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Abstract

Background—Atrial fibrillation (AF) affects over 30 million individuals worldwide and is

associated with an increased risk of stroke, heart failure, and death. AF is highly heritable, yet the

genetic basis for the arrhythmia remains incompletely understood.

Methods & Results—To identify new AF-related genes, we utilized a multifaceted approach,

combining large-scale genotyping in two ethnically distinct populations, cis-eQTL mapping, and

functional validation. Four novel loci were identified in individuals of European descent near the

genes NEURL (rs12415501, RR=1.18, 95%CI 1.13 – 1.23, p=6.5×10−16), GJA1 (rs13216675,

RR=1.10, 95%CI 1.06 – 1.14, p=2.2×10−8), TBX5 (rs10507248, RR=1.12, 95%CI 1.08 – 1.16,

p=5.7×10−11), and CAND2 (rs4642101, RR=1.10, 95%CI 1.06 – 1.14, p=9.8×10−9). In Japanese,

novel loci were identified near NEURL (rs6584555, RR=1.32, 95%CI 1.26–1.39, p=2.0×10−25)

and CUX2 (rs6490029, RR=1.12, 95%CI 1.08–1.16, p=3.9×10−9). The top SNPs or their proxies

were identified as cis-eQTLs for the genes CAND2 (p=2.6×10−19), GJA1 (p=2.66×10−6), and

TBX5 (p=1.36×10−05). Knockdown of the zebrafish orthologs of NEURL and CAND2 resulted in

prolongation of the atrial action potential duration (17% and 45%, respectively).

Conclusions—We have identified five novel loci for AF. Our results further expand the

diversity of genetic pathways implicated in AF and provide novel molecular targets for future

biological and pharmacological investigation.
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Introduction

Atrial fibrillation (AF) is a common arrhythmia with major public health implications due to

its high prevalence, significant morbidity and considerable associated healthcare costs.1

Currently, there are nearly 3 million individuals in the United States and over 8.8 million

individuals in Europe affected by AF. With an aging population, the prevalence of AF is

expected to dramatically increase. In addition to conventional risk factors,2 a genetic

predisposition has been shown to contribute to AF risk.3 Over the last several years,
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numerous AF associated mutations, candidate genes, and risk loci have been identified;

however, much of the heritability of AF remains unexplained.

Genome wide association studies (GWAS) have identified thousands of genetic loci

associated with a wide range of conditions and traits. Most studies employ a stringent

threshold of genome wide significance which, while minimizing false-positive associations,

often fails to identify many disease associated loci. Increasing the sample size of a GWAS

will enhance power, but for many diseases large numbers of affected individuals are

unavailable and genotyping remains expensive. Since we have a limited understanding of

the pathophysiology of AF, genetic discovery provides an important tool to identify novel

pathways and therapeutic targets for the arrhythmia. Given these challenges, we sought to

identify AF susceptibility loci using a combination of genotyping, eQTL mapping, and

functional validation.

Methods

Overall study design

We have used available genome-wide association datasets for AF in Europeans and

Japanese, respectively, and have identified selected genetic variants for additional

replication in independent individuals. Following separate analyses in each replication

cohort, we meta-analyzed the novel findings with the respective prior derivation stages.

Variants that reached genome-wide significance for association with AF were subjected to

additional analyses. First, we performed eQTL mapping in publicly available domains and

left atrial tissue samples to identify gene expression changes depending on the identified

genotypes. Second, we applied implicated loci pathway and gene enrichment analyses to

better characterize novel candidate genes. Third, we performed candidate gene knockdown

in an embryonic zebrafish model to test for morphologic and functional changes due to gene

expression changes. Fourth, we conducted co-immunoprecipitation of candidate genes to

inform protein-based interactions of our novel candidate genes. Last, we looked-up our

association findings in a large consortial dataset of patients with ischemic stroke, a major

consequence of AF. The study design including main results is summarized in Figure 1.

Study samples

Potential novel AF susceptibility signals in Europeans and Japanese were selected from a

discovery sample consisting of cohorts with incident and prevalent AF, which has been

previously described.4 To replicate variants from the discovery sample, we recruited

additional samples and cohorts with available DNA for direct genotyping, or existing

GWAS data for in-silico analysis. European replication samples included 6,691 independent

AF cases and 17,144 controls. In Japanese, an additional 1,618 AF cases and 17,190 controls

were analyzed; in a second replication stage, another 5,912 AF cases were added, totaling

8,373 AF cases. A detailed description of replication cohorts is available in the

Supplemental Methods. Institutional Review Boards or Ethics Committees approved each

contributing site. All participants provided written informed consent for participation in the

cohorts, particularly allowing the analysis of DNA for genetic studies.
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Selection of SNPs for replication

To identify SNPs for replication analyses in Europeans, we used the meta-analysis dataset

from the GWAS performed by the AFGen consortium,4 and performed several selection

steps: (1) We selected all SNPs (n=195) that demonstrated suggestive associations with the

arrhythmia as defined by a meta-analysis p-value <5×10−5. This significance threshold for

SNP inclusion was based on the expected power given an estimated independent validation

sample size. (2) We then subjected SNPs within 1 Mb of the published genome-wide

significant loci to further selection: all SNPs with a linkage disequilibrium measure r2≥0.1

with the published top-signals were omitted to avoid the inclusion of SNPs tagging the

published results. (3) Finally we selected all SNPs with a minor allele frequency (MAF)

≥5%. SNPs with a MAF <5% were included if they were located in exons or the 3’

untranslated region (3’UTR) of known genes. Finally, we selected 49 variants. Given the

smaller initial sample size of the GWAS in Japanese, a more extensive list of SNPs was

considered for replication based on genotyping platform availability and cost. Balancing our

statistical power and genotyping considerations, we thus selected the top 500 SNPs at 350

independent loci from a prior meta-analysis for successive rounds of genotyping as

described in the supplemental methods.4

Genotyping

Cohorts of European descent were directly genotyped using the iPlex matrix assisted laser

desorption / ionization time-of-flight (MALDI-TOF) mass spectrometry technique based on

Sequenom platforms. All genotypes were analyzed using dedicated calling software

applying the manufacturer’s recommendations. In Ottawa, TaqMan assays (Applied

Biosystems, Inc., Foster City, CA) were used. For in-silico replication cohorts, genotypes

from commercially available Affymetrix and Illumina genotyping arrays were used. Each

cohort used genotyping results imputed to >2.5 million HapMap SNPs based on the

HapMap CEU panel. Cohort-specific details are described in Supplemental Table 1. For

genotyping in Japanese cases, the multiplex PCR-based Invader Assay (Third Wave

Technologies) was used according to the manufacturer’s recommendations. Quality control

for all genotyping results required a call rate ≥99% in both cases and controls, and

deviations from the Hardy-Weinberg equilibrium were accepted to a p-value >1.0×10−6 in

controls.

Statistical methods in Europeans

For genetic associations, studies from the GWAS discovery stage were calculated as

described earlier.4 In the replication cohorts, we used logistic regression models to assess the

associations between SNPs and AF; to achieve higher statistical power in smaller replication

cohorts, we combined prevalent and incident AF cases. All models were adjusted for age at

DNA draw and sex. Cohorts with multiple study centers further adjusted for site.

Associations derived from GWAS datasets were also adjusted for principle components to

account for population structure. Each cohort contributing in-silico replicated SNPs used

significant principle components specific to their dataset. We assumed an additive model of

inheritance. Associations were restricted to SNPs selected according to the description

above. Directly genotyped SNPs were used following standard genotyping quality control.
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For imputed SNPs from GWAS cohorts, we used the observed to expected variance of the

imputed SNP genotype count (r2) to adjudicate the imputation quality, and we only included

SNPs with r2≥0.3 (range 0–1; 0: random imputation; 1: perfect imputation).

We meta-analyzed study-specific association results using METAL, applying a fixed effects

approach weighted for the inverse of variance. Association effects are presented as relative

risks (RR). For significant SNPs, we also computed tests of heterogeneity among the study

effects; the p-values for the 4 SNPs in Table 1 were all >0.05 and thus not significant. We

considered novel loci significantly associated when they exceeded the commonly accepted

threshold of genome-wide significance at p=5×10−8 after meta-analyzing our GWAS

discovery cohorts with the replication cohorts. For novel loci, we drew regional association

plots using LocusZoom considering up to ±1000kb around the respective topSNP.

Statistical methods in Japanese

The associations of all SNPs were assessed with the Cochran-Armitage trend test. To further

validate the results of the discovery-stage analysis, we selected the 500 SNPs with the most

significant Cochran-Armitage trend p values for follow-up analyses in additional 1,618

Japanese AF cases and 17,190 AF-free controls. Of the selected 500 SNPs, 150 showed

evidence of strong linkage disequilibrium with other selected markers as assessed by the

Haploview software. We thus selected 350 SNPs for further genotyping. We combined the

genotype data of both the first and second stage for meta-analysis using the Mantel-Haenszel

method. We also assessed heterogeneity of our results for all significantly associated SNPs

calculating Breslow-Day tests. All tests yielded p-values >0.05 and were thus non-

significant: rs6584555, p=0.90; rs6490029, p=014; rs639652, p=0.46; rs1906599, p=0.77;

rs6466579, p=0.27; rs12932445, p=0.98.

Analysis of eQTLs

We performed eQTL analyses from two sources: the Cleveland Clinic Atrial Tissue Bank

and the publicly available Genotype-Tissue Expression Portal (GTEx) of the Broad Institute

of Harvard and MIT. We first searched for all 49 SNPs considered for replication analysis in

Europeans as well as the 2 SNPs identified in Japanese. Second, for those SNPs exceeding

or approaching genome-wide significance after replication (Table 1), we additionally

searched for all proxy SNPs defined as those with at least moderate linkage disequilibrium

(r2≥0.5) with the sentinel SNPs. Detailed methods are provided in the supplement.

Implicated loci pathways

We also performed gene enrichment analyses at our implicated loci to determine known

functional interactions between the 5 newly discovered loci and the 9 previously reported

AF loci,4 in addition to 6 genes from eQTL analysis. The web-based tool GRAIL analyzes

the connectivity between genetic loci using information retrieved from text mining.5 Here,

we combined 20 loci, including the 14 AF loci and 6 eQTL genes as both the query and seed

regions. The search was performed on the abstracts in PubMed published before August

2012. Out of the 20 queried loci, 10 showed an excess of connectivity (PGRAIL<0.05 after

multiple testing correction). These loci were connected by keywords such as "cardiac",

"heart", "channels", "atrial", or similar. In addition, we used the Ingenuity Pathway Analysis
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(IPA) tool to examine functional enrichment of the 14 AF loci. For each locus, we searched

genes within 1Mb of the top SNP. A total of 275 genes were found. These genes were then

analyzed by IPA, and the most significant canonical pathways were reported.

Knockdown of candidate genes in zebrafish

Zebrafish of the Tübingen/AB strain were maintained according to standard methods.

Morpholino oligonucleotides (MOs) designed to disrupt the proper splicing or translation of

zebrafish genes neurla, cand2, cand1, and cux2b were obtained from Genetools LLC

(Corvallis, OR, USA). Measurements of heart rate, contractile function and optical mapping

were obtained as previously described;6 detailed methods are provided in the supplement.

Co-immunoprecipitation in COS7 cells

For co-immunoprecipitation in COS7 cells, we transfected an expression plasmid of Myc- or

FLAG-tagged target genes into COS7 cells (HSRRB; JCRB9127) using Fugene 6 (Roche).

At 24h post transfection, immunoprecipitations were performed in lysis buffer (20mM Tris

pH 7.5, with 150mM NaCl, 0.4% Nonidet P-40 containing 5µg/ml of MG-132 and protease

inhibitor tablet EDTA- Roche) using anti-Myc tagged (Santa Cruz) or anti-FLAG tagged

M2 agarose (Sigma). We visualized targets using HRP-conjugated anti-FLAG (Sigma) or

anti-Myc antibodies (Santa Cruz).

Results

Study design

The overall design of the study is illustrated in Figure 1. In Europeans, the AFGen discovery

sample comprised 16 studies that included 6,707 AF cases and 52,426 AF free controls.4

There were 195 single nucleotide polymorphisms (SNPs) with p values between 1×10−5 and

5×10−8 in the AFGen discovery sample. Based on a priori power calculations, we then

selected 49 SNPs that were not in strong linkage disequilibrium with previously identified

loci (r2<0.1). The SNPs were directly genotyped in 6 studies and in-silico replication was

performed in 3 studies together consisting of 6,691 independent AF cases and 17,144

controls (Supplemental Tables 1 & 2). The mean age in the AF cases was 64.2±8.3 years

versus 66.1±7.9 years in controls. Approximately two thirds of cases and half of the controls

were male.

Following meta-analysis of the replication cohorts with the discovery stage results from the

AFGen Consortium, four SNPs exceeded the threshold of genome-wide significance in

Europeans; three further signals were near genome-wide significance (p<5×10−8). Results

for the top 4 variants are shown in Table 1; full results for all 49 SNPs are provided in

Supplemental Tables 3 & 4. Regional association plots for the top four associations in

Europeans are shown in Figure 2.

In Japanese, the GWAS discovery sample consisted of 843 AF cases and 3,350 AF free

controls.4 A total of 500 SNPs from 350 loci were genotyped in a replication sample

consisting of 1,618 AF cases and 17,190 controls, and the results were meta-analyzed with

the Japanese GWAS discovery data. Six novel SNPs reaching p<1×10−7 were genotyped in
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5,912 additional AF cases of Japanese ancestry, expanding the total number of AF cases to

8,373 (Supplemental Table 5); two SNPs remained significantly associated with AF (Table

1). Regional association plots for the two novel variants in Japanese are shown in Figure 2.

Five novel AF risk loci in Europeans and Japanese

The most significantly associated novel variants in both Europeans and Japanese were

intronic to the gene NEURL on chromosome 10q24.33 (Europeans: rs12415501, relative risk

for the AF risk allele (RR) 1.18, 95% confidence interval (CI) 1.13–1.23, p=6.5×10−16;

Japanese: rs6584555, RR 1.32, 95% CI 1.26–1.39, p=2.0×10−25). Fine mapping of ten

additional SNPs at the NEURL locus in the Japanese population did not reveal any

independent susceptibility signals for AF at this locus (Supplemental Table 6).

The second locus identified in Europeans is intronic to TBX5 on chromosome 12q24

(rs10507248, RR 1.12, 95% CI 1.08–1.16, p=5.7×10−11). The third locus identified in

Europeans is on chromosome 3p25.2 intronic to CAND2 (rs4642101, RR 1.10, 95% CI

1.06–1.14, p=9.8×10−9). The SNP rs4642101 is in moderate to strong linkage disequilibrium

(r2=0.64) with the non-synonymous SNP rs2305398 that results in an amino acid

substitution from glutamine to arginine (p.Q315R). The fourth locus identified in Europeans

is on chromosome 6q22.31 in a large intergenic region (rs13216675, RR 1.10, 95% CI 1.06–

1.14, p=2.2×10−8). The closest gene is GJA1; rs13216675 is located approximately 670kb

downstream of the gene. Interestingly, each of the variants identified in Europeans at the

TBX5, CAND2, and GJA1, were also associated with AF in Japanese (Supplemental Table

7). The fifth locus which, was identified only in Japanese individuals, is located intronic to

CUX2 (rs6490029, RR 1.12, 95% CI 1.08–1.16, p=3.9×10−9) on chromosome 12q24.11–12;

we did not observe evidence of an association at the CUX2 locus in Europeans

(Supplemental Figure 1 and Supplemental Table 7).

Expression quantitative trait loci mapping

We assessed the influence of novel susceptibility signals on the expression of candidate

genes by investigating eQTLs using two sources. First, accessing the publicly available

Genotype-Tissue Expression Portal (GTEx), we found several significant associations

between gene expression and novel susceptibility loci (Supplemental Table 8). The AF risk

allele of the top SNP at the CAND2 locus, rs4642101, was significantly associated with a

higher expression of CAND2 in skeletal muscle (p=2.6× 10−9). A proxy SNP for rs4642101

also had a significant eQTL with CAND2 (rs9877049, p=2.6×10−19, r2=0.64). No eQTLs

were identified in the GTEx database at the four other novel loci.

Second, we associated SNP genotypes with gene expression levels in a large repository of

left atrial tissue samples (n=289; Supplemental Table 8). AF was present at the time of

tissue acquisition in 136 patients, 70 had no history of AF, and 80 patients were women.

Among SNPs at the novel loci for AF, we found significant cis-eQTL associations where the

AF risk allele correlated with a decreased expression of GJA1 (rs13216675, p=9.84×10−5)

and the AF risk allele correlated with an increased expression of TBX5 (rs10507248, p=2.14

×10−4). At both loci, we identified SNPs in linkage disequilibrium with the index SNPs, but

with statistically stronger effects on gene expression: rs2176990 (r2=0.54 with rs13216675,
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p=2.66×10−6, 0.93 fold (0.90–0.95) decreased expression per AF risk allele) and rs1946295

(r2=0.87 with rs10507248, p=1.36×10−5, 1.12 fold (1.08–1.18) increased expression per AF

risk allele).

Among the 49 SNPs initially tested for an association with AF in Europeans, we also

observed significant eQTLs for SNPs at five other genes. These loci were only marginally

associated with AF, but exceeded the threshold of significance at p<2.03×10−4 for eQTL

analyses. The respective loci were found for SNPs in or around the candidate genes CEP68,

LINC00467, NKX2.5, TMEM116, and WIPF1. In more detail, rs2723065 (association with

AF p=7.6×10−8), and in particular rs2540950 (r2=0.93 with rs2723065) were strongly

associated with the expression of CEP68 (p=9.70×10−17). The four other SNPs had a weaker

association with AF, but a significant cis-eQTL association with the candidate genes

LINC00467 (rs12733930, p value for association with AF = 8.2×10−4, p value for eQTL

=1.59×10−24), NKX2.5 (p for AF=1.0×10−6, p for eQTL=8.78×10−6), TMEM116

(rs6490029, p for AF=3.9×10−9, p for eQTL=4.28×10−06), and WIPF1 (rs2358891, p for

AF=2.0×10−6, p for eQTL=8.87×10−10) (Supplemental Table 4).

Zebrafish knockdown studies of NEURL, CAND2 and CUX2

For the novel AF risk loci identified in our genetic analyses, we sought to determine the

potential role of these genes in cardiovascular function through morpholino-mediated

knockdown of orthologues in zebrafish embryos (Supplemental Table 9). Since TBX5 and

GJA1 have well-described roles in cardiovascular physiology, our zebrafish studies focused

on the three novel candidate genes: NEURL, CAND2, and CUX2.

Zebrafish have a single ortholog of the NEURL and CUX2 genes, neurla and cux2b, but

have two putative orthologs for the CAND2 gene, cand1 and cand2. We assessed the

efficacy and morphologic consequences of gene knockdown, and the effect on resting heart

rate, ventricular contractility, and atrial action potential duration (APD80). Knockdown

efficacy was sufficient for all four genes (Supplemental Table 9). Morphologically,

embryonic development was only slightly affected by knockdown of neurla and cand1,

which showed mild developmental delay, whereas cand2 and cux2b morphants were

indistinguishable from controls (Figure 3A). There were no significant effects on resting

ventricular contractile function (Figure 3B) or heart rate (Figure 3C) for any knockdowns.

We determined the atrial APD80 by analyzing optical mapping data as described earlier.6

For neurla knockdown embryos, the atrial APD80 was significantly lengthened by 17%,

34% and 19% for the three neurla-targeting morpholinos (Figure 3D, Supplemental Table

10). Knockdown of the zebrafish cand1 gene resulted in a prolongation of the atrial APD80

by 45% (Replication morpholino=31% APD80 increase) Knockdown of cand2 or cux2b did

not significantly alter the APD80 (Figure 3D, Supplemental Table 10). Representative

optical mapping recordings for all four gene knockdowns are presented in Figure 3E.

Interaction between Neurl and Pitx2

NEURL encodes an E3 ubiquitin ligase with a putative RING finger domain.7 E3 ubiquitin

ligases have been shown to interact with several types of transcription factors.8 Since a

number of AF GWAS loci reside at or near transcription factors (PITX2, ZFHX3, PRRX1,
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TBX5, and CUX2), we tested the direct interaction between NEURL and AF-associated

transcription factors. NEURL was co-expressed in COS7 cells with each transcription factor

using myc- or FLAG-tagged NEURL and myc-tagged PRRX1, ZFHX3, and TBX5 or

FLAG-tagged PITX2 and CUX2. By co-immunoprecipitation, we demonstrated a NEURL-

PITX2 protein interaction (Supplemental Figure 2a). We did not find evidence of a direct

interaction between NEURL and PRRX1, CUX2, or TBX5; studies on ZFHX3 were

unsuccessful (Supplemental Figure 2b, 2c, 2d).

Implicated loci pathways

To integrate our novel SNP and eQTL findings with the previously described 9

susceptibility loci for AF,4 we employed systems biology based gene enrichment analyses.

Using the web-based tool GRAIL, 10 of the total 20 loci showed an excess of connectivity

(p<0.05) involving keywords such as "cardiac", "heart", "channels", and "atrial"

(Supplemental Figure 3). The most significantly enriched pathways by an Ingenuity analysis

were those involving “calcium signaling” (p=5.3×10−5), “L-serine degradation”

(p=4.1×10−4), and “geranylgeranyldiphosphate biosynthesis” (p=8.1×10−4).

Relation between novel AF risk loci and stroke

AF is strongly associated with an increased risk of stroke. We therefore determined whether

the top 5 novel loci from our genetic analyses were associated with ischemic stroke in the

METASTROKE collaboration of the International Stroke Genetics Consortium, a meta-

analysis of GWAS combining 12,389 ischemic stroke patients and 62,004 controls (Table

2).9 For rs6490029, we detected an association with any type of ischemic stroke (CUX2,

odds ratio 0.95, 95% CI 0.91–0.98, p=0.0034). Interestingly, the coded allele was hazardous

for AF, but protective for ischemic stroke. Restricting our analyses to 2365 individuals with

cardioembolic stroke, we also found associations for rs13216675 (GJA1; odds ratio 1.11,

95% CI 1.04–1.19, p=0.002) and rs10507248 (TBX5; odds ratio 1.13, 95% CI 1.05–1.21,

p=0.0013). Consistent with findings from the METASTROKE collaboration, different

subtypes of stroke show limited overlap in genetic associations.9

Discussion

In the present study, we sought to integrate multiple parallel techniques to identify novel AF

susceptibility loci. Large-scale genotyping in Europeans and Japanese identified novel AF

risk loci at or near the genes NEURL, TBX5, CAND2, GJA1, and CUX2. Expression

quantitative trait loci mapping in left atrial tissue analyses identified associations between

AF SNPs at the CAND2, TBX5, GJA1, CEP68, LINC00467, NKX2.5, TMEM116, and

WIPF1 loci. Functional characterization of NEURL and CAND2 orthologs in embryonic

zebrafish demonstrated that knockdown of these genes resulted in a significant lengthening

of the atrial action potential duration. Further, we found that NEURL and PITX2c physically

interacted in a cellular overexpression model. Finally, AF-associated SNPs at the GJA1,

TBX5, and CUX2 loci were also significantly associated with ischemic stroke.

The most significantly associated novel AF locus that we identified is intronic to the gene

NEURL, which encodes an E3 ubiquitin ligase. NEURL has been reported to be a tumor-
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suppressor gene in malignant astrocytic tumors, and rat and mouse homologs of the gene are

highly expressed in muscle tissue.10 The most consistent cellular abnormalities noted in AF

are a calcium overload state and shortening of the atrial action potential duration.11 Using

embryonic zebrafish, we found that knockdown of the NEURL ortholog specifically altered

atrial action potential duration without affecting cardiac contractile function or heart rate.

While it is unclear whether the AF-associated SNPs at the locus are associated with an

increase or decrease in NEURL expression, our results provide compelling support for the

role of NEURL in atrial repolarization and in turn, AF. 12

In 2007, a genetic locus was described for AF on chromosome 4q25, upstream from the

gene encoding the transcription factor PITX2;22 in the ensuing years, the association

between AF and variants at this locus has been widely replicated. Although the role of

PITX2 in AF has not yet been fully understood, it is critical for the left-right symmetry of

the heart during embryogenesis and the formation of myocardial sleeves in the pulmonary

veins.13 Further, loss of one isoform, PITX2c, has been associated with an increased

susceptibility to AF in murine models. Given the in vitro interaction between NEURL and

PITX2 that we observed, it is interesting to speculate that NEURL may mediate a

susceptibility to AF by ubiquitin–mediated alteration of PITX2 activity.

The second novel locus we identified resides at TBX5, a transcription factor that is critically

involved in the development of the cardiac conduction system.14 We also found that SNPs at

this locus modulate the expression of TBX5 in human atrial tissue. Mutations in TBX5

underlie Holt-Oram syndrome, features of which include atrial and ventricular septum

secundum defects and conduction abnormalities including atrioventricular node block. In an

atypical form of Holt-Oram syndrome with a high prevalence of AF, a TBX5 gain-of-

function mutation was identified, findings that are consistent with our eQTL results.15 Two

recent GWAS associated the electrocardiographic PR interval with variants intronic to or in

proximity with TBX5.16, 17 In the study by Holm et al., the top SNP (rs3825214, r2=0.76

with rs10507248) also showed association with AF (p=4.0×10−5), but failed to reach

genome-wide significance.16 In the study by Pfeufer et al., rs1896312 is independent of

rs10507248 (r2=0) and showed no association with AF (p=0.72).17 Interestingly, we also

found expression levels of NKX2.5 vary by SNP genotypes in our dataset. Together, TBX5

and NKX2.5 are known to play critical roles in both the differentiation of cardiomyocytes

and the specialization of conduction and nodal tissue.14

At the third novel locus, CAND2 encodes a TATA-binding protein, TIP120b, which is

muscle-specific and critical for myogenesis.18 We found that the AF associated SNP at this

locus is associated with reduced CAND2/TIP120b expression in striated muscle tissue.

While the specific role of CAND2/TIP120b in AF is currently unclear, we observed atrial

action potential prolongation by morpholino-mediated gene knockdown in the zebrafish.

Additionally, our eQTL analyses indicate that the risk allele is associated with increased

expression of CAND2. Extrapolating our findings in the zebrafish, increased CAND2 levels

would be predicted to shorten the atrial action potential duration, as has been widely

observed in AF.
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GJA1, a strong candidate gene at our fourth AF locus, encodes the gap junction protein

connexin 43 on chromosome 6q22.31 which is abundantly expressed in the heart.19 We

found that AF-associated SNPs influenced the transcription of GJA1 in both left atrial tissue

and the whole heart. Connexin 43 is the predominant cardiac gap junction protein and

facilitates coordinated electrical activity between adjacent myocytes. Germline mutations in

GJA1 have been associated with syndromic diseases such as hypoplastic left heart

syndrome, atrioventricular canal defects, or oculo-dento-digital dysplasia. Interestingly, a

somatic, loss-of-function mutation in connexin 43 has been found to underlie AF in

humans.20 Further, mice with 60% reduced atrial Gja1 expression showed an increased

susceptibility to induced AF and atrial tachycardia.21 Two independent swine models with

an AF induced reduction of GJA1 expression demonstrated that restoration of GJA1

expression ameliorated AF burden.22 More recently, SNPs in proximity of GJA1 have been

reported to be associated with resting heart rate;23 however, the AF variants appear to be

unrelated to both (r2=0.02 for each).

At the fifth locus, CUX2, cut-like homeobox 2, is a transcription factor implicated in cell-

cycle progression relevant for spinal cord development,24 and has been investigated for its

contribution to bipolar disorder. More recently, the Wellcome Trust Case Control

Consortium identified variants at CUX2 as a significant susceptibility marker for type 1

diabetes.25 Yet, the reported SNP rs1265564 only displays weak linkage disequilibrium

(r2=0.17) with the AF SNP rs6490029. In another GWAS of Koreans and Japanese for

coronary artery disease, CUX2 was suggested as a susceptibility locus, but failed to

replicate.26 The CUX2 association was Japanese specific as we did not find evidence for an

association in the region among Europeans (Supplemental Figure 1). The specificity of the

CUX2 association in Japanese was in contrast to other four loci that were all associated with

AF to varying degrees (Table 1 and Supplemental Table 7). The variability in the association

between individuals of European and Japanese ancestry may be due to differences in allele

frequency, sample size or another intrinsic difference between the populations.

Clinically, AF confers a five-fold increased risk of stroke. We found that the AF SNPs at the

CUX2, GJA1, and TBX5 loci were associated with ischemic stroke in the METASTROKE

collaboration. Interestingly, we found that the AF risk allele at the CUX2 locus was

associated with a decreased risk of ischemic stroke, whereas the AF risk alleles at the two

other loci conferred an increased risk of cardioembolic stroke. Given that two of the

strongest associations for stroke are at the PITX2 and ZFHX3 loci for AF,27, 28 it is possible

that the associations we observed at the GJA1 and TBX5 loci are due to occult AF among the

stroke cases. At present, it remains unclear why variants at CUX2 would be associated with

a decreased risk of ischemic stroke.

Strengths of our work include the investigation of two large samples of AF cases in

Europeans and Japanese, eQTL analyses in atrial tissue, functional studies supporting the

role for NEURL and CAND2 in AF pathophysiology, and the association of three of the

novel AF loci with stroke. However, our study was also subject to a number of limitations.

We studied individuals of European and Japanese ancestry, thus extrapolation of our

findings to other races and ethnicities may be limited. Although AF often occurs in

association with other risk factors, we included all individuals with AF both to increase the
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generalizability and the statistical power of the current analyses. We acknowledge that the

NEURL:PITX2 interaction that we observed was in vitro and further in vivo studies will be

necessary. As with other GWAS, the AF associated SNPs are unlikely to be the causal

variants; rather they are likely to be a marker of disease risk. Although we believe that our

eQTL, co-immunoprecipitation, and zebrafish studies were important initial analyses,

ultimately, further fine mapping, sequencing, and functional studies will be required to

identify the specific role of these genes in the pathogenesis of AF.

In summary, using a combination of genetic association, eQTL analyses and functional

mapping of novel genes, we have identified 5 susceptibility loci for AF. Functional analyses

of NEURL and CAND2 via zebrafish knockdown resulted in alterations in atrial

electrophysiology, and protein interaction analysis demonstrated an in vitro interaction

between NEURL and PITX2. Finally, our findings indicate that the novel AF signals at

GJA1, TBX5, and CUX2 were significantly associated with ischemic stroke or its subtypes.

In aggregate, our studies further expand our understanding of the molecular pathways and

clinical implications of this common and morbid arrhythmia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Flow-chart illustrating the study design and major results. Novel chromosomal loci

associated with AF were identified independently in cohorts of European and Japanese

descent by means of GWAS and subsequent replication. Signals in or around NEURL,

TBX5, CAND2, GJA1, and CUX2 were detected. Additional studies revealed increased atrial

action potential durations after knockdown of NEURL and CAND2, an interaction between

NEURL and PITX2, an association of GJA1, TBX5, and CUX2 with stroke, and eQTL
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associations with CAND2, GJA1, TBX5, CEP68, LINC00467, NKX2.5, TMEM116, and

WIPF1 in left atrial and other tissues. APD – action potential duration.
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Figure 2.
Regional plots for novel atrial fibrillation susceptibility loci in Europeans and Japanese.

Panels A-D (A: NEURL B: TBX5 C: GJA1 D: CAND2) show 4 novel loci detected in

Europeans, panels E (NEURL) and F (CUX2) show 2 novel loci detected in Japanese. At

each novel locus (p≤5×10−8), SNPs are plotted using the genomic position (NCBI Build 36)

and discovery stage P values. In each panel, the sentinel SNP is labeled in purple. Each dot

represents a SNP. The strength of the linkage disequilibrium of SNPs with the sentinel-SNP

is indicated by a color gradient according to the legend in each panel, where red indicates
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strong, and blue indicates weak linkage disequilibrium. Estimated recombination rates are

shown by the blue line, and spikes indicate locations of frequent recombination. Below each

panel, the chromosomal positions of the SNPs and regional candidate genes are annotated.

Linkage disequilibrium and recombination rates in panels A-F are based on the CEU

HapMap release 22 (European) and JPT + CHB HapMap release 22 (Japanese),

respectively. All regional association plots prepared using LocusZoom.
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Figure 3.
Analysis of neurla, cand1, cand2, and cux2b knockdown in zebrafish. A: Brightfield

micrographs of anesthetized 72hpf embryos injected with morpholinos. Scale bar = 500µm.

B: Measurement of ventricular fractional shortening. C: Analysis of resting heart rate. D:

Atrial action potential durations as assayed by optical mapping in zebrafish hearts.

*Represents p<0.05 when compared to control. E: Representative traces of atrial action

potentials from optical mapping. All numbers within bars indicate which morpholino was

used for the presented data. Where no labels are shown, data represent pooled data obtained
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from all effective morpholinos. CN – control. n=number of biological replicates for a given

experiment.
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