails top-down prediction, while

the other requires no such prediction, but rather a fast bottom-up analysis of a word before

the lexical class violation can be detected. While the M100 has been shown to be sensitive to

orthographic frequency and transition probability of letter strings, there is no evidence that

the M100 is sensitive to lexical factors of words in isolation (Solomyak & Marantz, 2009;

Tarkiainen, Helenius, Hansen, Cornelissen, & Salmelin, 1999). For this reason, the MEG

findings led to the hypothesis that top-down prediction must be involved (Dikker et al.,

2010); however, this hypothesis has not been directly tested until now.

One way to distinguish top-down prediction effects of word form estimation from bottom-up

perceptual effects of word recognition is simply to remove the word stimulus. We did just

this in the following experiment: we presented subjects with syntactically predictive

sentence fragment cues followed by a series of random dot patterns in which the subject was

to search for either a noun or a verb. Subjects viewed sentence fragments that highly
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constrained the category of word that could continue the sentence (e.g., a noun was expected

but not a verb, or vice versa) but did not constrain expectation for a specific word within that

category (see Appendix for list of stimuli). Instead of seeing the sentence-final word

immediately, subjects searched for an appropriate sentence completion in a series of noisy

images and indicated when an appropriate word was discernible (see Figure 1).

There is precedent in the MVPA literature for successful decoding of imagined shapes

(Stokes, Thompson, Cusack, & Duncan, 2009; Stokes, Thompson, Nobre, & Duncan, 2009),

objects (Lee, Kravitz, & Baker, 2012), and object categories (e.g. people vs. cars; Peelen &

Kastner, 2011) from distributed BOLD activity. Extending this method to highly abstract

grammatical word categories, we were able to successfully classify nouns vs. verbs in VT

and mid FG when a syntactic context was provided. In contrast, EVC did not support

classification in this study. These results suggest that syntactic, or at least sentence-level,

prediction prompts form-based estimates in early visual word form areas, and that a

probabilistic relationship between word form and word category is indeed exploited by the

neural circuitry.

2. MATERIAL AND METHODS

2.1 Participants

Twelve subjects participated in this study. Two subjects’ data were excluded due to

excessive motion artifact, leaving ten subjects analyzed here. Subjects ranged in age from 18

to 38 years, and all were right-handed native speakers of English with normal or corrected-

to-normal vision and no reported history of neurologic problems. Subjects gave written

informed consent and were provided monetary compensation for their time. The human

subjects review board at the University of Pennsylvania approved all experimental

procedures.

2.2 Task and Stimuli

2.2.1 Sentence norming—The sentences used in this study were constructed such that

the final word in the sentence could be predicted with near certainty to be either a noun or a

verb, depending on the condition. Four sentence conditions were included: two noun-

terminal (“Noun1” and “Noun2” conditions) and two verb-terminal (“Verb1” and “Verb2”

conditions), each corresponding to a different structural template as in (1)–(4) below. “Wh”

indicates a wh-word, “Vaux” indicates an auxiliary verb (either did or was), “NP” indicates a

noun phrase, “VP” indicates a verb phrase, and “PP” indicates a prepositional phrase.

1. Noun1:

Wh Vaux NP PP______?

e.g. Where was the woman for the ______?

2. Noun2:

Wh Vaux NP VP______?

e.g. When did the janitor mention the ______?

3. Verb1:
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Wh NP Vaux NP VP______?

e.g. Which budget was the mechanic permitted to ______?

4. Verb2:

Wh NP Vaux NP VP______?

e.g. What crib did the broker plan to ______?

In order to control for the possibility that a verb phrase-terminal sentence might

accommodate the insertion of a direct object, we constrained verb-terminal sentence

completions by using a wh- question frame (and in (3) and (4) above). While this necessarily

limited the verb completions of verb-terminal sentences to transitive verbs only, the wh-type

noun phrases such as “Which budget” and “Which crib” blocked the insertion of a direct

object, thus preventing “run-away” phrasal completions. In order to match sentence frames

across conditions as much as possible, noun-terminal sentences were also wh- questions (see

(1) and (2) above).

Noun2-type sentences contained matrix verbs selective for a NP complement (≤ 75%;

Trueswell et al., 1994; Jennings et al. 1997). Matrix verbs of Verb-type sentences were

selective for infinitival complements (≤ 80%) and the verbs in Verb1 and Verb2 sentences

did not differ significantly in frequency or length (Osterhout & Holcomb, 1992). Sentential

subjects for all sentence types were drawn from the same list of agent NPs. We included two

different types of sentence frames for both Noun and Verb sentence conditions in order to

ensure that any prediction effects would not be specific to any one particular sentence frame.

We did not expect any differences between Verb1 and Verb 2 sentences; however, since the

Noun1 and Noun2 sentences had a different number of content words, we used this contrast

to test whether our ROIs were sensitive to the number of content words in a given sentence

(see Results for further discussion).

In order to prevent specific lexical item-based prediction effects from confounding any

putative effects of lexical category prediction, sentence stimuli for this study were selected

based on the results of a separate web-based sentence completion study that involved a

larger set of sentence fragments. Sentence fragments were selected for use in the fMRI study

if they had a relatively low Cloze probability but nevertheless still guaranteed either a noun

or verb completion. (Cloze probability is the probability that a given sentence frame will end

in one particular word.) For the sentence completion study, 37 sentences of each Noun-type

condition and 30 sentences of each Verb-type condition were presented, for a total of 134

sentences. (The number of sentences originally generated for each condition was limited by

the type of matrix verb used: verbs for the Noun-type sentences were more numerous than

for Verb-type sentences.) Seventy-five undergraduates at the University of Pennsylvania, all

native speakers of English who received class credit for their participation, were instructed

to read the incomplete sentences and type whatever they thought best completed each

sentence. Subjects were told to write the first completion that occurred to them, even if that

rendered the sentence odd or even nonsensical; otherwise, subjects were not instructed how

to limit their answers.
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On the basis of the norming study, we removed from the stimuli list any sentence completed

with a phrasal constituent of more than one word, and of the sentences that remained, any

sentence completed with the same word item by more than 22 of 75 subjects. Thus the

maximum item cloze probability of the remaining sentences was 29.3%, with the average

being 2.8% and 2.9% for noun- and verb-terminal sentences, respectively. Twenty-four

sentences in each of the four conditions were then selected for use in the experiment such

that no significant differences in CELEX-based frequency or orthographic length existed

between the set of noun sentence completions and the set of verb sentence completions

(Baayen, Piepenbrock, & Gulikers, 1995)

2.2.2 Noise threshold assessment—Before collecting fMRI data from each subject,

we determined the subject-specific level of noise to apply to visual stimuli, using a

psychophysical staircase procedure (QUEST staircase technique; Watson & Pelli, 1983) and

a customized Matlab script to generate noised images by taking the inverse Fourier

transformation of the mean amplitude spectra with randomized phase spectra (Sadr & Sinha,

2004). Images for this procedure consisted of black word tokens on white background. In

the staircase session, the subject viewed images the percentage phase coherence of which

was gradually reduced until the subject reached threshold on an identification task (80%

correct identification, 20 steps by QUEST staircase). This subject-specific thresholded phase

coherence was used to generate both the noised word images and the images of pure

Gaussian white noise that were presented during fMRI experiment (as in Figure 1).

2.3 Experimental Task and Design

The subject’s task on each trial was to read a sentence fragment presented one word at a

time centrally and then look for an “appropriate” sentence completion among random dot

noise (Figure 1), where “appropriate” was not specified but left to the subject’s judgment.

The subject then would indicate with a button press whether the word that was finally

discernible met this criterion. One out of every six sentences presented was ultimately

completed ungrammatically (i.e. completed with a noun when a verb was expected, and

vice-versa), but because even grammatically well-formed sentences were often bizarre (see

Appendix, e.g. “What money did the baby start to … receive?”), the average judgments for

the ostensibly well-formed sentences varied.

In a given trial, between four and eight noise-only images were presented such that the

length of time between a cue (the last word of the sentence fragment) and a noise-

thresholded target word varied between 12 and 24 seconds. Subjects were unable to predict

the moment the target word would become visible, and therefore had to be vigilant

throughout the 12-to-24-second interval. Each word in a given sentence appeared on the

screen for 300 ms and was followed by 300 ms of a blank screen ISI. Since Noun-type

sentence frames lasted 3600ms (six words, 300ms on, 300ms off) but Verb-type sentence

frames lasted 4200ms (seven words), the fixation time preceding the sentence was either

5400ms (when preceding a Noun-type sentence) or 4800ms (when preceding a Verb-type

sentence). This allowed the subsequent noise image volumes - the volumes of interest in this

study - to remain of equal length (3s), commensurate in duration with TR.

Boylan et al. Page 6

Brain Lang. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The experiment consisted of four runs, where each run included four presentation blocks,

one per condition (Noun1, Noun2, Verb1, and Verb2; block order randomized within run),

with each presentation block consisting of six sentence trials, for a total of 24 trials per run.

Sentence types were blocked in order to utilize any possible effects of syntactic priming to

our advantage: when sentences with a similar syntactic frame follow one another, this

syntactic frame is primed, and such expectation facilitation might hone the prediction of

nouns vs. verbs. Also, form-typicality effects have been shown to be sensitive to the global

context of predictability or ambiguity: Farmer et al. (2011) found that the presentation of an

abundance of form-neutral or –atypical words might attenuate sensitivity to the probabilistic

relationship between a word’s form and its grammatical category, but that during normal

reading, when the syntactic context is predictive of the noun/verb category, form typicality

effects are robust. By blocking sentences of similar syntactic category, we aimed to facilitate

this sensitivity to predictable syntactic context. Note, however, that in terms of analysis, this

was not a block design, but rather a slow event-related design.

2.4 Image acquisition and pre-processing

fMRI data were collected at the Hospital of the University of Pennsylvania on a 3T Siemens

Trio System using an eight-channel multiple-array Nova Medical head coil. After acquiring

T1-weighted anatomical images (TR=1620 ms, TE=3 ms, TI = 950 ms, voxel size = 0.977

mm x 0.977 mm x 1.000 mm), we ran the experimental blocks and collected T2*-weighted

images using a gradient-echo echoplanar pulse sequence (TR=3000 ms, TE=30 ms, voxel

size=3 mm x 3 mm x 3 mm). Images were rear-projected onto a Mylar screen at the head of

the scanner and viewed through a mirror mounted to the head coil. Words presented on the

screen subtended about 5° x 2° of the visual angle and were presented foveally at the center

of the screen.

FMRI data were pre-processed offline using the VoxBo (www.voxbo.org) and AFNI (Cox

& Jesmanowicz, 1999) software packages. Voxbo was only used to sort the raw DICOM

files for further processing in AFNI. The first four volumes of each functional run were

removed so as to allow the signal to reach steady-state magnetization. These initial volumes

included a short block in which the target appeared after only 3 or 6 seconds rather than the

full 12 to 24 seconds: this encouraged participants to start searching for a target from the

very onset of a trial. Functional images were slice-time corrected, and a motion correction

algorithm employed in AFNI registered all volumes to a mean functional volume. We

applied a high-pass filter of 0.01 Hz on each run to remove low frequency trends. Images

were transformed to Talairach standardized space (Talairach & Tournoux, 1988) and voxels

were resampled in the process to 3.5 mm x 3.5 mm x 3.5 mm. The data were left

unsmoothed for MVPA.

2.5 Analysis

Pattern analyses were implemented in MATLAB using scripts adapted from the Princeton

Multi-Voxel Pattern Analysis toolbox (Detre et al., 2006). The analysis pipeline involved

three main steps: voxel selection, classifier training, and classifier testing. The latter two

steps in the analysis were performed in a 4-fold cross-validation procedure whereby the

classifier was trained on three runs and then tested on a fourth in four separate iterations in
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“leave-one-out procedure” on each individual subject separately (Friedman, Hastie, &

Tibshirani, 2001). Below we describe each step of the procedure in detail...

2.5.1 Feature selection—Voxels were selected from several regions of interest (ROIs).

The VT mask, which included the fusiform gyrus but also extended to lingual,

parahippocampal, and inferior temporal gyri, was drawn for each subject a la Haxby (2001).

The mid left FG mask was drawn for each subject based on previous reports of visual word

form area (VWFA) localization in left mid fusiform gyrus (mid FG) (Cohen & Dehaene,

2004; Cohen et al., 2000, 2002; Hasson, Levy, Behrmann, Hendler, & Malach, 2002;

McCandliss, Cohen, & Dehaene, 2003). We used the BA 17 label provided in AFNI’s

Talairach daemon database (Lancaster et al., 2000) to define the early visual cortex (EVC)

mask. Finally, in order to demonstrate the specificity of our findings to visual cortex, we

included one additional ROI, left BA46 (from the same AFNI database), as a negative

control region.

We further narrowed these ROIs using the following voxel selection technique. We first

created a boxcar regressor for each condition (NOUN and VERB (Noun1 and Noun2

conditions were combined, as were Verb1 and Verb2 conditions)) corresponding to the time

points when the subject was predicting, but not actually seeing, a word (separate regressors

were also included for sentence presentation, noised-word presentation, and ITI fixation

baseline). To preclude the possibility of overlap between bottom-up sensory stimulation of

visual areas and top-down activation of these same areas by the preceding sentence or word

cue, we only looked at noised images presented at least two TRs (six seconds) after the

prediction cue (Coutanche & Thompson-Schill, 2014). We then convolved the condition

regressors with a hemodynamic response function (gamma-variate) and then computed the

per-voxel F-statistics for these condition contrasts. Based on this analysis, we selected the N

voxels (where N was 20, 60, 100, or 200) that had the highest F-statistics in a given ROI

(McDuff, Frankel, & Norman, 2009; Polyn, Natu, Cohen, & Norman, 2005). This procedure

was performed for each of the four iterations and only on the three training runs: the test run

was always left out in order to avoid “peeking.” Since each iteration chose a different set of

N voxels, each classifier had a different N-unit input layer.

In Figure 3, we plot classifier performance against each voxel input size (20, 60, 100, 200,

where these voxel input sizes were arbitrarily chosen). We report permutation tests for only

the 20-voxel inputs.).

2.5.2 Classifier training and testing—The classification analyses reported here used a

two-layer neural network classifier as implemented in the Princeton MVPA Matlab toolbox,

which itself also used the proprietary Matlab Neural Networks toolbox. Before running the

classifier, we z-scored the functional data for each voxel and for each run. We then

implemented a simple neural network with an input layer of, e.g., 20 units corresponding to

the best 20 voxels (z-scored raw BOLD signal, not GLM beta values), and an output layer,

which had two units (for Noun vs. Verb). This was trained on three runs using a conjugate

gradient descent backpropagation algorithm (Polyn et al., 2005), and tested on a fourth run

in a leave-one-out 4-fold cross-validation procedure.
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Classifier weights were initialized at random values and then trained on the three training

runs. The order of the training patterns was randomized, and training was stopped when

either the output layer’s mean cross-entropy error fell to 0.001 or the network made 200

passes through all the training patterns. To average out the variability in classifier

performance associated with the random initialization settings, we repeated each fold’s

classifier procedure 100 times and averaged these output values to yield a single classifier

performance output for each fold (McDuff et al., 2009). The folds’ performances were then

averaged together for a single classifier performance value for each subject.

2.5.3 Assessing classifier performance—To assess the significance of the classifier’s

accuracy percentages for each individual subject for the 20-voxel inputs, we used a non-

parametric statistical procedure to determine whether each individual’s classification

performance was greater than that expected by chance (Gallivan, McLean, Smith, &

Culham, 2011; Golland & Fischl, 2003). The condition labels for each subject were

scrambled 100 times, and the classifier was trained and tested on each new set of scrambled

labels. These labels were scrambled such that each new scrambled set had the same number

of trials and conditions per run as the original set. A group p-value was calculated by

randomly selecting from each subject’s 101 possible classification scores (100 permuted

distributions plus the original “real” classification score), generating a population of 1000

mean accuracies based on 1000 combinations of randomly drawn classification scores. The

real mean group classification score was then compared to this permuted null distribution of

1000 means to identify the p-value.

3. RESULTS

In a univariate test of differential activity in all ROIs between noun-type and verb-type

predictions, no clusters survived a significance threshold of p= 0.1. However, multivariate

analyses revealed a difference between noun and verb predictions in a subregion of VT

corresponding to the left mid FG, inclusive of an area sometimes called the “visual word

form area” . Average classification performance in the left mid FG mask was significantly

above 50% chance (M=0.58, two-tailed permutation test p=0.023; 20-voxel input). Group-

level classification was highest for a 20-voxel input in mid FG, but classification was also

reliably above chance for 60 and 100 voxels in mid FG. In order to examine whether mid

FG may be driving classification in VT, we ran a separate classifier over the complement set

of voxels that were in VT but not in mid FG (see Figure 2). This VT complement

classification did not reach significance at the group level (M=0.53, permutation test

p=0.14), consistent with the hypothesis that within the left VT ROI, mid FG is particularly

sensitive to word form features underlying the noun-verb distinction. Finally, classification

of nouns vs. verbs did not meet significance in either EVC (see Figure 3; M= 0.50,

permutation test p=0.41) or BA46 (M=0.51, p= 0.20). These data together indicate that the

left mid FG is tuned to lexical-syntactic features of words in predictive contexts.

We next considered the possibility that successful classification could have been the result

of a confound between sentence type and sentence length (specifically, the number of

content words), even though subjects were not viewing the sentences when the relevant

fMRI data were being collected. When we created sentences for this study, we decided that
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maintaining suitable syntactic structure was more desirable than matching the two

conditions on length, so we designed the experiment to allow us to test for this possible

length confound. Specifically, the first type of noun-terminal sentence (Noun1) had one

content word per sentence, the second type of noun-terminal sentence (Noun2) had two

content words, and both types of verb-terminal sentences (Verb1 and Verb2) had three

content words. In order to determine whether the number of content words could drive

classification, we tested classification on the two types of noun-terminal sentences (i.e.,

same grammatical class, but one content word versus two content words). Classification was

not significant in VT (Noun1 vs. Noun2: M=0.48, p=0.52, 20 voxels). Because this null

result may simply have been due to insufficient power (since the number of volumes used to

train each pattern was half that used in the primary analysis), we also trained classifiers on

the Noun1-vs.-Verb1 and the Noun2-vs.-Verb2 comparisons in VT. VT voxels in mid FG

were able to train classifiers on Noun1-vs.-Verb1 above chance (M= 0.54, p<0.01). This

pattern gives us confidence that classification performance for Nouns vs. Verbs was due to

differences in lexical-syntactic prediction and not sentence length.

4. DISCUSSION

Using multi-voxel pattern analysis (MVPA), we were able to show that participants’

expectations of a noun or a verb can generate form-based predictions in higher level visual

areas, including the left ventral temporal (VT) cortex, and a subregion of the latter – the left

mid fusiform gyrus (mid FG), sometimes called the “visual word form area.” No evidence

for form-based predictions was observed in early visual cortex (EVC).

What differences between nouns and verbs might give rise to their successful classification

in VT and mid FG? Nouns and verbs differ along a number of dimensions – phonological,

lexical, syntactic, and semantic – but because left mid FG was the primary locus of noun-

verb classification in VT and has been shown to be most sensitive to bigrams and lexical-

level properties of words, it is likely that word form features are indeed the representational

substrate of noun-verb classification. While it has been found that nouns are more highly

imageable than verbs (e.g., Luzzatti & Chierchia, 2002), effects of noun and verb

imageability are more often found in the right hemisphere (Crepaldi et al., 2006).

Furthermore, in testing for gross differences between nouns and verbs such as imageability,

our univariate analysis of noun prediction vs. verb prediction in both left mid FG and VT

found no significant differential activation between these two grammatical categories. If

imageability, or some other coarse visual property of nouns and verbs deriving from their

conceptual semantic associations, were underlying classification, then we would expect to

see this borne out in the univariate test. Thus, it is very likely that we are classifying word

effects at a finer grain.

4.1 Syntactic prediction, or something else?

The nature of the prediction that generates the form-based estimate in these visual areas is

far from clear. Indeed, we cannot preclude the possibility that visual word form estimates

arise not from syntactic cues, but via more general conceptual semantic properties of nouns

and verbs intervening between a syntactic category prediction and the word form estimation.

It is also possible that neither syntactic nor semantic information is necessary to make the
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sort of noun-vs.-verb predictions seen in this study. Note that the penultimate word in all

Noun sentences was “the,” while the penultimate word in all “Verb” sentences was “to.” To

ensure we did not sample bottom-up signal changes associated with processing the word

forms “to” or “the,” we did not include the first two TRs after the prediction cue. Thus the

single word forms “to” and “the” are unlikely to drive classification at the sensory-

perceptual level. However, that is not the only way “to/the” might have driven classification.

There is also the possibility that the subject only needed the “to/the” cue, not the sentence

frame, to generate a prediction. That is, it may be possible to generate a noun- or verb-

prediction on the basis of the bigrams associated with “to” and “the,” without recourse to a

syntactic structure per se. This is unlikely, however, since the subject could not complete the

task using only the single word cue: the task was an acceptability judgment, not a

grammaticality judgment, and some grammatical sentences were deemed unacceptable by

most subjects (e.g. “Who was the boss from the … lawyer?”) Similarly, it is unlikely we are

classifying a rehearsal effect of “to” vs. “the,” since this would not be sufficient for task

completion.

We have further reason to believe syntactic structure, and not lower-level prediction driven

by single-word prediction, accounts for these noun-vs.-verb prediction results. In a separate

study, we presented subjects with specific noun-typical nouns and verb-typical verbs to

search for in noisy dot patterns. This study was identical in design and format to the one

reported here, but the cue was a specific word (e.g., “movie”) rather than a sentence

fragment. We were unable to classify nouns vs. verbs above chance in VT or mid FG.

Despite the greater precision involved in predicting a specific word, classification of

sentence-cued prediction out-performed word-cued prediction of nouns vs. verbs. While the

brain is likely generating predictions at multiple levels – semantic, syntactic, phonological,

orthographic – the presence of sentence structure may direct attention away from irrelevant

form-feature information and towards those form-features most diagnostic of nouns and

verbs; thus, syntactic structure might serve to tune word form prediction.

4.2 Implications for models of syntactic prediction and word form feature estimation

The speed at which the human brain processes language is remarkable, and it is becoming

increasingly clear that models of strictly serialized, modular, bottom-up language processing

are insufficient to account for this performance. Language operates on a number of

representational levels, such modules including phonology, syntax, semantics, etc., but it is

not clear how possible interstratal relationships among these levels may affect processing.

One such interstratal relationship – that between the phonology (read out as orthography)

and lexical-syntactic category of a word – has been largely overlooked. The possibility that

lexical-syntactic categories have form-feature signatures at much lower levels of

representation may obscure our measure of when and where syntactic effects occur. For

instance, many neuro-cognitive accounts of syntactic processing derive from

electrophysiological studies reporting that certain syntactic factors affect processing in an

earlier time window than lexical-semantic violations. Event-related potentials (ERPs)

modulated by syntactic violations have been observed as early as ~60 ms after the onset of

an unexpected word (many studies find a so-called Early Left-Anterior Negativity at

~125ms post stimulus onset (Friederici, Pfeifer, & Hahne, 1993; Neville, Nicol, Barss,
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Forster, & Garrett, 1991)), while others find a mismatch negativity even prior to this at

~60ms p.s.o. (Herrmann, Maess, Hahne, Schröger, & Friederici, 2011; Herrmann, Maess,

Hasting, & Friederici, 2009). In contrast, neural correlates of lexical, semantic, and world

knowledge violations are typically indexed by a negative deflection of the ERP much later at

around 400ms post-stimulus onset (the N400 component (Kutas & Hillyard, 1980)). Many

researchers interpret this pattern as evidence of a “syntax-first” model of language

comprehension, where the initial stage of processing reflects syntactic computation, only

after which lexical and semantic factors are accessed.

Friederici’s (2002) model, for instance, portrays different levels of analysis occurring in an

explicitly serial, modular, and bottom-up fashion, and that identification of lexical-syntactic

category occurs at about 150–200ms (Friederici, 2002). However, our study, among others,

now raises the possibility that some of these putatively syntactic effects may fall out of form

typicality effects, modulated by top-down syntactic prediction. While the prediction effect

we see may in some sense be syntactic, it certainly does not entail bottom-up syntactic

analysis of the word being predicted, but rather a form-feature prediction based on the

syntactic structure already built. Therefore, in order to distinguish syntactic analysis per se

from downstream effects of syntactic prediction, future studies investigating early syntactic

effects should account for the form-feature properties of words in addition to manipulating

syntactic context.

4.3 Neural circuitry of visual prediction

There is a growing body of research investigating top-down effects on sensory processing,

but most evidence for such expectation-induced processing comes from studies showing pre-

activation of brain regions subserving rather coarse domains of sensory information; e.g.

gustatory cortex activating when subjects expect food items (Simmons, Martin, & Barsalou,

2005), somatosensory cortex activating during subjects’ anticipation of somatosensory

stimuli (Carlsson, Petrovic, Skare, Petersson, & Ingvar, 2000), and fusiform face area

activating when subjects expect faces, as opposed to other objects (Summerfield et al.,

2006). Likewise, when subjects are anticipating some reading task, we would expect to see

enhanced activation of visual areas as opposed to, say, auditory or somatosensory regions.

However, while these sorts of study provide interesting fodder for models of attention, they

do not themselves offer evidence for predictive coding of particular percepts within these

sensory domains, where “predictive coding” refers to a model whereby prior information

facilitates top-down conditional expectations at the level of the sensorium (Friston, 2003).

That is, just because visual attention may be upregulated during reading does not mean that

visual cortex has any predictions about the upcoming word.

However, studies manipulating attentional demands during predictive vs. non-predictive

tasks have shed light on the neural connectivity underlying expectation-based visual

processing. For instance, Summerfield & Koechlin (2008) found increased backward

connectivity from FG to EVC in prediction conditions of low-level visual (non-linguistic)

stimuli, but not non-predictive conditions. Conversely, they found increased forward

connectivity from EVC to FG in cases of prediction mismatch, suggesting FG is a hub for

both generating and updating visual form-based predictions. These data provided evidence
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for attentional modulation of FG depending on whether the task was predictive or not, but

did not offer a means to detect whether FG was engaged in predictive coding per se.

In the current study, we probed both FG and EVC for predictive coding of nouns vs. verbs,

but only found significant classification in FG (and only when prediction was based on

syntactic structure). This is consistent with an account whereby FG mediates prediction of

visual features when prediction is maximally afforded. Failure to classify nouns and verbs in

EVC would be wholly unsurprising were it not for previous evidence from MEG that early

occipital activity is sensitive to nouns’ form typicality (Dikker et al., 2010). However, there

are two caveats regarding the MEG evidence. First, the source of the ERF was estimated

using equivalent current dipole analysis, a localization technique requiring an assumption on

the part of the investigator as to the number of sources contributing to a given field pattern.

Second, while this technique is generally suitable for analyzing early sensory components

such as the M100, it is possible that both the waveform and the scalp topography of the

relevant magnetic field was distorted by use of a relatively high cut-off of 1 Hz when high-

pass filtering (Acunzo, MacKenzie, & van Rossum, 2012). Thus, while the MEG data

provide evidence of early sensitivity to noun form typicality, the effect cannot be

unequivocally localized to EVC.

5. CONCLUSIONS

The phenomenon of form typicality currently provides the best account of how syntactic

categories can map onto word forms. However, it may be that the sentence-context cues in

this study allow for better prediction of nouns vs. verbs because they sustain attention better

– or longer – than single-word cues (see section 4.1). That sentence context appears to be

privileged may be an accident of the temporal structure of the sentence cue rather than a

function of the syntactic representation itself, and the current study cannot differentiate

between these two possibilities.

It should also be noted that the current study cannot distinguish between a model involving

true predictive coding (i.e. where a syntactic prediction is transformed to a phonological/

orthographic form feature distribution) and a model whereby attention to a certain subset of

noun-diagnostic features is upregulated when a noun is expected (vs. a verb), and vice-versa

for verb prediction. The difference between these two models is subtle, and computationally

these two models may be indistinguishable: both entail pre-activation of certain features

based on syntactic information, and both entail lateral inhibition of irrelevant features.

Rather, the distinction lies in our understanding of noun/verb form typicality, and it may be

that the notion of “form typicality” as currently delineated encompasses more features than

are strictly necessary for distinguishing noun and verb forms. A more explicit definition of

phonological/orthographic “form typicality,” at least insofar as it discriminates nouns from

verbs, is a crucial desideratum for a future theory of word form prediction.
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APPENDIX

Sentence fragment stimuli with final completion word, which was presented in noise.

1. *Who was the broker from the … include?
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2. Where was the doctor for the … baby?

3. Who was the reporter in the … story?

4. Who was the senator from the … movie?

5. Who was the singer in the … band?

6. Where was the teacher with the … child?

7. Which crib did the broker plan to … destroy?

8. *Which opera did the reporter agree to … sofa?

9. What sermon did the woman struggle to … believe?

10. Which test did the senator agree to … take?

11. What band did the judge hope to … accuse?

12. Which army did the tailor hope to … assist?

13. *What bank was the doctor implored to … bible?

14. What child was the broker persuaded to … adopt?

15. What money was the reporter selected to … spend?

16. Which patient was the senator forced to … abduct?

17. What story was the judge advised to … review?

18. Which course was the tailor hired to … take?

19. When did the broker accept the … money?

20. *Where did the woman forget the … amuse?

21. When did the senator learn the … news?

22. Where did the judge maintain the … order?

23. When did the tailor observe the … murder?

24. Where did the general recall the … story?

25. *Where did the mechanic teach the … lend?

26. When did the minister reveal the … bible?

27. Where did the teacher demand the … salary?

28. When did the burglar discover the … house?

29. Where did the dentist stress the … teeth?

30. When did the janitor mention the … flood?

31. Which budget was the mechanic permitted to … accept?

32. What turtle was the teacher urged to … adopt?

33. Which student was the burglar ordered to … remove?
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34. What product was the policeman persuaded to … examine?

35. *Which defendant was the dentist invited to … marble?

36. What committee was the janitor bribed to … attend?

37. *What car did the general refuse to … bible?

38. Which bird did the minister start to … adopt?

39. What patient did the mechanic refuse to … assist?

40. Which paper did the singer decide to … read?

41. What clinic did the teacher plan to … attend?

42. What story did the dentist hope to … write?

43. Who was the burglar from the … movie?

44. Where was the dentist for the … lawyer?

45. Where was the nurse with the … child?

46. Where was the journalist from the … paper?

47. *Where was the governor for the … lend?

48. Who was the nephew in the … movie?

49. What staircase was the prince encouraged to … use?

50. Which book was the man hired to … read?

51. What store was the governor convinced to … close?

52. Which soldier was the nephew persuaded to … respect?

53. What doctor was the salesman induced to … hire?

54. Which country was the executive ordered to … bomb?

55. Where did the nurse accept the … money?

56. When did the journalist advise the … editor?

57. *Where did the governor confirm the … include?

58. When did the nephew forget the … rumor?

59. *Where did the salesman learn the … adopt?

60. When did the executive maintain the … order?

61. Where was the salesman with the … bible?

62. Who was the executive from the … firm?

63. Who was the writer from in the … movie?

64. Where was the woman with the … baby?

65. Who was the mother from the … movie?

Boylan et al. Page 18

Brain Lang. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



66. Where was the baby for the … diaper?

67. Which company did the janitor try to … join?

68. What lesson did the governor decide to … give?

69. *What play did the salesman try to … marble?

70. Which child did the executive plan to … adopt?

71. What transaction did the professor try to … amuse?

72. Which faucet did the writer decide to … use?

73. *What actress did the woman struggle to … movie?

74. Which mayor did the mother agree to … marry?

75. What money did the baby start to … receive?

76. *Which job did the lawyer want to … sofa?

77. What drug did the boss want to … abuse?

78. What insect did the juggler desire to… eat?

79. Who was the man in the … line?

80. Who was the prince from the… castle?

81. Who was the boss from the … lawyer?

82. Where was the banker for the … deal?

83. Where was the aunt with the … money?

84. Who was the nanny from the … story?

85. *When did the lawyer demand the … include?

86. Where did the boss discover the … drugs?

87. When did the banker stress the … truth?

88. *Where did the juggler mention the … adopt?

89. When did the man accept the … cash?

90. Where did the policeman advise the … lawyer?

91. What palace was the professor allowed to … inhabit?

92. Which engine was the writer urged to … avoid?

93. Which vase was the baby permitted to … break?

94. Which bird was the nanny scared to … touch?

95. What statue was the gymnast required to … avoid?

96. Which umbrella was the nun meant to … carry?
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HIGHLIGHTS

• We apply multi-voxel pattern analysis to classify the prediction of nouns vs.

verbs.

• We present a novel method of probing word prediction in the absence of

linguistic stimulus.

• We find that voxels in left ventral temporal cortex can classify prediction of

nouns vs. verbs.

• Study suggests probabilistic relationship between a word’s syntactic category

and its form.
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Figure 1.
Experimental Design. Each trial began with a sentence fragment (sans last word) presented

one word at a time for a total of 3.6 to 4.2 seconds. The sentence fragment/cue was then

followed by four, six, or eight empty noised images. Every trial terminated in the 3s

presentation of a target token image noised at the subject’s threshold (here, the words child,

news, adopt and assist.)
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Figure 2.
ROI Outlines. Extent of EVC (BA 17) shown in blue, VT in yellow, and mid FG in red in

representative subject. Note mid FG is a subregion of VT and thus the borders of these ROIs

overlap. Axial slice shown at z = −10, sagittal slice shown at x = −18.
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Figure 3.
Classification across subje ects (n=10) over all folds (n=4) using best 20, 60, 100, and 200-

voxels per fold. Lines indicate median classification performance, and ribbons indicate

confidence intervals of classification performance across the ten subjects.
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