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Abstract

Complex diseases are often associated with sets of multiple interacting genetic factors and

possibly with unique sets of the genetic factors in different groups of individuals (genetic

heterogeneity). We introduce a novel concept of Custom Correlation Coefficient (CCC) between

single nucleotide polymorphisms (SNPs) that address genetic heterogeneity by measuring subset

correlations autonomously. It is used to develop a 3-step process to identify candidate multi-SNP

patterns: (1) pairwise (SNP-SNP) correlations are computed using CCC; (2) clusters of so-

correlated SNPs identified; and (3) frequencies of these clusters in disease cases and controls

compared to identify disease-associated multi-SNP patterns. This method identified 42 candidate

multi-SNP associations with hypertensive heart disease (HHD), among which one cluster of 22

SNPs (6 genes) included 13 in SLC8A1 (aka NCX1, an essential component of cardiac excitation-

contraction coupling) and another of 32 SNPs had 29 from a different segment of SLC8A1. While

allele frequencies show little difference between cases and controls, the cluster of 22 associated

alleles were found in 20% of controls but no cases and the other in 3% of controls but 20% of

cases. These suggest that both protective and risk effects on HHD could be exerted by

combinations of variants in different regions of SLC8A1, modified by variants from other genes.

The results demonstrate that this new correlation metric identifies disease-associated multi-SNP

patterns overlooked by commonly used correlation measures. Furthermore, computation time

using CCC is a small fraction of that required by other methods, thereby enabling the analyses of

large GWAS datasets.
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Introduction

Genome-wide association (GWAS) studies have successfully identified numerous single

nucleotide polymorphisms (SNPs) associated with human diseases [Manolio, et al. 2008].

However, complex diseases such as hypertensive heart disease (HHD) are results of multiple

genetic factors with complex interactions amongst themselves and with the environment.

Identifying these disease-associated SNPs with high-order (interaction) effects presents a

great challenge for in-depth analysis of GWAS data due to genetic heterogeneity and the

prohibitive number of potential interactions.

Complex diseases are generally characterized by genetic heterogeneity in which unique

makeup of causative genetic factors are responsible for different patient groups exhibiting

the same clinical disease trait. As such, genetic heterogeneity may result in a cluster of SNPs

collectively associated with the disease trait for only a subset of all cases, which may render

existing correlation measures useless. This may be illustrated by an example where two

SNPs are perfectly correlated in half of the cases, but not at all for the remaining patients. In

that case, Pearson’s correlation coefficient (PCC) and the linkage disequilibrium (LD)

measure r2, two commonly used metrics for SNP-SNP correlation [Carlson, et al. 2003;

Devlin and Risch 1995; Thomas 2004], unduly penalize the scores by those individuals

where the SNPs were uncorrelated and return low score values of 0.3 and 0.0, respectively.

(see SNPs 5&6 in Table 1, which contains more examples.) In general, existing correlation

measures return a single scalar value that is equally influenced by the entire sample, and as

such, are not suitable for evaluating data of disease traits bearing appreciable genetic

heterogeneity.

On a separate front, for complex diseases resulted from concerted action of multiple SNPs

and environmental factors, the effect size of any individual SNP is likely very small. It is

then desirable to identify clusters of multiple SNPs that collectively influence the disease

phenotypes. However, GWAS studies typically test hundreds of thousands or even millions

of SNPs, and the computations required to directly examine multi-SNP patterns quickly

becomes infeasible: one million SNPs would result in 5.0 × 1011 SNP-SNP pairings, but a

computationally prohibitive 1.7 × 1017 SNP-trios. Therefore, clustering of SNPs in the

network of all pairwise SNP interactions can be used to approximate (or to find candidates

of) true multi-SNP association patterns. Unfortunately, existing correlation measures are

again not suitable: two pairwise interactions involving a common SNP does not necessarily

mean that all three SNPs are acting together because the pairwise interactions may have

occurred in two distinct subgroups of people.

Herein we present an approach employing a novel Custom Correlation Coefficient (CCC,

“triple C”) that is sensitive to relationships in subgroups of study samples, with a three-step

procedure designed specifically to test for multi-SNP association with complex traits in
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genome-wide studies comprising: (1) fast-computation of genome-wide pairwise (SNP-

SNP) correlations using CCC; (2) clustering of subgroups of SNPs connected by the

pairwise correlations; and (3) identifying important clusters of SNPs that vary significantly

between cases and controls.

At the core of this new approach, CCC is different from existing correlation measures in

several ways. First, CCC identifies correlations autonomously, honing in on informative

subgroups of samples without being overwhelmed by uninformative ones. Second, rather

than a single scalar value, CCC returns a vector of four values representing the four different

types of relationships for pairs of SNPs. This way, not only the correlated SNPs are

identified, so are the relevant alleles and the individuals contributing to the correlation (see

Methods). Finally, CCC is more robust with rare variants since, unlike other methods, CCC

is defined for private mutations so they do not need to be discarded during analysis. This is

of practical value when, say, running bootstrapping trials where a random sampling of rare

variants may be monomorphic.

CCC is a simple and intuitive measure with low computational complexity, and further

improvement is achieved by pre-computing a table of CCC values. We present an efficient

algorithm to compute CCC, a breadth-first search to identify clusters of SNPs linked by

pairwise correlations, and a simple filter that identifies patterns of correlated SNPs

associated with disease phenotype. This novel procedure is computationally very efficient:

in our experiments PCC took more than 15 times and r2 more than 10,000 times as much

computation time compared to CCC. While fast, the CCC-based approach still captures

informative SNP pairs that are overlooked by other methods in real studies. Using genotype

data in cases and controls from a GWAS study of hypertensive heart disease (HHD), we

demonstrate CCC’s utility for identifying multi-SNP patterns that vary substantially between

HHD cases and controls. These clusters are missed by conventional methods including PCC,

r2, and log odds ratio-based test of pairwise interactions such as fast-epistasis in the popular

GWAS analysis package PLINK [Blaustein and Lederer 1999; Purcell, et al. 2007; Schulze,

et al. 2003].

Methods

Custom correlation coefficient

Given the genotypes of two SNPs for a set of individuals exhibiting a particular phenotype,

the goal is to quantify the relationships between alleles of the two SNPs among these

individuals. The relationships will be obscured when some of the genotypes are

heterozygous. In this study, we only consider biallelic SNPs. Let ‘A’ and ‘a’ represent the

alleles for SNP 1, and ‘B’ and ‘b’ for SNP 2. The question is whether there is evidence for a

different than chance occurrence for any of the four possible relationships: ‘AB’, ‘Ab’, ‘aB’,

or ‘ab’. A positive evidence would indicate a correlation, or lack of independence, between

the SNPs among these individuals. Several issues need to be sorted out to quantify the

evidence. For instance, how to properly measure that the ‘a’ allele for the first SNP and the

‘B’ allele for the second SNP appear simultaneously for a substantial number of individuals?

How does heterozygosity in the sample affect our characterization of this relationship?

Moreover, some alleles are rare in the overall population and their prevalence within a
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relationship is an additional departure from randomness. How can the correlation measure

reflect this additional information?

For quantifying co-occurrence of a pair of alleles, CCC uses a weighting score based on the

expected frequency of the 2-locus haplotype conditional on observed genotypes. Figure 4

tabulates the weights assigned by CCC for the four relationships between a pair of biallelic

SNPs. For a set of n individuals, the average value of these weights is computed for each of

the four relationships. Let Rij equal the average relationship value for alleles i and j. For

example, Rab equals the average weight for an ‘ab’ relationship for the group of individuals.

Then Rij values range from 0 to 1, and RAB + RAb + RaB + Rab = 1.

For adjusting the effect of rare alleles, we note that the correlation of rare alleles is a greater

departure from randomness than is alleles with high frequency. CCC uses the following

frequency factor:

where fi is the frequency of allele i and q is a tuning parameter that is set to 1.5. The choice

of this parameter is discussed in Section SI.2 of the Supporting Information. The Rij values

are each multiplied by the two frequency factors corresponding to the relevant alleles. This

value is rescaled to have a broader range between 0 and 1 by multiplying it by 9/2. Thus, the

definition of CCCij follows:

The special property of CCC is illustrated by examples in Table 1: robustness of CCC is

shown by the first 2 pairs of SNPs: SNPs 1 and 2 are homozygous for all of the individuals,

except individuals 1 and 2 are heterozygous for one SNP each. SNPs 3 and 4 are the same as

SNPs 1 and 2 except individual 2 is heterozygous for two SNPs, instead of just one. This

one small difference caused surprising increases in the PCC and r2 values, while the

maximum Rij value (attended by an ‘Ab’ relationship) remained the same. Advantage of

CCC under potential genetic heterogeneity is shown by the relationship between SNPs 5 and

6: they are perfectly correlated for half of the individuals and uncorrelated for the other half.

While both PCC and r2 overly penalized the uncorrelated individuals and detected low/no

correlation (|PCC|=0.3, r2=0.0), CCC picked up the strong correlation which occurred in

half of the samples and correctly detected a strong correlation of 0.7 for the ‘Ab’

relationship.

We note that this sensitivity of CCC partially came from its use of a vector of four values

representing the four different types of coupling of pairs of alleles SNPs, rather than

producing a single scalar to represent an “overall” relationship of the 2 SNPs. In general,

using a global measure leads to loss of information encoded by specific pairwise

relationships in subset of samples. For example, the program fast-epistasis implemented by

PLINK [Purcell, et al. 2007] also computes the same four Rij values (differ by a constant
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factor). However, it subsequently flattens these four values into a single scalar (log odds

ratio) to test for SNP-SNP interaction by comparing the correlations in cases and controls. It

is a popular method for identifying pairwise SNP interactions, and is used for comparisons

presented here.

The computation of CCC for a pair of SNPs has the asymptotically fastest time possible,

O(n), where n is the number of individuals. In other words, the computation time is equal to

a constant multiplied by the amount of time required to just read in the genotype values.

Furthermore, CCC is a divisible metric and as such allows subdividing large samples into

manageable chunks. We have exploited this property and implemented a technique to further

reduce computation time to less than a quarter of the original time by using an encoding and

table look-up scheme, along with an option for conservative early terminations. This

technique is described in Section SI.1 of the Supporting Information.

Network models

Using the concept of guilt-by-association [Quackenbush 2003; Stuart, et al. 2003] and any

one of the correlation metrics, a network model can be constructed to identify clusters of

multiple SNPs linked by pairwise correlations. One option is to create a network in which

each node represents a SNP and each edge connects a pair of SNPs whose correlation is

greater than a given threshold. The use of CCC allows for a second option -- to construct an

allelic network. Because the relevant alleles are returned with the CCC values, the network

is constructed with two nodes for each SNP. An allelic network maximizes information

retention and improves the possibility of identifying relevant multi-SNP association patterns.

Breadth-first search

Genome-wide association studies typically assay hundreds of thousands, or even millions, of

SNPs. Most of these SNPs are uncorrelated with each other. Therefore, both SNP and allele

networks tend to be large and sparse. The large sparse networks that we have explored in

this research typically contained thousands of disconnected components, or clusters. These

clusters can be efficiently identified using breadth-first search (BFS) [Russell and Norvig

2010]. BFS explores each cluster one at a time, and identifies the memberships of the

clusters that become multi-SNP patterns for downstream association analysis. A computer

program optimized to perform BFS search for large, sparse networks was implemented.

Pseudocode for BFS is included in Section SI.3 of the Supporting Information. Using this

program, networks with one-half million nodes can be subdivided into thousands of

disconnected clusters in less than 15 seconds.

Hypotheses checker (HC)

The HC is a simple and efficient program for testing a multi-SNP pattern for variation

between cases and controls. It detects concerted action of the SNP cluster by checking the

hypothesis for substantial association of the multi-SNP pattern with the disease status. For

every cluster in the cases network, HC compares the number of cases and controls

possessing the multi-SNP pattern. The relative difference between the two groups measures

the strength of association and a threshold δ is used to determine those comprising SNPs/

alleles whose concerted actions are associated with the disease. Similar checking is repeated
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for every cluster in the control network. Details of HC are described in Section SI.4 of the

Supporting Information.

Pearson’s correlation coefficient (PCC), LD measure r2

PCC is a general correlation measure widely used in many domains including genetic data

analysis. To measure correlation between 2 SNPs, one may simply count the copies of a

designated allele at each marker (e.g., ‘A’ & ‘B’) in each subject, and calculate the

correlation between the 2 vectors of allele counts:

where θ is the angle between vectors x and y, with dimension n that equals the number of

individuals, and σ is the standard deviation. Or, the correlation may be directly calculated

between the designated alleles of the 2 markers:

where p(x) is the observed probability of x, and D is defined as

The squared value r2 is a commonly used measure of linkage disequilibrium (LD) in genetic

analysis. For biallelic SNPs, the r2 value is invariant of the choices of designated alleles.

PLINK’s fast-epistasis

Related to the concept of pairwise correlation of SNPs, epistasis or SNP-SNP interaction

refers to the phenomenon where strength of the correlation changes according to disease

status, or, the phenotypic expression of a disease allele at one locus depends on an allele at

the other locus [Cordell 2002]. For case-control studies, SNP-SNP interaction may be tested

by any 2-sample statistics for significant changes in correlation strength between cases and

controls. In the popular GWAS analysis package PLINK, a log odds ratio-based test is

implemented (called fast-epistasis) to perform such test for pairwise SNP-SNP interactions.

It begins by computing four values similar to Rij utilized by CCC, in a in a 2×2 table,

denoted as a, b, c, and d:
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where n = the number of individuals in the group. These values are computed separately for

cases and controls, and a Z-score test for epistasis is performed on the difference of log odds

ratios:

where R and S are equal to ab/cd for cases and controls, respectively, and SE is the standard

error.

Datasets

Both real and simulated random data were used in our experiments. Real genotype and

phenotype data were obtained from a subset of genome-wide study of Hypertensive Heart

Disease at Washington University; the subset consisted of 74 HHD cases and 70 controls.

Hypertension affects millions of people and HHD is associated with elevated cardiovascular

morbidity and mortality[Fields, et al. 2004]. Genetic variants of hypertension and HHD were

implicated by numerous studies including several recent GWAS, but the findings are mostly

about single variants and little is known about the effect of multi-marker patterns[Arnett, et

al. 2007]. The clinical phenotypes of HHD for this study were carefully evaluated using

structure (LVM/Ht2.7), systolic function (EF), diastolic function (E’), and carotid artery

intima-media thickness (CIMT). Fasting BMP, glucose, insulin, lipids, plasma/serum, and

DNA were collected and utilized with echocardiographs, carotid artery ultrasounds, 24-hour

ABPM, arterial compliance, cardiovascular history, and physical exam (VS and body

habitus) in these evaluations. Case or control status was determined by a risk score derived

by independent component analysis of the panel of 46 clinical HHD traits and covariates

[Gu, et al. 2008]; a total of 150 subjects were sampled from the high and low end of the

distribution of the risk score and genotyped using the Affymetrix Mapping 500K Array Set.

The SNPs data underwent quality control using commonly accepted criteria on array quality

(missing rate ≤ 0.05, mean heterozygosity between 0.25 and 0.3) and on marker quality (call

rate ≥ 0.99 for SNPs with MAF ≤ 0.05, call rate ≥ 0.95 for all other SNPs, and Hardy-

Weinberg test p-value > 10−6). After QC, 74 cases and 70 controls were retained with data

on 389,344 SNPs. We further removed all SNPs with missing values and the X and Y

chromosomes, resulting with 219,407 complete and autosomal SNPs for analysis. While

omitting SNPs with one or more missing values decreased the number of SNPs, we did not

impute data for this study as the errors introduced by imputation are biased toward increased

linkage disequilibrium and may skew the results.

The random genotypes were generated by first randomly selecting a minor allele frequency

(MAF), followed by randomly selecting genotypes based on these MAF values. This dataset

has 72 individuals and 219,407 SNPs, so as to mimic the size of the biological datasets.

Results

Definition of CCC and the details of the CCC-based 3-step approach for fast genome-wide

scan of multi-SNP patterns are presented in Online Methods. Findings of our experiments
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applying the CCC method to a GWAS study of HHD are described in this section. Details of

the datasets are also described in Online Methods.

Determination of a significant threshold of CCC

Because the distribution of CCC values is mathematically intractable, we used simulation to

determine an appropriate threshold for significant CCC values. The threshold is determined

by examining distributions of CCC in a sample of normal (control) subjects and that of a

simulated dataset of random genotypes with no biologically meaningful SNP-SNP

correlations. We ran CCC on the HHD controls dataset and a simulated dataset of random

genotypes (see Methods) and created histograms from resulting CCC values. For each pair

of SNPs, the maximum CCCij value was used in the tally of values for each of 10,000 bins.

Figure 1 is a QQ-plot of CCC values in the controls and in the simulated data. The CCC

values for the controls began diverging from the random values at about 0.68. Based on this

observation, a threshold of 0.7 was used for CCC in all our experiments to declare

significant SNP-SNP correlations.

Network models constructed by CCC, PCC, and r2

For each correlation method, we constructed networks in HHD cases and controls

separately; each was composed of nodes (SNPs or alleles) with edges connecting pairs of

nodes if the correlation between the two nodes was above a significance threshold.

First, CCC was computed for all pairs of SNPs in the HHD cases and controls data

(analyzed separately). As discussed above, all CCCij values that were ≥ 0.7 were recorded as

edges between the relevant alleles/SNPs in the networks. This produced 211,255 edges for

the cases network and 204,538 edges for the controls network. These networks were highly

sparse, and the percentages of pairwise correlations that had scores of at least 0.7 were

0.00088% and 0.00085% for cases and controls, respectively.

To construct the PCC network, a comparable threshold for PCC should be found ideally by

extracting the highest 211,255 and 204,538 pairwise PCC absolute values for the cases and

controls, respectively. However, PCC does not discriminate high correlation values as well

as CCC or r2, and all of the extracted edges had PCC absolute values of one. In fact, cases

had 881,785 edges and controls had 923,331 edges with PCC absolute values of one. We set

the threshold for PCC to one, resulting with networks that have more than four times as

many edges as the CCC networks.

The LD measure r2 is computationally demanding and it was not computationally feasible to

compute r2 for all possible SNP pairs in GWAS datasets. To estimate a comparable

threshold for r2, we used data from chromosome 2, genotyped with 18,508 SNPs. Extracting

the same percentage of edges (0.00088% and 0.00085% for cases and controls, respectively)

with the highest r2 values, the corresponding thresholds were 0.999387 for cases and

0.999390 for controls.

Subsequently, four additional networks using PCC and r2 were constructed separately in the

case and control datasets. Numbers of edges in each of the six networks are displayed in

Table 2.
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PCC, r2, and CCC network comparisons

To further compare networks constructed by the three correlation methods, breadth-first

search (BFS) was applied to identify connected components, or clusters, in each network.

Sizes and densities of these clusters are listed in Table 2, together with the numbers of

clusters with at least three nodes. The density is defined as the ratio of the number of edges

in the cluster to the maximum number of edges possible. Singletons, which are nodes with

no edges, were not included in the calculations.

For both cases and controls, CCC found substantially more clusters with at least three nodes

than found by PCC. This result is quite surprising as the PCC network contained more than

four times as many edges distributed over the same number of nodes. The r2 results were

derived from only chromosome 2, so this number is not comparable.

A doubleton, or a cluster comprised of two nodes and one edge, always has a density of one,

as the edge connecting the nodes is the only edge possible. Noisy edges frequently appear as

doubletons in networks; and a large number of doubletons likely reflect a high level of

random noise in a network. As shown in Table 2, for both PCC and r2 the median cluster

size was 2 and average clusters sizes were also small (2.499 to 2.867). These combined with

high average density values indicate a large number of doubletons for the two methods. In

contrast, CCC had a greater proportion of clusters with at least three nodes, with median

cluster sizes of 3 and much larger average clusters sizes (5.157 for cases and 4.575 for

controls). In general, larger clusters tend to have lower densities due to the exponential

growth of the number of possible edges. However, despite the larger cluster sizes, CCC

clusters had surprisingly high average densities (> 0.9). For example, in a cluster consisting

of five nodes, a density of 0.9 indicates that nine of the ten possible edges are present.

Therefore, the CCC networks showed stronger community structure than those produced by

PCC or r2, because they contain a greater proportion of larger clusters (at least 3 nodes) and

maintained high densities of edges.

CCC clusters exhibiting variations with HHD

In correlation networks of SNPs, tighter community structure could be the result of many

SNPs genotyped from the same LD blocks, or of multiple SNPs from the sample biological

functional units/pathways, or both. We expect that LD blocks of variants irrelevant to a

disease phenotype will be largely the same in both cases and normal controls. Then,

biologically important SNP clusters may be identified by comparing the communities of

networks in cases and controls. We call these clusters SNP interaction (sub)networks or

multi-SNP association patterns (see Methods).

Because CCC returns the specific alleles that are correlated, not just the pair of SNP loci, we

were also able to construct allele networks, in which each SNP was represented by two

nodes, one for each allele. Following the same procedure of applying breadth-first search we

can derive the community structure of allele clusters. The advantage of using allele clusters

is that it allows us to check if an individual possesses any or all alleles of the cluster. This

was done as part of a procedure called Hypotheses Checker (HC) that examine clusters in

allele networks and directly determines how many case and control subjects possess all of

Climer et al. Page 9

Genet Epidemiol. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the alleles in each cluster and identify multi-SNP association patterns (clusters) that exhibit

associations with the disease. (see Methods and Supporting Information (SI)).

For the HHD networks, this method identified 42 candidate clusters, 22 of which are more

prominent for controls and 20 which are more prominent for HHD cases. The annotations

for these 42 clusters are listed in Tables S2 and S3 of the Supporting Information.

Details of two of the clusters are presented below as they include several SNPs from the

SLC8A1 (aka NCX1) gene, which is essential for returning the heart to the resting state

following excitation [Blaustein and Lederer 1999; Schulze, et al. 2003]. Cluster #22 contains

25 SNP alleles, including 13 from SLC8A1, spanning seven genes on six different

chromosomes. This cluster is plotted in Figure 2; and Table 3 lists the 25 SNPs, the

correlated alleles and their frequencies in cases and controls. Notably, while the entire

cluster pattern is significantly more prominent for the controls, exerting a protective

association, six of the correlated alleles have lower frequencies in the controls than the

cases. This result highlights the fact that significant associations of clusters of SNPs can

expose SNPs that would not exhibit associations when examined in isolation.

Tables 4 and 5 list the individual genotypes for the 25 SNPs in cases and controls,

respectively. The rows for individuals with all 25 risk alleles identified by Cluster #22 in the

controls are highlighted in yellow (16% of the controls, Table 5); no individual in the cases

possessed all 25 associated alleles. Following visual inspection, it was observed that

exclusion of three SNP alleles results in a cluster representing 20% of the controls and still

none of the cases, as shown in Table S1. The odds ratios and p-values for the difference

between cases and controls are undefined since none of the control individuals have all

associated alleles.

The second cluster of interest, Cluster #25, includes 32 SNP alleles with 29 from the

SLC8A1 gene. Whereas the SNPs in Cluster #22 lie between positions 40679386 and

40917895, the SNPs from Cluster #25 lie between positions 41400411 and 41756046.

Furthermore, unlike the pattern in Cluster #22, the allele pattern in Cluster #25 exhibits a

risk association, as it is more common in cases than in controls.

The allele frequencies and additional information of all the clusters identified by HC in

cases and in controls are listed in Table S2 and S3, respectively. As seen in Cluster #22, the

frequencies of the alleles in Cluster #25 also are similar for cases and controls, with three of

the alleles more frequent in the controls than cases. This 32-allele pattern was found in 3%

of the controls and in 20% of the cases, yielding an odds ratio of 8.36 (p =9.2*10−4) and p

=6.4*10−4 by G-test of independence [Sokal and Rohlf 1994]. Since the purpose of

analyzing the HHD data is to demonstrate the application of CCC method, these values have

not been adjusted for multiple testing. Validation of the findings using an independent

dataset is an important next step for this research beyond the scope of this manuscript.

In summary, analysis using CCC identified 42 multi-SNP patterns that exhibit variations

with HHD, two of which are of particular interest because they contain alleles in 2 regions

of SLC8A1, a known candidate gene of cardiac function. When considered as a whole, each

of these patterns exhibits strong association with HHD status, while the frequencies of
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individual alleles vary only slightly between cases and controls. This demonstrates the

power of CCC for identifying subtle patterns that encode synergistic interactions of multiple

causative (risk or protective) variants.

PCC and r2 results for the two clusters

The numbers of edges identified by all three correlation metrics: CCC, PCC, and r2, for the

SNPs in clusters #22 & #25 are listed in Table 6. PCC and r2 found only three to four

disconnected doubleton correlations for the 25 SNPs in Cluster #22. Of the 25 SNPs, 17 to

19 were completely missed and didn’t have any comparable PCC or r2 correlations. In

contrast, CCC produced 80 and 71 edges for the cases and controls, respectively.

For Cluster #25, with 32 SNPs, there were 38 edges in networks derived using PCC or r2.

Interestingly, both methods returned identical networks for both cases and controls. These

edges included four doubletons and two additional clusters connecting four and eight SNPs.

Eleven of the 32 SNPs were singletons. In contrast, CCC produced 326 and 368 edges for

this cluster of SNPs in the cases and controls, respectively.

Comparisons with Fast-epistasis

Next, the CCC-derived interaction networks (multi-SNP association patterns) were

compared to those produced by log odds ratio-based test of epistasis implemented as fast-

epistasis by PLINK [Purcell, et al. 2007]. Fast-epistasis compares correlations of each pair

of SNPs by a log odds ratio test between cases and controls and returns a p-value that

determines the significance of the variation (see Methods). It is used to construct an

interaction network by placing edges between pairs of nodes representing SNPs with

significant pairwise interactions. To obtain a comparable threshold for fast-epistasis, we

computed fast-epistasis values for every pair of SNPs and simply extracted the 1,665 pairs

with the highest values. This number of edges is equal to the number of edges in all 42

interaction networks identified by the 3-step procedure (CCC+BFS+HC). Subsequently, the

same BFS procedure was used to identify all connected components (clusters).

The structural characteristics of the CCC+BFS+HC and fast-epistasis derived interaction

networks are summarized in Table 7. Whereas fast-epistasis produced a substantially greater

number of clusters with at least three nodes compared to CCC (343 versus 42, respectively),

clusters produced by fast-epistasis were generally smaller (median and average sizes of 2

and 2.824 nodes, respectively). The CCC interaction network generated larger clusters with

median and average sizes of 8 and 10.452 nodes, respectively. The 1,665 edges are spread

over only 42 clusters with densities averaging 0.527. Finally, the fast-epistasis network

completely missed the SNPs in Clusters #22 and #25 as there were no edges between any

SNPs in these clusters.

It is notable that fast-epistasis based approach process interactions of each pair of SNPs

first, then construct the network. In contrast, the CCC+BFS+HC based construction first

identifies potential networks, then compares entire clusters of SNPs/alleles between cases

and controls, without filtering out SNP-SNP interaction pairs that do not independently vary

between cohorts.
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Computation Time

Each trial was divided into a number of subsets, which were run as single threads on a quad

2400 MHz processor with 8 GB of memory. Table 8 enumerates the computation times for

CCC, PCC, r2, fast-epistasis, and the 3-step CCC+BFS+HC combination. CCC could be

further sped up by using a conservative early termination, as described in Section SI.1 of the

Supporting Information. This feature is for extremely high-dimensional data and was not

used by trials reported here.

Computation of the r2 values for Chromosome 2 took 40 days, covering only 0.71% of all

possible correlations for the GWAS data. PCC computed all of the correlations in 110 hours

and CCC required only 7 hours. A pre-computed look-up table of values was used by CCC

and this table was computed in about a half second. Therefore, PCC required more than 15

times, and r2 required more than 10,000 times, of computation time than was used to

compute CCC.

Once the correlated alleles were found by CCC, finding candidate multi-SNP association

patterns (interaction networks) required a negligible amount of time. BFS computation times

ranged between 2 and 15 seconds for the genome-wide networks and took less than 0.5

second to run BFS on the r2 results for Chromosome 2. HC required 22 seconds to test

48,624 clusters. In contrast, fast-epistasis required 48 hours, which is almost 7 times as long

as the 7 hours that were required by the CCC+BFS+HC combination. These results

demonstrate that the new approach is significantly faster than existing methods and suitable

for conducting genome-wide analysis of multi-SNP interactions.

Discussion

We have introduced a new correlation metric CCC that accommodates genetic heterogeneity

and a network model that utilizes this metric to identify patterns of correlated SNP alleles.

The application of this method to real data from a GWAS study of hypertensive heart

disease (HHD) found 42 candidate multi-SNP association patterns. Two of these patterns

(Cluster #22 & #25) appeared immediately interesting as they involve many variants in the

vicinity of SLC8A1 (aka NCX1), which is essential for an Na+/Ca2+ exchanger involved in

maintaining cellular calcium homeostasis for cardiac myocytes, a primary mechanism for

the export of Ca2+ in the heart [Blaustein and Lederer 1999; Schulze, et al. 2003]. The

effects of the two groups of SLC8A1 alleles are distinct; those in Cluster #22 appear to be

protective as #22 was only present in controls, while those in Cluster #25 contribute to risk

of HHD as the cluster was more prominent in cases. The two groups of SNPs reside in

distinct LD blocks in the region, therefore possible cis-regulations of these variants on the

expression of SLC8A1 deserve further investigation.

We were also intrigued by the interactions involving the SNP alleles in other genes. For

Cluster #25, aside of the SNP alleles in/near SLC8A1, one allele in LRRK2 and two in an

intergenic region on chromosome 16 were involved. Little is known about the region, but

LRRK2 was associated with familial and sporadic Parkinson’s Disease, possibly involving

cardiac sympathetic denervation [Gilks, et al. 2005]. For Cluster #22, more genes are

involved besides SLC8A1, including SNP alleles from/near ATP6V1B2, LZTS1, TRPM3, and
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C10orf90, along with four in poorly annotated intergenic regions. It is unknown whether the

genes representing these SNP alleles, or other genetic variants in close proximity, are

responsible for the observed HHD phenotype. Short of a direct functional study of these

genes, possible functional relationships among them were explored using GeneGO/

MetaCore, an annotation database that includes more than 120,000 manually curated

interaction pathways drawn from published research [Blow 2009]. (The open reading frame,

C10orf90, was not included in the MetaCore analysis; however, we note that it is adjacent to

ADAM12 on chromosome 10 which is associated with cardiac hypertrophy, a defining

characteristic of HHD [Asakura, et al. 2002].) The network from the MetaCore analysis is

shown in Figure 3 and revealed an abundant collection of known molecular interactions

connecting the genes through mechanisms involving various RNAs, binding proteins,

transfactors, inorganic ions, and enzymes, in multiple cellular regions.

Although the truth about the involvement of these potential pathways in HHD is unknown,

they provide a way for designing further studies of specific mechanisms of HHD and a

means for integrating findings from such studies using the components and topology

described by the identified network. However, as shown above, none of the information

would be detected when conventional correlation metrics such as PCC or r2 were used. This

demonstrates the unmet challenges of current methods for identifying subtle multi-SNP

patterns in heterogeneous samples that show little variation in frequencies for single or

pairwise SNPs. Because the conventional correlation metrics are insensitive to relationships

in subsamples, they fragment large network components into small pieces and failed to

integrate a substantial number of the (within-subsample) interacting SNPs into larger

networks. Furthermore, because the existing methods filter out individual pairwise

interactions first, variants that contribute only to larger multi-SNP patterns are prematurely

excluded and will never become part of the network. In our HHD example, only two

patterns including four and eight SNPs were identified by fast-epistasis, with the remaining

networks consisting of only two SNPs each. Upon close examination, each of these

doubleton networks was comprised of SNPs in close proximity, likely a reflection of LD.

The power for detecting interacting variants is apparent when a larger number of correlated

SNPs are examined in unison. The CCC+BFS+HC procedure examines multi-SNP patterns

within cases and controls without first filtering out pairwise interactions, and as so is able to

retain large patterns of SNP alleles going beyond single-variant or pairwise effects. Indeed,

in the HHD example, the two clusters of interest include SNP alleles with only small

variations in allelic frequency between cohorts; and the fast-epistasis results confirm that

none of the SNP-SNP pairs exhibit high variation between cases and controls.

A caveat of our “data-driven” approach should be noted. We determined the CCC threshold

of 0.7 by comparisons of CCC values for the HHD controls and simulated random

genotypes. Note that an optimal CCC threshold may be different for future studies

dependent upon properties of the data of interest. More generally, the mathematical

properties underlying the CCC metric, particularly the effects of sample sizes and genome-

wide MAF distribution or genetic diversity, warrant further investigation.
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In conclusion, this study has contributed to the existing body of research on genome-wide

analysis of interactions by 1) presenting a novel analysis method that accommodates genetic

heterogeneity; and 2) demonstrating the ability of this method to identify subtle multi-SNP

association patterns hidden in GWAS data. Using this technique, 42 candidate association

patterns for HHD were identified. These patterns are comprised of SNP alleles that show

little, and sometimes misleading, variation of frequencies between cases and controls; yet

synergistic combinations among these alleles associate with the HHD trait. Future studies

are necessary to validate the candidate multi-SNP patterns associated with HHD in

independent datasets and to explore causal mechanisms possibly tagged by the identified

SNP alleles. While the CCC method is highly customized for SNP data, the concept of

autonomous subset correlation can be extended to other domains (e.g., gene expression data

analyses) where heterogeneity is problematic, to enable discovery of higher-order and subtle

multi-variant patterns that will help explain the mechanisms of complex diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
QQ-plot of CCC values for HHD controls and randomly-generated data.
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Figure 2.
Allele network of Cluster #22 including 25 SNPs. Edges are computed using CCC for

genotype data from controls.
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Figure 3.
MetaCore network for five known genes associated with the 25-node candidate association

cluster. SLC8A1/NCX1 is shown in the center. The open reading frame, C10orf90, was not

included in the MetaCore network. C10orf90 is adjacent to ADAM12 on Chromosome 10.
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Figure 4.
CCC weights for each of four relationship types for a pair of SNPs.
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Table 2
Structural characteristics of correlation networks identified by BFS and the three

correlation measures: CCC, PCC and r2, in the GWAS data of 74 HHD cases and 70
controls

CCC PCC r2(*)

Controls Cases Controls Cases Controls Cases

Number of Edges 211,255 204,538 881,785 923,331 1,678 1,619

Size of
Clusters (†)

Median 3 3 2 2 2 2

Average 5.157 4.575 2.863 2.867 2.499 2.547

Density of
Clusters

Median 1 1 1 1 1 1

Average 0.911 0.901 1.000 1.000 0.998 0.998

Number of Clusters with
at Least 3 Nodes 10,101 11,697 8,522 8,268 211 191

*
The r2 values are for Chromosome 2 only.

†
Singletons were not included in the calculations.
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Table 3

The associated alleles of the 25 SNPs comprising Cluster #22. Alleles that are less frequent in controls than

cases are highlighted in yellow.

Node
Number

Identified
Allele

Frequency
in Controls

Frequency
in Cases SNP rs.ID Chromo

some Position Gene

1 G 0.436 0.473 SNP–A-1940790 rs42814 2 40679386 SLC8A1

2 T 0.386 0.358 SNP–A-2296948 rs10048831 2 40770673 SLC8A1

3 G 0.386 0.358 SNP–A-4208023 rs10490261 2 40771068 SLC8A1

4 C 0.507 0.432 SNP–A-2306108 rs7589309 2 40794558 SLC8A1

5 A 0.507 0.432 SNP–A-4296426 rs918013 2 40801916 SLC8A1

6 C 0.371 0.291 SNP–A-2128224 rs1107932 2 40802672 SLC8A1

7 T 0.436 0.345 SNP–A-2243130 rs4952645 2 40803110 SLC8A1

8 A 0.486 0.392 SNP–A-4208026 rs10490262 2 40805171 SLC8A1

9 G 0.379 0.291 SNP–A-4238930 rs12105490 2 40813313 SLC8A1

10 A 0.471 0.392 SNP–A-1962895 rs12712708 2 40817419 SLC8A1

11 A 0.329 0.324 SNP–A-4261874 rs1456587 2 40842768 SLC8A1

12 T 0.414 0.385 SNP–A-2097854 rs11124763 2 40891407 SLC8A1

13 A 0.514 0.446 SNP–A-1962896 rs7591057 2 40917895 SLC8A1

14 A 0.443 0.541 SNP–A-2110839 rs11726451 4 59534976 unknown

15 G 0.371 0.318 SNP–A-2251200 rs13253777 8 20116050 ATP6V1B2

16 C 0.379 0.324 SNP–A-4280883 rs11204102 8 20137423 LZTS1

17 T 0.307 0.176 SNP–A-2152050 rs7849064 9 72727974 TRPM3

18 G 0.279 0.149 SNP–A-1881292 rs7041925 9 72775609 TRPM3

19 T 0.343 0.405 SNP–A-2221667 rs11245048 10 128245557 C10orf90

20 T 0.471 0.527 SNP–A-2036244 rs12264765 10 128258265 C10orf90

21 T 0.400 0.453 SNP–A-1869292 rs10901638 10 128260689 C10orf90

22 T 0.471 0.547 SNP–A-2207236 rs10128487 10 128263169 C10orf90

23 G 0.300 0.264 SNP–A-2019879 rs8134934 21 41375695 unknown

24 C 0.293 0.257 SNP–A-2019884 rs2837941 21 41390710 unknown

25 T 0.350 0.324 SNP–A-2019889 rs2837956 21 41401386 unknown
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Table 4

Genotypes for the 25 SNPs from CCC Cluster #22 in 74 cases. Genotypes lacking the associated allele are

shaded. None of the cases had all of the associated alleles.
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Table 5

Genotypes for the 25 SNPs from CCC Cluster #22 in 70 controls. Genotypes lackingthe associated allele are

shaded; the rows for individuals with all 25 of the identified alleles are highlighted in yellow (16% of the

controls).
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Table 6

Number of edges found by each method for clusters #22 and #25.

# of SNP
Alleles

CCC PCC r2

Controls Cases Controls Cases Controls Cases

Cluster #22 25 80 71 3 4 3 3

Cluster #25 32 326 368 38 38 38 38
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Table 7

Comparison of number of clusters with at least three nodes and sizes and densities of clusters for two

interaction networks: Fast Epistasis and the CCC+BFS+HC combination.Singletons were not included in the

calculations.

Fast Epistasis CCC+BFS+HC

Size of Clusters
Median 2 8

Average 2.824 10.452

Density of Clusters
Median 1 0.5

Average 0.825 0.527

# of Clusters with
at Least 3 Nodes 343 42
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Table 8

Computation time required for each correlation and interaction method.

Method # of Pairs
Computed

% of Pairs
Computed Computation Time

Correlation

r2 3.42E+08 0.71% 40 days

PCC 4.81E+10 100% 110 hours

CCC 4.81E+10 100% 7 hours

Interaction
Fast Epistasis 4.81E+10 100% 48 hours

CCC+BFS+HC 4.81E+10 100% 7 hours
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