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Abstract

Genetic epidemiology is increasingly focused on complex diseases involving multiple genes and

environmental factors, often interacting in complex ways. Although standard frequentist methods

still have a role in hypothesis generation and testing for discovery of novel main effects and

interactions, Bayesian methods are particularly well suited to modeling the relationships in an

integrated “systems biology” manner. In this chapter, we provide an overview of the principles of

Bayesian analysis and their advantages in this context and describe various approaches to applying

them for both model building and discovery in a genome-wide setting. In particular, we highlight

the ability of Bayesian methods to construct complex probability models via a hierarchical

structure and to account for uncertainty in model specification by averaging over large spaces of

alternative models.

I. INTRODUCTION

Bayesian approaches have gained a tremendous amount of popularity in a diverse set of

applications including but not limited to: economics, environmental science, bioinformatics,

epidemiology, genetics, computer science, political science, and public policy. Within these

fields, the Bayesian framework can be applied to a wide range of statistical model classes

such as linear regression, generalized linear models, survival analysis, tree models, graphical

models, and spatial analyses. The growth in popularity of Bayesian approaches is due in

most part to the intuitive nature of inference within the framework, the extreme flexibility of

the models, and the computational developments helping to facilitate practical analyses.

While this chapter focuses more specifically on the use of Bayesian approaches for complex

genetics applications, we begin with a general introduction to the fundamentals of any

Bayesian analysis.

A. Fundamentals of a Bayesian approach

The fundamentals of a Bayesian approach lie in Bayes Rule, which is the tool that allows us

to revise our current set of beliefs about unknown parameters given a set of observed data Y

via conditional probabilities:
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where the integral in the denominator can be replaced by a summation if the probability

distribution of θ is discrete. Thus, any Bayesian approach has two major components: (1)

defining the joint probability model p(θ, Y) and (2) computing conditional probabilities p(θ ∣

Y). In defining the joint probability model, we must specify the likelihood of the observed

data given the parameters of interest, p(Y ∣ θ). This specification is common to both a

frequentist approach and a Bayesian approach. However, instead of assuming that the

parameters of the model are fixed and their true value is unknown, the Bayesian framework

assumes that the parameters themselves are random variables. Thus, to define the joint

probability model, we must also specify the prior distribution of the parameters, p(θ), in

addition to the likelihood of the observed data.

The above framework assumes that we are interested in making inference on all of the

parameters in the probability model. However, in many applications this is not the case. If

there is some subset of parameters, θI, that we are interested in and the remaining, θN, are

nuisance parameters we can rewrite the conditional probability for the parameters of interest

as:

where p(Y ∣ θI) is the marginal likelihood of the data given the parameters of interest for

making inference and can be calculated by integrating out the nuisance parameters (or

summation for discrete measures):

Thus, computing conditional probabilities in the Bayesian framework often requires

computing high-dimensional integrals (or summations) for both the marginal likelihoods for

the parameters of interest, p(Y ∣ θI), and the normalizing constant, p(Y).

Finally, in many analyses, there may exist several alternative specifications for the joint

model. In a Bayesian analysis, we can incorporate the uncertainty of the specification of the

joint model by indexing a specific model by an indicator vector γ. Since we are now

considering multiple models, Mγ ∈ M, we can rewrite the joint probability statement as:

where θγ are the parameters specific to model Mγ. We can therefore make inference on the

models themselves by calculating the conditional probabilities:
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where p(Y ∣ Mγ) = ∫p(Y ∣ θγ,Mγ)p(θγ)dθγ is the marginal likelihood of the observed data

given any of the models of interest.

B. Bayesian advantages

Bayesian approaches come with many advantages. First and foremost, by specifying a

probability distribution on the parameters we directly quantify the uncertainty in those

parameters given the observed data and achieve statistical conclusions with common sense

interpretations. These probability statements allow for a conceptually straightforward

approach to inference, in that our prior beliefs specified in p(θ) are updated based on the

observed data, Y, via conditional probabilities p(θ ∣ Y). This is quite different from a

frequentist approach. A simple example is the Bayesian credible interval versus the

frequentist confidence interval. A frequentist 95% confidence interval must be interpreted

based on hypothetical repeated sampling in which S repeated samples are taken from the

population and, subsequently, S × 0.95 of the estimated parameters would fall within the

confidence interval. In contrast, the Bayesian 95% credible interval is interpreted potentially

more intuitively as a 95% probability that the true value of the parameter lies within the

calculated credible interval.

Another advantage of the Bayesian framework is that it provides a very natural setting for

incorporating complex structures, multiple parameters, and procedures for dealing with

nuisance parameters (parameters that we do not wish to make inference about). The only

restriction within a Bayesian approach is that one must be able to specify a joint probability

model for the observed data and parameters of interest. We can therefore include as many

parameters to our models as needed and simply marginalize across (i.e., integrate out or sum

over) the ones that we are not interested in making inference on. We are also able to

incorporate external information in the analysis in an explicit manner by specifying prior

probability distributions for the parameters of interest. This is particularly useful in the

biological setting where there is often a great deal of external information and incorporating

this information can potentially help the practitioner narrow the focus of an otherwise overly

complex model. Finally, the Bayesian framework provides a natural setting for incorporating

model uncertainty into any analysis by extending the hierarchy and viewing the model itself

as a random variable with its own prior distribution.

C. Limitations

Many of the main advantages of a Bayesian approach lie in the specification of prior

distributions on the model parameters and in some cases on the models themselves.

However, this can also be one of the main limitations of the Bayesian framework. The prior

distributions can be specified in either a subjective or objective manner depending about the

amount of prior knowledge or external information one has for the parameters or the

acceptable degree to which the posterior results are sensitive to the prior specification.

However, even if there is a large amount of prior information regarding the parameters of

interest or the models themselves, it is not always straightforward to quantify a practitioner’s

prior knowledge and elicit prior distributions. Also, if a limited amount of external

knowledge exists about the parameters, the question remains about how to specify the priors

in an objective (“non-informative”) manner (Thomas et al., 2007a). Advances have been
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made in both the elicitation of prior distributions and in developing and investigating the

asymptotic characteristics of objective priors on both the parameters of interest and the

models themselves (discussed in more detail in Sections III and IV).

Another limitation to the Bayesian framework is the complexity of computing conditional

probabilities. This complexity lies in the difficulty in performing potentially high-

dimensional integrals (or summations) in both the normalizing constant p(Y) and in the

marginal likelihood of the data p(Y ∣ θI) or p(Y ∣ Mγ). Because of the computational

constraints on Bayesian approaches, practitioners were historically limited to choosing only

conjugate likelihoods and priors for which conditional probabilities could be calculated in

closed form. However, with recent advances in estimating high-dimensional integrals with

stable numerical approximations or by simulation via Markov Chain Monte Carlo (MCMC),

Metropolis–Hastings (MH), and stochastic model search algorithms, one is much less

limited when choosing a joint probability model. These technical advances, as well as

software to more easily implement Bayesian models (such as WinBUGS (Speigelhalter et

al., 2003) and JAGS (http://sourceforge.net/projects/mcmc-jags)), have lead to an increased

popularity of Bayesian approaches (discussed in more detail in Sections III and IV).

D. General model specification

The remainder of the chapter utilizes a generalized linear model framework in which most

any type of outcome variable may be analyzed with an appropriate link function. However,

for simplicity, we will focus on a binary outcome variable. Let Y be a vector of length n

comprised of some binary outcome variable for individual i with expected value

with mean vector μ = (μ1, ⋯, μn)T. Also, for each individual, we assume that p covariates

are measured, x1, ⋯, xP. We then use generalized regression models to relate the binary

outcome variable to a subset of predictor variables. We denote the collection of all possible

models by M. An individual model, denoted by Mγ, is specified by an indicator vector γ.

Then under each model Mγ, μ is of the general form:

where g is the link function (usually logit whenever Y is binary), f(Xγ) is some general

structure or parameterization of a set of covariates, and βγ are the effects of f(Xγ) on the

outcome of interest Y (are parameters of interest θγ). A very general structure for the models

can be seen as a directed graph in Fig. 3.1. Specifically in this example, the γ indicator

allows both the covariates x1 and x3 to inform the model and design matrix Xγ, whereas all

other covariates (e.g., x2 and xp) are excluded. Then f(Xγ) defines the structure or

parameterization of these variables in the regression. Finally, the link function, g− 1 (·), as

well as the regression coefficients, βγ, relate the structure built in f(Xγ) to disease.

For a simple illustration of the general model structure, we consider a simple logistic

regression analysis where the link function is defined as:
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Each model is defined by the indicator γ denoting which of the p possible covariates will be

included in the marginal model. In particular, we can have γ be an indicator vector with γj =

1 if covariate j is the one included in the marginal model and γj = 0 for every i ≠ j. Then the

model space M is made up of p single variable models Mγ. Under each model Mγ ∈M the

mean vector has the form:

where Xγ is of dimension n × 1 and βγ is the logarithm of the odds ratio for the single

covariate in model Mγ. In the simple marginal case, it is plausible to perform an enumeration

of the entire model space M, so typically no stochastic model search algorithm is needed.

Given the general structure that we have developed above, the models that we describe

herein can be much more complex than this simple marginal example. In Section II, we

review strategies for defining the structure or parameterization of the covariates that is

specified in f(Xγ). These strategies can range from the simple marginal analyses to the more

complex networks and mechanistic models. In Section III, we tackle the problem of (1) what

priors should be placed on the parameters of interest, βγ, and (2) how to compute the

conditional probabilities and estimate βγ. In Section IV, we incorporate an additional layer

into the hierarchy by investigating multiple models Mγ ∈ M. Section IV mainly focuses on

(1) defining prior distributions on the model space p(Mγ), (2) how to approximate high-

dimensional integrals for marginal likelihoods for the models of interest, p(Y ∣ Mγ), and (3)

approximating high-dimensional sums for normalizing constants. Finally, in Section V, we

describe methods for determining noteworthiness of the structures defined in Section II and

marginally of the covariates themselves.

II. STRUCTURE OF COVARIATES

We begin with the simplest case of a single polymorphism in a single gene, with no genetic

or environmental modifiers. In this case, X is comprised of genotypes at a single

polymorphism for n individuals and the only consideration in specifying the covariate

function f(X) concerns issues of dominance. If the locus is diallelic, with alleles denoted a

and A, then we might wish to consider any of the following codings for the genotype Xi:

(Note that the codominant model entails an additional parameter θ that would be estimated

along with the other regression coefficients in β. This is most easily accomplished by fitting

Wilson et al. Page 5

Adv Genet. Author manuscript; available in PMC 2014 October 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



a 2-degree of freedom model with two dummy variables for each genotype). In some

instances, the choice of coding might be determined by prior biological knowledge, but in

the absence of relevant knowledge one would consider each of these possibilities within the

general model selection or model uncertainty framework developed in greater detail in

Section III.

Most genes have numerous polymorphisms and any candidate pathway study might consider

a broad range of genes, so multivariate models are called for. An obvious choice for a binary

disease trait might be a logistic regression model

Here, we could incorporate different genetic codings for each variable and therefore we

allow the function fj(Xj) to differ across the covariates. It might also be helpful to consider a

hierarchical structure for multiple polymorphisms within genes within pathways. Letting j =

1,…, J index the pathways, and k = 1,…, Kj index the genes within pathway j, and l = 1,…,

Ljk polymorphisms within genes, one might extend the logistic model as

with higher level models for the βs constructed in a manner to ensure identifiability. Again,

working within the general modeling framework discussed below, one might wish to

consider different strategies for selection, shrinkage, or averaging at the polymorphism,

gene, or pathway levels.

Gene–environment (G × E) and gene–gene (G × G) interactions introduce a further level of

complexity, but the same general framework can be applied. Consider, for example, a model

for the joint effect of two polymorphisms X1 and X2. The logistic model could then be

written as

where f1(X1) and f2(X2) denote any of the genetic codings discussed above and f12(X12)

could be a simple product X1X2 or a term constructed to capture phase information for two

polymorphisms in linkage disequilibrium (Conti and Gauderman, 2004), or it could be some

more complex epistasis model, such as 1 for X12=(aaBB, aAbB, AAbb), 0 otherwise. See Li

and Reich (2000), Moore (2003), Moore et al. (2007), Zhang and Liu (2007), Cordell

(2009), Moore and Williams (2009), and Tang et al. (2009) for further discussion of various

possibilities for modeling epistasis. Similar codings for G × E interactions are possible

(Thomas, 2010a,b). For multiple polymorphisms within the same gene, one might use a

haplotype-based model, logit(p(Y= 1 ∣ X)) = β0 + β1h1 (X) + β2h2(X), where h1 and h2

represent the two haplotypes carried by an individual comprising the set of alleles at the

different loci carried on the same chromosome. In the absence of phase information, this

would require forming a likelihood by summing over all possible arrangements of the alleles
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into haplotypes, weighted by their probabilities based on population linkage disequilibrium

patterns (Stram et al., 2003).

If specific prior knowledge of the relevant biological process is known, mechanistic

approaches may be used to construct more complex models. These models will generally be

quite specific to a particular pathway and their mathematical form will depend upon the

nature of the pathway. Metabolic pathways, for example, might be modeled in terms of a

series of latent variables L(X; m) representing concentrations of intermediate metabolite m.

These concentrations could be given by a system of differential equations based on the

known pharmacokinetics with rates that depend in some manner on the genotypes encoding

the relevant enzymes and their environmental substrates or cofactors (Thomas et al., 2010).

The solution to this system then provides a mathematical expression for the covariate

function f(X, θ) where X now represents all the genetic and environmental inputs to the

system and θ a vector of additional parameters to be estimated for a particular model. For

example, Cortessis and Thomas (2003) described a metabolic model for the metabolism of

polycyclic aromatic hydrocarbons and heterocyclic amines derived from tobacco smoke and

well done red meat as risk factors for colorectal polyps. Each pathway involves several

intermediate steps, metabolized by several genes. Using linear kinetics, the metabolic rate

parameters were assumed to be lognormally distributed around population means specific to

the relevant genotypes. The expected concentration of the final metabolites from each

pathway was computed specific to each person’s exposure and genotype, and used as

covariates in a logistic model for disease. The model was fitted using MCMC methods,

sampling individual metabolic rates and model parameters (regression coefficients,

genotype-specific mean rates, and variances) in turn. Further elaboration of this model and

comparisons with a BMA analysis using hierarchical models are provided in Conti et al.

(2003). As before, one might wish to consider a range of alternative models, such as

submodels of a general model including only some subset of the inputs or different codings

of dominance or even different mathematical models (e.g., linear vs. Michaelis–Menten

kinetics). These approaches have been most extensively developed in the context of

population pharmacokinetic models (Best et al., 1995; Bois, 2001; Clewell et al., 2002;

Davidian and Gallant, 1992; Gelman et al., 1996; Lunn et al., 2009; Racine-Poon and

Wakefield, 1998; Wakefield, 1996), although so far, there has been relatively little attention

to genetic variation in metabolic parameters.

III. ESTIMATION

So far, in this chapter, we have focused on how to link and combined the observed data into

a probability model. However, the ability to measure numerous factors present many

difficulties for analysis (Greenland, 1993). Conventional approaches have relied on either

fitting a full model with all the factors included in the probability model or fitting a reduced

model determined by some eliminating algorithm. Including all the factors in one model can

lead to biased and unreliable estimates due to sparse data when the number of parameters

approaches the number of individuals in the sample (Greenland, 2000a,b). Reduced models

may avoid this complication, but they fail to account for the correlations that exist between

all the factors and can lead to underestimated variance (Robins and Greenland, 1986).

Additionally, when statistical tests are used for the numerous exposures, issues of multiple
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comparisons arise (Thomas et al., 1985). However the model γ is determined, there will be

corresponding parameters βγ that describe the effect on the outcome of interest. For this part

of the chapter, we focus on how prior specification on these parameters via hierarchical

models can be used to construct complex models for analysis. For example, in a genome-

wide association study (GWAS), one might have little or no external information about most

SNPs, so such analyses are commonly treated as exploratory; indeed, their “agnostic” or

“hypothesis free” nature is commonly touted as one of their advantages. Here, treating each

polymorphism as independent may be appropriate. A pathway-driven study, on the other

hand, may be able to exploit extensive knowledge about the pharmacokinetics or

pharmacodynamics of the pathway. Recently, there has been an intriguing convergence of

the two philosophies, with external pathway information being exploited to mine GWAS

data for gene sets whose components may not separately attain genome-wide levels of

significance but combination implicates particular pathways (Wang et al., 2007; Zhong et

al., 2010), or by exploring GWAS data to discover hitherto unsuspected sets of genes that

may share a common biological function (Sebastiani et al., 2005).

Rather than treating each factor independently, specification of the relations among the

observed data with two or more stages can be used to create an intricate joint probability

model. While each stage may be relatively simple and easy to understand, the entire model

may be much more sophisticated, with the aim to more accurately model the underlying

complex processes. Additionally, by providing a joint probability model for all exposures,

hierarchical modeling offers a potential solution to problems of multiple comparisons

(Greenland and Robins, 1991; Thomas et al., 1985). As one of the first examples in genetic

epidemiology, Thomas et al. (1992) used hierarchical modeling to jointly evaluate numerous

human leukocyte antigen (HLA) alleles and their association to insulin-dependent diabetes

mellitus (IDDM), while incorporating several environmental risk factors.

The addition of higher stage information can substantially improve the accuracy and

stability of effect estimates (Greenland, 2000a,b; Greenland and Poole, 1994; Morris, 1983).

However, to achieve this improvement, the model hierarchy must be specified in a manner

that efficiently uses the data and is scientifically plausible (Rothman and Greenland, 1998).

While a conventional model fits a single probability level to describe the relation between

the multiple factors and the outcome, hierarchical models incorporate higher level prior

distributions to explain the relations among the parameters. Although multiple levels of prior

structure can be constructed, in practice there is a limit to the number of levels that can be

feasibly estimated from the data without relying too much on a strongly specified prior.

Consider the general scenario with multiple factors, X, and outcome, Y. The first-probability

model at the individual-level can be specified as:

As before, Y and X are observed data and β are the corresponding coefficients of risk

associated with a one-unit increase for each factor. Subsequently, probability models are
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placed on the parameters, β, assuming that they come from a common probability

distribution.

Such a hierarchy can apply dependencies to the estimates of the parameters β through the

structure of p(β ∣ θ). These dependencies are often modeled conditionally on certain

parameters, θ, called hyperparameters and these hyperparameters can also be assigned

probability distributions, p(θ). An important assumption here is that the parameters are

exchangeable. That is, the parameters (β1, …, βm) are exchangeable in their joint distribution

if p(β1, …, βm) is invariant to permutations of the indexes (1, …, m) (Gelman, 1995).

Consequently, given no other information, other than the data itself, there is no prior

ordering or grouping of the parameters (β1, …, βm). If this assumption holds, we may

assume that the corresponding coefficients for the exposures, β, are drawn from the same

common population distribution.

The general hierarchical modeling framework presented in the above equations provides a

quite flexible framework to model complex systems. For example, p(β ∣ θ) specified as a

normal distribution centered at zero is akin to ridge regression, a frequentist robust

regression technique (Sorenson and Gianola, 2002). Similarly, a double exponential for p(β ∣

θ) is equivalent to the Lasso procedure (Park and Casella, 2008; Chen et al., 2010). To

demonstrate the flexibility and nuances of specifying such a hierarchy, consider a specific

analysis of case-control data with numerous genetic and environmental factors. A specific

hierarchical model can be specified as:

where X is a design matrix of genetic and environmental factors for the individuals within

the study, Z contains second-stage covariates for each of the environmental and genetic

factors reflecting higher level, often prespecified relations, π is a column vector of

coefficients corresponding to these higher level effects on disease, and Σ is a matrix

specifying the residual covariance of the second-stage covariates. There are many possible

types of information that could be used for defining Z. In genetics, this could define simple

indicator variables for which pathway(s) each gene is thought to be active (Hung et al.,

2004), information extracted systematically from genomic or pathway ontologies (Conti et

al., 2009; Thomas et al., 2007b), experimental information such as eQTLs from cell cultures

(Zhong et al., 2010), in silico predictions based on evolutionary conservation or predicted

effect on protein conformation (Rebbeck et al., 2004), or predictions from simulations of the

pathway (Thomas et al., 2010). Of course, multiple sources could, in principle, be combined

and additional levels can easily be incorporated, such as separate models for SNPs within

genes and genes within pathways (Conti and Gauderman, 2004) or for main effects and

interactions (Conti et al., 2003).
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Overall this hierarchy will result in posterior estimates for the association parameters that

are an inverse-variance weighted average between the conventional estimates from the

logistic regression only and the estimated conditional second-stage means, Zπ. To see this

more clearly, consider a simple weighted regression approach for estimation. Here, the

second-stage estimated prior means, Zπ̃, and corresponding estimated covariance matrix, (ZT

WZ) − 1, can be obtained from a weighted least squares regression, π̃ = (ZTWZ) −1ZWβ̂,

where W= (V+Σ) − 1, and V is a diagonal matrix with elements equal to the square of the

estimated standard errors for β̂ (Morris, 1983). Averaging the firstand second-stage

estimates yields posterior estimates

The estimate of the covariance matrix is given by C̃ = V̂(I− (I − H)T B), where H =

Z(ZTWZ) − 1ZTW and B is the estimated shrinkage matrix

From these equations, we can see that if the maximum likelihood first-stage estimates, β̂,

have large variance, V̂, relative to the prior variance, Σ, then B will also be large. As a result,

the hierarchical analysis has several important differences from the conventional, single-

stage logistic regression analysis. First, the conventional analysis has no constraints on the

first-stage regression coefficients, β. For example, if we model the effects of smoking on

lung cancer, we would expect the effect estimate, β̂, to be quite high. But even in this

extreme case, we would not expect outrageously high odds ratios. It makes sense to

incorporate this expectation into our analysis by including a probability distribution for the

effect estimates that weights more probable estimates higher. This may be done by setting

the elements in the Z matrix to zero and allowing Σ to reflect our prior beliefs about the

extent of the probability distribution of the first-stage coefficients, β. However, if we have

information regarding the relations between the factors, we may incorporate that information

into the Z design matrix and account for the effects due to these dependencies. In this case,

Σ reflects residual covariance or associations between the first-stage parameters, β, after

accounting for the relations defined in Z. If we allow the elements of Σ to go to infinity—

that is, we have no prior belief regarding the distribution of the residual effects—the final

estimates of effect will disregard any second-stage information and be equal to the first-

stage conventional maximum likelihood estimates. If we set the elements of Σ to zero,

believing that there are no residual effects beyond the relationships defined in Z, then the

final estimates will be equal to the estimated second-stage conditional means, Zπ. Thus, Σ

acts as a smoothing parameter, controlling the amount of shrinkage from the conventional

first-stage maximum likelihood estimates toward the second-stage conditional means.

Within this context, the specification of Σ is very flexible. Joint modeling is often

represented by setting Σ = τ2D, where τ2 > 0 represents the overall variance of the effect

estimates and D is a positive definite correlation matrix describing the correlation between

the effect estimates for any two pairs of polymorphisms. Conti and Witte (2003) utilized this

specification to set D to the expected decay of linkage equilibrium. Closely related to this is
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a Gaussian conditional autoregression specification where D = (I − ρA) − 1 (Wakefield et al.,

2000). Here, the elements within A describe the spatial weights between any two

polymorphisms and ρ is interpreted as the strength of the spatial dependence. Thomas et al.

(2010) recently investigated the use of this model in the genetics context using prior gene–

gene connection information such as from gene coexpression experiments to define A. The

normal g-prior defines the covariance matrix as the inverse of the Fisher information matrix

multiplied by a constant g, Σ = g(XTX) − 1 (Zellner, 1986). This ensures that the correlation

structure in the prior distribution matches the structure in the likelihood with either g being

determined via information criterion (such as AIC) or estimated with a prior specified for g.

The general hierarchical model specified above often leads to analytically intractable

computations of posterior distributions p(β ∣ Y) when estimating β. Approximate methods

can be used for parameter estimation and can include a semi-Bayes, empirical Bayes, or

fully Bayesian approaches. In a semi-Bayes approach, the value for τ2 is prespecified as

opposed to estimating the value from the data. This may be advantageous if the estimate of

τ2 is itself highly unstable (Greenland, 1993, 1997; Greenland and Poole, 1994). However,

because the most appropriate value for τ2 is unknown it is standard to perform a sensitivity

analysis to evaluate how dependent the posterior estimates are to the choice of τ2. In

contrast, an empirical Bayes approach uses the marginal distribution of τ2 to obtain a point

estimate that is then used to evaluate the joint posterior distribution for the log odds ratios, β

(Efron and Morris, 1975; Greenland and Poole, 1994; Morris, 1983; Searle et al., 1992).

Semi-Bayes and empirical Bayes methods, such as two-stage weighted least squares, joint

iterative weighted least squares and penalized quasi-likelihood (Breslow and Clayton, 1993;

Greenland, 1997), suffer from the inability to reflect our uncertainty for τ2 in the final

posterior estimates for the log of the odds ratio. A fully Bayesian approach using MCMC

methods avoids this and incorporates the uncertainty about τ2 into the analysis by evaluating

the full joint posterior distribution through simulation. However, these methods contain

many potential difficulties and care must be taken when implementing and interpreting the

final results (Gelman, 1995; Gilks et al., 1996).

Within the hierarchical modeling framework, connections to model selection procedures can

be easily made by assuming a mixture model for p(β ∣ θ). George and McCulloch (1993)

introduced a Stochastic Search Variable Selection (SSVS) algorithm by introducing a latent

variable, Wj = 0 or 1, indicating whether term j is included in the model with a mixture prior

for the coefficients:

Here, ψ is a variance inflation factor defining the separation between two normal

distributions centered at zero. Since τ2 functions as a smoothing parameter, a specification

of τ2 = 0 defines a point mass at zero for those terms not included in the model (see “spike

and slab” discussion in Section IV).
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The benefits of a Bayesian approach to parameter specification need not be limited to the

case of numerous factors. Consider a simple scenario in which the aim is to estimate a

statistical or multiplicative interaction between two factors, a genetic factor G and a

dichotomous environmental factor E. In the conventional single-level case-control analysis,

the departure from a multiplicative interaction model can be estimated as βGE
CC from the

following logistic model:

Under the assumption of a rare disease and independence of the two factors in the source

population, a case-only analysis may be used to estimate an equivalent interaction βGE
CO, as

well:

Leveraging these two approaches, Mukherjee and Chatterjee (2008) constructed a

hierarchical prior for the case-control estimate as a function of the case-only estimate,

. The result is a shrinkage estimator similar to that outlined above but

one that is a weighted average between the case-only and case-control estimates:

The weight B is defined as:

The amount of shrinkage is controlled by θGE
2, the maximum likelihood estimate of the log

of the G–E odds in controls relative to the estimated variance (V̂CC) of the case-control

estimator βGE
CC. Thus, the final estimate β̃GE shares the efficiency of the case-only estimate

when the two factors are estimated to be independent within the controls and the robustness

of the case-control estimate otherwise.

Further demonstrating the close connection between hierarchical mixture models and

Bayesian model averaging, Li and Conti (2009) proposed a similar weighted average.

However, in their Bayesian model averaging approach, the weight is defined as B = p(MCO ∣

Y), the posterior probability of the case-only model relative to the case-control model. This

is calculated as:
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where p(Mγ) is the prespecified or semi-Bayes prior probability for model γ (either the case-

only or case-control models) and p(Y ∣ Mγ) is the integration of the likelihood of model Mγ,

estimated through a Laplace transformation. For a comparable likelihood between the two

models they frame both models in a log-linear framework. Similar to the approach of

Mukherjee and Chatterjee (2008), since the likelihood of the case-control model is a

function of the estimated G–E association in the controls, θGE plays an important role in

determining the weight.

IV. MODEL UNCERTAINTY

Model selection is the process of combining data and prior information to select among a

group of statistical models Mγ ∈M. In building a model, decisions to include or exclude

covariates as well as uncertainty in how to code the covariates in the design matrix Xγ for

any given model Mγ are based both on the prior hypotheses and the data. With many

potential covariates, these decisions become difficult. Some algorithms will select variables

to be included in the model, but only return a single “best” model (e.g., stepwise regression).

These methods fail to account for model uncertainty, that is, a number of models may fit the

data equally well. In a Bayesian framework, model uncertainty can be addressed by basing

inference on the posterior distribution of models.

One simple example of the model uncertainty framework is in variable selection, where each

model is defined by a distinct subset of p covariates and is specified by the indicator vector γ

which is comprised of a set of p 0s or 1s indicating the inclusion or exclusion of each of the

covariates in model Mγ. Then in the logistic regression framework each model is defined as:

where Xγ is the design matrix that is made up of the pγ covariates in model Mγ, and βγ is a pγ
dimensional vector of model-specific regression coefficients. Here, the model space Mγ ∈M

is made up of 2p possible models.

In general, the main quantity of interest that needs to be calculated is the posterior

probability for any model Mγ given by the equation:

where p(Y ∣ Mγ) is the marginal likelihood, p(Mγ) is the prior probability for a particular

model, and the denominator is a constant found by summing over the entire model space.

When p is small, one can exhaustively visit all the possible models. For p covariates, there

are t= 2p − 1 possible terms (including main effect and interaction terms), and 2t possible

models. As p increases the model space M quickly outgrows what is computationally

feasible, and an approximation of the posterior distribution of models by MCMC methods is

required. When carefully designed, these approaches can efficiently search through the

model space.
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Bayesian approaches introduce an additional layer of uncertainty to the model by specifying

priors on the model space itself p(Mγ). By Ockham’s razor, the simplest models that explain

our observations are preferred. This guidance can be formalized as a prior (Jefferys and

Berger, 1991). Many approaches adopt a “spike and slab” prior distribution, where most

regression coefficients are zero (the spike) and a few coefficients have some effect (slab)

(Mitchell and Beauchamp, 1988). Others incorporate some form of lasso (lease absolute

shrinkage and selection operator), which either shrinks coefficients or sets them to zero

(Tibshirani, 1996). Some approaches directly penalize model complexity. Chen and Chen

(2008) introduced a penalty term to the Bayesian information criterion (BIC) based on the

size of the model space with the same number of variables as the current model. Wilson et

al. (2010) introduced a Beta-Binomial prior on model size that holds the prior odds of any

association constant as p increases, thus limiting false discoveries.

Biological knowledge can also be incorporated into a prior on the model space. This

knowledge can be used as a prior on the probability that a coefficient is involved (p(γj = 1))

and the effect given that it is involved. As discussed earlier, SSVS achieves this using a

mixture prior for variable j, such that:

where δ(0) is the spike, and N(μj, τj) is the prior on the mean and variance of βj given that it

is not zero (Conti et al., 2003, 2009). Biological knowledge can also form the basis for

model priors. For example, a hypothesized biological pathway can be used as a reference

“prior topology,” and structures closer to this reference have greater prior probability

(Baurley et al., in press).

MCMC methods are extremely flexible. Here, we describe the general design of the MH

algorithm. A random walk MH algorithm explores models in the neighborhood of the

current model (Robert and Casella, 2004). A random change to the current model Mt−1 is

performed to create the proposed model M′. The changes allowed are often specific to the

model structure. For instance, a change to a logistic regression model could be the addition

or removal of a regression term. A new model is accepted as Mt with probability,

where p(Y ∣ M′) is the marginal likelihood of the model, p(M′) is the model prior, and q( ∣ )

is the proposal density. There are many choices for the model prior and proposal density,

and these influence the performance and behavior of the algorithm. After convergence,

models are sampled from the posterior distribution of models.

For model selection applications where p is large, MCMC algorithms may have difficulties

traversing a multimodal posterior distribution and poor efficiency arising from the scale of

the model space. Recently, new samplers have been introduced that overcome some of these

issues by exploiting multiple chains running in parallel. Evolutionary stochastic search
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(ESS) utilizes a “population” of MCMC chains operating at different temperatures, with

hotter chains moving about the model space quicker than cooler chains. The chains are

updated with local and global moves. Local moves explore models in the neighborhood of

the current model (i.e., random walk) whereas global moves allow a chain to move to a new

area of the model space by swapping states with another chain. This algorithm has been

incorporated into the MISA (Multilevel Inference of SNP Associations) framework that

computes posterior probabilities and Bayes factors (BFs) at the SNP, gene, and global level

(Wilson et al., 2010).

In a different strategy, parallel chains are utilized to tune the MCMC proposal density to

better approximate the posterior density. This improves efficiency because less time is spent

proposing models with little evidence. The methodology (known as PEAK) organizes the

model space into subspaces linked through a graph (Baurley et al., 2009). This graph can be

informative, meaning it is derived from an ontology or domain expert or simply symmetric

(a divide and conquer approach to the model space). The chains running on smaller model

spaces tune the proposal densities for chains operating on larger spaces. The method has

been applied to a childhood asthma case-control dataset and discovered several oxidative

stress genes and gene–gene interactions for further investigation.

We can also allow for model uncertainty when incorporating interactions of covariates in the

structure of the interactions and the covariates being included in the interaction. For

instance, in logic regression, the model is of the form,

where fj(Xj) is a Boolean combination of the risk factors (called a logic tree) and βj is the net

effect of that Boolean combination (Ruczinski et al., 2003). The model allows for L logic

trees, each containing observed variables and logical operators (AND, OR, and NOT) that

can represent different types of interactions. Baurley et al. (2010) extended this framework

to continuous variables where the function fj(Xj) became the net effect of a pathway

structure (called a topology) such that,

where par1 (Xn) and par2(Xn) return the values of the parents of Xn in the topology (either an

observed variable Z or a latent variable X) and θn,1 and θn,2 are parameters that can represent

a range of interaction types.

V. DETERMINING NOTEWORTHINESS

Given the above defined models, we are interested in addressing two questions: (1) globally,

is there an association between any of our covariates of interest and the outcome? and (2) if

there is a global association, which individual covariates or structures of covariates are most

likely driving the association?. Both of the questions can be answered via multilevel

posterior probabilities (or conditional probabilities) and Bayes factors.
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A. Global posterior quantities

We are first interested in addressing the following global hypotheses:

HA: At least one covariate is associated with the outcome of interest.

H0: There is no association between the covariates of interest and the outcome.

The extent to which the data supports each of the hypotheses is calculated via posterior

probabilities p(HA ∣ Y):

and p(H0 ∣ Y) = 1 − p(HA ∣ Y). These quantities are a function of both the marginal likelihood

of the hypotheses (p(Y ∣ HA) and p(Y ∣ H0)) and the prior distributions placed on the

hypotheses (p(HA) and p(H0)). In particular, in the Bayesian variable selection framework

the posterior probability of the alternative hypothesis that at least one covariate is associated

takes on the form:

where we simply sum up the posterior probability for all non-null models (Mγ ≠ M0) . Also,

the posterior probability of the null hypothesis takes on the form:

Decisions based on which hypothesis is more likely can then be made based on the posterior

probabilities. These posteriors have an intuitive interpretation of the probability of the

hypothesis conditional upon seeing the data.

Given that there is posterior evidence of the global hypothesis that at least one of the

covariates of interest is associated with the outcome, we are further interested in answering

the question of which covariate is most likely driving the association. This question can be

answered based on marginal posterior probabilities. In particular, in the Bayesian variable

selection framework, the posterior probability of any covariate Xi being associated can be

calculated as:

which is simply the sum of the posterior probability for every model that includes the

covariate Xi.

One should note that in case of calculating inclusion probabilities for highly correlated

covariates (i.e., SNPs in LD) there is an expected dilution in the corresponding posterior
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probabilities due to the covariates providing competing evidence for an association and

therefore the posterior probability of an association will be diluted or distributed across

several correlated covariates. We therefore extend this notion of marginal covariate

inclusion probabilities to group inclusion probabilities (where we assume less correlation

will exist across the groups) and achieve multilevel posterior probabilities (Wilson et al.,

2010) by considering the posterior probability that at least one covariate within a given

group is associated. One example would be in genetic association studies to group SNPs

according to their corresponding gene and calculate gene inclusion probabilities that are

simply the sum of the posterior probability of all models that include at least one of the

SNPs within the given gene.

In the Bayesian framework, we can also calculate the ratio of the weight of evidence for any

two hypotheses (HA vs. H0) based on BFs:

A BF (Kass and Raftery, 1995) compares the posterior odds of any two hypotheses to the

prior odds and measures the change of evidence provided by data for one hypothesis to the

other. Goodman (1999) and Stephens and Balding (2009) provide a discussion of the

usefulness of BFs in the medical context and Wakefield (2007) and Whittemore (2007)

illustrate their use in controlling false discoveries in genetic epidemiology studies. Jeffreys

(1961) presents a descriptive classification of BFs into “grades of evidence” (reproduced in

Table 3.1) to assist in their interpretation, which is also reproduced in the work of Kass and

Raftery (1995). Thus, decisions about which hypothesis are more likely can be made based

on these grades of evidence.

Jeffreys (1961) was well aware of the issues that arise with testing several simple alternative

hypotheses against a null hypothesis, noting that if one were to test several hypotheses

separately, then by chance one might find one of the BFs to be less than one even if all null

hypotheses were true. He suggested that, in this context, the BFs needed to be “corrected for

selection of hypotheses.” However, it was not clear what Jeffreys meant explicitly by this

correction. Experience with genetic studies shown that detectable SNP associations are

relatively infrequent. For this reason, Stephens and Balding (2009) suggest that marginal

BFs calculated assuming equal prior odds should alternatively be interpreted in light of prior

odds more appropriate to the study at hand (leading to a much greater significance threshold

than Jeffreys suggests). Another approach to the problem of exploring multiple hypotheses

is to embed each of the potential submodels (corresponding to a subset of SNPs) into a

single hierarchical model. Unlike the marginal (one-at-a-time) BFs indicated by Stephens

and Balding (2009) that are independent of the prior odds on the hypotheses, SNP BFs

computed in the Bayesian variable selection framework are based on comparing composite

hypotheses and hence do depend on the prior distribution over models. Thus, it is important

to select priors on the model space that have an implicit multiplicity correction. One

example of this is the Beta-Binomial prior with hyperparameters a= 1 and b= p (the number

of SNPs in the study) suggested by Wilson et al. (2010). By diluting the prior marginal
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inclusion probability, this maintains constant global prior odds of an association even as the

number of SNPs in the analysis increases.

VI. CONCLUSIONS

Bayesian approaches to complex analysis are becoming more and more popular. In this

chapter, we have attempted to demonstrate that a Bayesian perspective provides a flexible

framework for complex genetic analyses by breaking the problem into several components:

(1) specification of a model structure via the covariates or combination of covariates; (2)

estimation and prior specification of the corresponding parameters; and finally, (3)

incorporation of the uncertainty of the specified model structure. The themes presented here

focus on a generalization of Bayesian hierarchical models and their flexibility to allow the

analyst to easily incorporate complex structures, multiple parameters, deal with nuisance

parameters, and have common sense interpretations of the parameters of interest.

Unfortunately, this added flexibility over more commonly used frequentist methods comes

with the added complexity of computing conditional probabilities (high-dimensional

integrals or summations) and eliciting subjection or, when there is a lack of prior

knowledge, developing objective prior distributions. However, in this chapter, we discuss

advances that have been made in both estimating high-dimensional integrals and in the

elicitation of prior distributions.

The most notable advantage of a hierarchical perspective to data analysis is that each stage

becomes relatively easy to construct, understand, and interpret. Upon aggregating these

stages, the overall model can be quite complex. However, even in the face of these

complexities, inference is feasible by leveraging the specified hierarchy. The potential

advantages of hierarchical models are often contingent upon the ability of the model, both

the individual stages and the overall probability model, to provide an accurate representation

of the true data generating mechanism. The potential fear that the prior will overwhelm the

data has potentially lead many to shun Bayesian approaches. While all analytic models make

some level of assumptions, it is important to understand that the specification of priors is not

solely subjective. A prior on parameters simply specifies or structures an exchangeable class

of parameters. It does not prespecify the degree to which those parameters may differ.

Further uncertainty is incorporated by also searching over alternative models. Sensitivity

analysis should be performed to gauge the dependence of final inference upon the prior

structure. However, the goal of such sensitivity analysis should be to better understand the

balance between the data and the prior. It should not be done to ensure that final inference is

reflective of the data only and not the prior. After all, our goal is to leverage the hierarchy

and the external information to gain potential advantages with inference. In complex

systems analysis of biological processes, we believe that a Bayesian perspective via

hierarchical models is appropriate since these processes often follow a conceptual hierarchy,

that is, SNPs within genes, genes within biochemical pathways, pathways within

physiological processes, physiological processes within social networks. Furthermore, recent

advances in technology now make it feasible to generate massive amounts of data aimed at

measuring the elements in this hierarchy (i.e., genomics, proteomics, metabolomics). To

integrate such data will require complex models that are reflective of the overall process, but

simplistic and intuitive at each stage of construction.
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Figure 3.1.
Directed graph summarizing general model structure.
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Table 3.1

Jeffreys Grades of Evidence (Jeffreys, 1961)

Grade BF(HA:H0) Evidence against H0

1 1–3.2 Indeterminate

2 3.2–10 Positive

3 10–31.6 Strong

4 31.6–100 Very strong

5 >100 Decisive
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