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SUMMARY

The normal functions and pathologic facets of the small presynaptic protein α-synuclein (α-syn)

are of exceptional interest. In previous studies, we found that α-syn attenuates synaptic exo/

endocytosis [1, 2]; however underlying mechanisms remain unknown. More recent evidence

suggests that α-syn exists as metastable multimers and not solely as a natively-unfolded monomer

[11-16]. However conformations of α-syn at synapses – its physiologic locale – are unclear; and

potential implications of such higher-order conformations to synaptic function is unknown.

Exploring α-syn conformations and synaptic function in neurons, we found that α-syn promptly

organizes into physiological multimers at synapses. Furthermore, our experiments indicate that α-

syn multimers cluster synaptic-vesicles and restrict their motility – suggesting a novel role for

these higher-order structures. Supporting this, α-syn mutations that disrupt multimerization also

fail to restrict synaptic-vesicle motility or attenuate exo/endocytosis. We propose a model where

α-syn multimers cluster synaptic-vesicles, restricting their trafficking and recycling –

consequently attenuating neurotransmitter release.
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RESULTS AND DISCUSSION

Contemporary insights into α-synuclein biology

The presynaptic bouton is a central communicating hub, where a sequence of well-

orchestrated events leads to exocytosis of neurotransmitter-loaded vesicles into the

presynaptic cleft. A variety of presynaptic proteins participate, mainly assisting in the

organization and trafficking of synaptic-vesicles. One such protein is α-syn; of singular

interest due to its involvement in Parkinson's disease and related movement-disorders/

dementias. In previous studies we found that small increments in α-syn-levels lead to

suppression of exo/endocytosis [1, 2]; and that α-syn restricts the lateral mobility of

synaptic-vesicles between en-passant boutons [2], called “superpool” trafficking [3]. Along

with other studies [4-9], available data advocate the concept that α-syn physiologically

attenuates neurotransmitter release; however underlying mechanisms are unclear. α-syn also

binds to VAMP2 and promotes SNARE-assembly [10], but the consequence of these

interactions on synaptic physiology is uncertain [7, 10]. Regardless, a clear picture of the

physiologic role of α-syn has not emerged yet.

As function often follows form in biology, understanding physiologic α-syn conformations

is important. Recent studies offer surprising insights, suggesting that α-syn exists as

metastable helical multimers, with predominant tetramers [11]. Though this view has been

challenged [12, 13], available data from purified brain α-syn show higher-order multimers

and mixed helical conformations [13, 14], consistent with the idea that α-syn exists as

metastable conformers, exchanging between a monomeric and multimeric state. Even so,

key questions remain unresolved. What is the conformation of α-syn at synapses, its normal

locale? Do α-syn assemblies influence its function? If so how? Here we couple

fluorescence-complementation assays – that selectively stabilize putative α-syn assemblies –

with various cell-biological paradigms to evaluate vesicle-trafficking and synaptic function.

Multimeric α-syn conformations at presynaptic boutons

Though recent studies have demonstrated α-syn multimers [11, 15, 16], most experiments

used biochemical or biophysical methods that do not provide spatial information; thus α-syn

conformations at the presynapse are not entirely clear. We first evaluated the organization of

α-syn at synapses of cultured neurons using bimolecular fluorescence complementation

(BiFC) – an established method to visualize protein-protein interactions [17]. In this assay,

one partner of an interacting-pair is tagged to the N-terminus fragment of the Venus

fluorescent protein (VN), while the other partner to the complimentary C-terminus (VC). If

and when the two interacting partners associate, the Venus fragments are reconstituted and

become fluorescent [see schematic in fig. 1A (i)]. Reconstitution is irreversible, thus even

transient interactions can be “captured” by these methods [18].
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To mitigate concerns related to over-expression, we used a ‘molecular replacement

strategy’, where the exogenous protein is expressed in a knockout background, achieving

near-physiologic expression-levels [19]. Specifically, we expressed VN/VC tagged human

wild-type α-syn's (VN/VC:α-syn's) in cultured hippocampal neurons (days in vitro-DIV 14)

from α-syn null mice and visualized fluorescence after ~14h expression [strategy in fig.
1A(ii)]. Expression of human α-syn in cultured α-syn null neurons was similar to the

expression of native mouse α-syn in parallel-processed cultures (see below). Three different

VN/VC-tagged α-syn combinations were used (see methods). In all cases, robust

fluorescence was seen at boutons (fig. 1B-top and Supp. fig. 1A, B). Co-transfection of VN

and VC alone did not show any synaptic fluorescence (fig. 1B-bottom and data not shown).

Complementation was also seen in nonneuronal cells as reported previously [20], and excess

un-tagged α-syn diminished VN/VC:α-syn complementation in HEK cells – presumably by

competition – suggesting that complementation was specific for α-syn (Supp. fig. 1C).

Synaptic fluorescence due to VN/VC:α-syn complementation was widespread, seen in

virtually all transfected boutons; overall similar to neurons transfected with Venus:α-syn

(fig. 1B, graph on right). It is unlikely that the complementation in our experiments is an

artifact of over-expression, as fluorescence intensities of transfected VN/VC:α-syn boutons

in α-syn -/- neurons is similar to endogenous mouse α-syn fluorescence in WT neurons (fig.
1C, D and also see next).

Next we visualized the time-course of accumulation of newly-synthesized VN/VC:α-syn at

boutons. We transfected α-syn null neurons with VN/VC:α-syn (or Venus:α-syn) and

visualized the entry of newly-synthesized (somatically-derived) fluorescent molecules into

boutons (4-5 hours after transfection), adopting an imaging strategy that we recently

developed ([21], see schematic in fig. 1E). Figure 1F shows representative images from one

such experiment. Note that the kinetics of VN/VC:α-syn entry into boutons is only slightly

slower than Venus:α-syn, quantified in figure 1G. These data indicate that multimerization

of α-syn is an early event, and likely not a consequence of abnormal long-term intra-

molecular associations. Also note that the experimental paradigm (visualizing entry of

newly-synthesized proteins into α-syn −/− boutons) further argues that the complementation

is unlikely to be a result of over-expression.

α-synuclein multimers cluster synaptic-vesicles

Do α-syn multimers have a physiologic role? While qualitatively comparing the synaptic

VN/VC:α-syn fluorescence to the fluorescence of endogenous or Venus:α-syn, we noticed

that the reconstituted VN/VC:α-syn fluorescence seemingly occupied only a subset of the

total bouton-area. To verify this, we used a previously-described protocol to label the entire

bouton-profile (using fluorescent actin, see [22]) and visualized VN/VC:α-syn fluorescence

in these boutons. Indeed reconstituted VN/VC:α-syn occupied only a fraction of the bouton-

area, as shown in representative bouton-crops (fig. 2A). This distribution is unusual, distinct

from Venus:α-syn that typically occupies the entire bouton (see Supp. fig. 2A). We also

developed custom algorithms to quantify these data. Briefly, as bouton shapes vary, we

measured the cross-sectional area of each bouton along 20 circumferential angles and then

calculated its mean “synapse-width” (see fig. 2B for general concept; Supp. fig. 2B and

methods for details). Compiled data from these analyses are shown in fig. 2C, D. Note that
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the VN/VC:α-syn fluorescence only occupies a subset of the bouton cross-sectional area and

is indistinguishable from the area occupied by the synaptic-vesicle cluster (labeled with

synaptophysin:GFP, fig. 2C). Furthermore, in neurons co-transfected with VN/VC:α-syn

and synaptophysin:mRFP (SyPhy:mRFP), there is a significant overlap of fluorescence (also

reflected in correlations between their “synapse-widths”, see fig. 2D).

Previous studies expressing WT α-syn in yeast revealed a dramatic clustering of vesicles by

α-syn [23, 24]. Previously, we found that α-syn restricts synaptic-vesicle motility between

enpassant boutons [2], suggesting that α-syn might cluster vesicles within synaptic boutons

and restrict vesicle-motility. Since α-syn multimers associate with synaptic-vesicles (above),

we asked whether stabilized VN/VC:α-syn multimers facilitate clustering of synaptic-

vesicles and inhibit vesicle-motility even further. To test this we designed an assay to

directly visualize synaptic-vesicle dispersion; based on previous observations that neuronal

activity disperses synaptic-vesicles from boutons into flanking axons [25, 26]. Specifically,

we asked if stabilized α-syn multimers (reconstituted VN/VC:α-syn's) would attenuate the

activity-dependent dispersion of synaptic-vesicles (labeled with SyPhy:mRFP, see fig. 2E).

Indeed while Venus:α-syn alone inhibited this dispersion (as expected), VN/VC:α-syn's

attenuated this dispersion even further (fig. 2F and also see fig. 4C later). Collectively, these

experiments suggest that α-syn multimers associate with synaptic-vesicle clusters and

restrict their trafficking.

Biochemical analysis of α-synuclein multimers

To biochemically evaluate α-syn multimers, we transiently introduced VN/VC:α-syn's into

HEK-293 cells or cultured neurons (by adenoviral infections) and analyzed cell-lysates by

Native/SDS-PAGE gels (fig. 3A). As shown in the native gels (fig. 3B), only a few higher-

order α-syn bands were typically seen. Though precise molecular weights cannot be

determined by these methods, these bands run at ~ 146 kD (α-syn tetramers would be

expected to run at ~ 114kD in our system – 4 α-syn's + 2 VFP's). These experiments were

repeated several times with similar results, and notably, all three VN/VC combinations

showed similar biochemical profiles (Supp. fig. 3A).

Though our above data (fig. 2) suggest that α-syn multimers associate with synaptic-

vesicles, they do not directly show vesicle-binding. To address this, we evaluated the

association of monomeric and multimeric α-syn with purified synaptic-vesicles. Based on

previously published protocols [27, 28], we incubated α-syn-free synaptic-vesicles and

cytosol with purified monomeric or multimeric α-syn (chemically cross-linked, see [15]; fig.
3C and Supp. fig. 3B). The main advantage of this assay is that brain cytosolic factors

known to affect α-syn binding to membranes are available, recapitulating the in-vivo

situation [27]. As shown in figure 3D, α-syn multimers are indeed capable of binding to

synaptic-vesicles, though multimers are also present in cytosolic fractions. Note that these

data are in general agreement with Dettmer et al., 2013.

A mechanistic link between α-syn multimerization and synaptic function

The above data suggest that α-syn multimers associate with and cluster synaptic-vesicles. As

α-syn suppresses exo/endocytosis [1, 2], one can imagine a scenario where α-syn multimers
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cluster synaptic-vesicles, thus restricting vesicle-recycling and consequently,

neurotransmitter release. If correct, this model predicts that disrupting α-syn multimers

would also diminish α-syn-induced vesicle clustering and abrogate α-syn-induced synaptic

attenuation. Though molecular determinants of α-syn multimerization are unknown, we

reasoned that the most striking feature of the α-syn molecule – N-terminal repeats – might

play a role. The N-terminus of α-syn has seven 11-residue repeats that are predicted to fold

into amphipathic alpha-helices, highly conserved among species [29-31]. Recent simulation-

models also implicate these repeats in α-syn tetramerization [32]. We used a rationally-

designed synthetic mutant, where six threonines (T) – centrally lying along the helical face

of the N-terminus – are mutated to lysines (K; known as TsixK, see fig. 4A and [33]. These

mutations are expected to disrupt significant portions of the extended hydrophobic face of

the helix, and greatly diminish the helical conformation of α-syn [33]. Notably, this

reduction in helicity occurs despite robust association with vesicles [33], and indeed both

WT and TsixK protein bind synaptic-vesicles with equal affinity in our in-vitro assay (Supp.
fig. 3C).

Accordingly, we tested the predictions of our model by comparing the ability of WT and

TsixK mutants to: 1) organize into multimers, 2) cluster synaptic-vesicles, and 3) influence

synaptic-vesicle recycling. First we transfected VN/VC pairs of WT α-syn's (VN/VC:WT)

or TsixK α-syn's (VN/VC:TsixK) in cultured neurons from α-syn −/− mice as described

previously. As shown in fig. 4B, fluorescence complementation in the VN/VC:TsixK α-

syn's was markedly attenuated. Diminution of higher-order conformers was also seen

biochemically (Supp. fig. 3D). Next we tested the ability of the TsixK mutant to suppress

activity-induced synaptic-vesicle dispersion. As shown in fig. 4C, while WT α-syn

attenuated synaptic-vesicle dispersion as expected, the TsixK mutant failed to do so. Finally,

we asked if TsixK mutations also abrogated the ability of α-syn to attenuate synaptic-vesicle

recycling. Towards this we used a pHluorin-based assay that directly reports synaptic-

vesicle recycling ([34, 35]; see fig. 4D). While WT-α-syn attenuated recycling as reported

previously [5], TsixK-α-syn only had a mild (non-significant) effect (fig. 4E, F).

Dynamic α-synuclein multimers at synapses

Collectively, the data support a model where synaptic α-syn is organized into metastable

conformers that bind to and cluster synaptic-vesicles, restricting their trafficking. We posit

that by influencing synaptic-vesicle trafficking, multimeric α-syn conformers restrict

recycling, consequently attenuating neurotransmitter release. Using complementation-assays

that stabilize putative protein-protein interactions, we found that near-physiologic levels of

α-syn result in robust and widespread complementation at synapses (fig. 1). Given the

transient transfection of proteins into an α-syn null background; the resultant low

expression-levels (comparable to endogenous-levels, see fig. 1D); and the paradigms used to

visualize initial entry of newly-synthesized α-syn into boutons (fig. 1E-G), it is unlikely that

the complementation seen in our experiments is a result of over-expression. Moreover, data

from three different combinations of VN/VC-fragments (tagged to α-syn's) are similar,

untagged α-syn appears to compete with fluorescence complementation in HEK cells, and

the TsixK α-syn mutant also fails to complement; collectively arguing that complementation

is not due to vagaries of the Venus-fragments, but reflect bona-fide α-syn interactions.
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Clustering synaptic-vesicles and regulating recycling/neurotransmitter release – a
potential function of α-syn multimers

Do α-syn multimers have a physiologic role? Stabilized VN/VC:α-syn multimers were

associated with synaptic-vesicles (fig. 2A-D), and also inhibited the trafficking of synaptic-

vesicles (fig. 2E, F; and also fig. 4C). Our biochemical data also show that α-syn multimers

can associate with synaptic vesicles (fig. 3D). Notably, the data do not rule out a role for

cytosolic α-syn multimers. A recent study showed that purified α-syn protein clusters

synthetic vesicles in an in-vitro lipid-binding assay [36]. Though in isolation, the relevance

of these in-vitro findings to neurons and synapses is uncertain; in light of data shown here,

the collective evidence advocate the concept that α-syn plays a physiologic role in clustering

synaptic-vesicles. Supporting the idea that helical folding of α-syn is important for

multimerization, Varkey et al. recently showed that incubation of α-syn with lipid-

nanoparticles – known to induce helicity – increases intra-molecular FRET of α-syn [37].

However, another recent paper suggests that α-syn is exclusively involved in attenuating

endocytosis [38]. Nevertheless, many studies indicate that α-syn influences the exocytic-

cycle and SNARE-assemblies, and a more complete dissection of exo- v/s endo-cytosis is

warranted. The exact mechanisms by which α-syn multimers restrict vesicle mobility are

still unclear. One possibility is that α-syn multimers between adjacent vesicles associate

with each other (an “interlocking model”), with perhaps α-syn/VAMP2 interactions also

playing a role as suggested by Diao et al. [36] – an open question for future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Multimeric α-syn conformations at presynaptic boutons
(A) Schematic of complementation assay (i) and molecular replacement strategy (ii).
Cultured hippocampal neurons from α-syn −/− mice were transiently transfected with

various VN/VC-tagged α-syn's (see “results”) and visualized after ~ 14 hours.

(B) Top: Representative images of reconstituted Venus fluorescence in neurons expressing

VN/VC:α-syn's (also see Supp. fig. 1A). Note these neurons are co-transfected with

synaptophysin:mRFP (SyPhy:mRFP) to label boutons. Bottom: No fluorescence was seen in

boutons expressing un-tagged VN + VC alone. Right: The vast majority (~85%) of

SyPhy:mRFP-positive boutons also expressed VN/VC:α-syn; comparable to boutons

expressing Venus:α-syn and SyPhy:mRFP (N~700 boutons for each group from two

separate batches of cultures, p=0.90).

(C) Overall design to compare expression-levels of transfected VN/VC:α-syn to endogenous

mouse α-syn. Un-transfected cultured neurons from WT mice and VN/VC:α-syn-transfected

cultured neurons from α-syn −/− mice were fixed and immunostained with an anti-α-syn

antibody (guinea-pig α-syn antibody). Cell culture and immunostaining of both groups were

processed in parallel. Note that while the antibody would recognize mouse α-syn in WT

neurons, it would only label transfected α-syn in the VN/VC:α-syn transfected group.

(D) Representative images from the two groups in (C) (left) and quantification of overall

average fluorescence intensities (right; N~10 visual fields containing ~ 3000-10,000

boutons; p=0.06). Note that the number of VN/VC:α-syn transfected boutons is much lower

than immunostained WT boutons (as expected with transient transfections), but the

fluorescence-intensities are similar.
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(E) Overall design. Cultured α-syn −/− neurons were co-transfected with VN/VC:α-syn's (or

Venus:α-syn) + soluble mCherry, and kinetics of initial α-syn entry and synaptic

accumulation was evaluated by long-term imaging (see “results” and [21] for more details).

(F) Representative frames from two time-lapse movies showing pre-synaptic accumulation

of VN/VC:α-syn (top) and Venus:α-syn (bottom) over 5 hrs of imaging.

(G) Quantification of average VFP intensities of boutons over 5 hrs. Note that though the

kinetics of VN/VC:α-syn accumulation (black dots) is slower than Venus:α-syn (green dots)

as expected, the difference is modest, suggesting that complementation is a relatively early

event.
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Figure 2. α-syn multimers cluster synaptic-vesicles
(A) Bouton-crops from neurons co-transfected with VN/VC:α-syn and mRFP:Actin (to label

entire bouton-profile, see “results”). Note that reconstituted VN/VC:α-syn's only occupy a

fraction of the bouton cross-sectional area.

(B) Experimental design: Neurons were co-transfected with VN/VC:α-syn and markers to

label the entire bouton-profile (mRFP:Actin) or synaptic-vesicles (SyPhy:mRFP); and extent

of overlap was determined by custom algorithms (see “results” and “methods” for details).

(C, D) Both reconstituted VN/VC:α-syn and SyPhy:GFP occupied a smaller fraction of the

bouton than Venus:α-syn (~ 200 boutons analyzed for each group from two separate batches

of cultures, ***p < 0.001). (D) Bouton-widths (FWHM, see methods) of VN/VC:α-syn and

SyPhy:mRFP were correlated (left; r=0.36, p<0.0001), unlike VN/VC:α-syn and

mRFP:Actin, further indicating associations of complemented VN/VC:α-syn's with

synaptic-vesicles (N=120 boutons from two separate batches of cultures).

(E) Top: Schematic of “synaptic-vesicle dispersion assay”. Synaptic-vesicles are labeled by

SyPhy:mRFP and neurons are stimulated to disperse synaptic-vesicles (see “results”).

Bottom: A time-series showing dispersion of synaptic-vesicles from a bouton (elapsed time

in seconds on lower left, asterisk marks the start of stimulation).

(F) Quantification of synaptic-vesicle dispersion using above assay. While Venus:α-syn

diminishes dispersion-kinetics (compared to vector), the dispersion is further attenuated by

VN/VC:α-syn (note that error bars are too small to be seen). Extent of dispersion quantified

in inset (19.5%, 13.6% and 9% of total synaptic-vesicles were dispersed in vector, Venus:α-

syn and VN/VC:α-syn groups respectively; ***p < 0.001, unpaired t test).
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Figure 3. Biochemical analyses of α-syn multimers
(A) VN/VC:α-syn's were introduced into HEK293T cells or neurons (by viruses), expressed

for the times indicated, and cell-lysates were analyzed by Native/SDS-PAGE.

(B) Native-PAGE show α-syn higher-order multimers immunoblotted with two α-syn

antibodies and an anti-GFP antibody that also recognizes YFP (note disruption upon

boiling). The red arrow marks the position where bands are typically seen, black arrow

marks putative monomeric α-syn in neurons. An SDS-PAGE immunoblotted with anti-GFP

marks the VFP-fragments. Each experiment was repeated 3-5 times with similar results.

(C) In-vitro reconstitution assay. Purified synaptic-vesicles and cytosol from α-syn −/−

mouse brains were mixed with WT-α-syn purified from bacteria with/without a chemical

cross linker (DSG). Vesicle membrane bound and unbound fractions were separated by

centrifugation and analyzed by SDS-PAGE.

(D) Both monomeric and cross-linked α-syn multimers bound to synaptic-vesicles (a

synaptophysin stain confirms that all synaptic-vesicles are in the bound fraction). Red and

black arrows mark positions of putative tetramers and monomers. Experiment was repeated

twice with similar results.
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Figure 4. Mechanistic links between α-syn multimerization and synaptic function
(A) Schematic of the α-syn helices (shaded) and position of the six mutations.

(B) Neurons from α-syn −/− mice were transfected with VN/VC:WT or VN/VC:TsixK α-

syn's and fluorescence was quantified in boutons. There were clear diminutions in the TsixK

datasets as shown in the representative images and quantification below.

(C) “Synaptic-vesicle dispersion” assay: Neurons were co-transfected with SyPhy:mRFP (to

label synaptic-vesicles) and untagged WT or TsixK α-syn (or vector alone). Boutons were

stimulated and decay of RFP fluorescence from boutons was quantified (see “results”). Note

that while WT α-syn attenuates activity-induced synaptic-vesicle dispersion, the TsixK

mutant has no effect on vesicle-trafficking (N=number of boutons).

(D) Synaptic recycling evaluated by vGlut-pHluorin assays. Cultured neurons were co

transfected with vGlut-pHluorin and either untagged WT α-syn or TsixK α-syn.

Fluorescence-change of the pH-sensitive vGlut-pHluorin probe reflects synaptic-vesicle

recycling in this assay (see “results” and “methods”). Representative panels show

fluorescence intensity change of vGlut-pHluorin upon 600 AP stimulation and NH4Cl

perfusion. Note that NH4Cl alkalinizes all vesicles, revealing the total (recycling + resting)

pool in these neurons.

(E, F) Representative ensemble average of vGlut-pHluorin traces from empty vector, WT α-

syn or TsixK α-syn transfected neurons (N=number of boutons). Note that while WT α-syn

nattenuates neurotransmitter release and decreases mean recycling-pools compared to

vector-controls, TsixK α-syn fails to show this effect; quantified in (F) (all data normalized

to total pools). Recycling/total pool for vector=43±2.17 %; WT α-syn =28±2.38%; TsixK α-

syn =39±2.29% (~ 160 boutons on 7-9 coverslips were analyzed for each group from three

separate batches of cultures; ***p < 0.001 compared to vector by one-way ANOVA
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followed by Dunnet's post hoc test). Total (alkalinized) pools of vector, WT-α-syn and

TsixK-α-syn groups were 317.1 ± 16 AFU, 317.5 ± 11 AFU and 376 ± 18 AFU (mean ±

SEM) respectively).
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