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Abstract

Background—Asthma in obese adults is typically more severe and less responsive to

glucocorticoids than asthma in nonobese adults.

Objective—We sought to determine whether the clearance of apoptotic inflammatory cells

(efferocytosis) by airway macrophages was associated with altered inflammation and reduced

glucocorticoid sensitivity in obese asthmatic patients.

Methods—We investigated the relationship of efferocytosis by airway (induced sputum)

macrophages and blood monocytes to markers of monocyte programming, in vitro glucocorticoid

response, and systemic oxidative stress in a cohort of adults with persistent asthma.

Results—Efferocytosis by airway macrophages was assessed in obese (n = 14) and nonobese (n

= 19) asthmatic patients. Efferocytosis by macrophages was 40% lower in obese than nonobese

subjects, with a mean efferocytic index of 1.77 (SD, 1.07) versus 3.00 (SD, 1.25; P < .01). A

similar reduction of efferocytic function was observed in blood monocytes of obese participants.

In these monocytes there was also a relative decrease in expression of markers of alternative (M2)

programming associated with efferocytosis, including peroxisome proliferator-activated receptor δ

and CX3 chemokine receptor 1. Macrophage efferocytic index was significantly correlated with

dexamethasone-induced mitogen-activated protein kinase phosphatase 1 expression (ρ = 0.46, P

< .02) and baseline glucocorticoid receptor α expression (ρ = 0.44, P < .02) in PBMCs. Plasma 4-

hydroxynonenal levels were increased in obese asthmatic patients at 0.33 ng/mL (SD, 0.15 ng/mL)

versus 0.16 ng/mL (SD, 0.08 ng/mL) in nonobese patients (P = .006) and was inversely correlated

with macrophage efferocytic index (ρ = −0.67, P = .02).
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Conclusions—Asthma in obese adults is associated with impaired macrophage/monocyte

efferocytosis. Impairment of this anti-inflammatory process is associated with altered monocyte/

macrophage programming, reduced glucocorticoid responsiveness, and systemic oxidative stress.
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Obesity induces a systemic inflammatory state marked by increased oxidative stress1,2 and

enhanced expression of inflammatory mediators (eg, TNF-α) that have been implicated in

the development of metabolic syndrome and insulin resistance.3,4 Of note, oxidative stress

and several of these same proinflammatory cytokines have been implicated in the initiation,

maintenance, and progression of asthma, as well as important clinical phenotypes, such as

the development of glucocorticoid insensitivity.5–15 Furthermore, much of the inflammation

in obesity is attributed to pathologic recruitment, classical activation (M1 skewing), or both,

of macrophages in adipose tissue, as well as other tissues, including liver and muscle.3,16,17

Similarly, in patients with severe or glucocorticoid-insensitive asthma, M1 skewing of blood

monocytes and alveolar macrophages has been documented.18–20 These links suggest a

possible intersection of obesity and asthma at the level of airway macrophage activation and

function. So-called “alternatively activated” or M2 macrophages help to control and resolve

inflammation, in part through the recognition and removal of dying cells in a unique

phagocytic process called efferocytosis.21,22 M2 programming of macrophages is required

for their expression of efferocytic receptors and bridge molecules.23–26 Notably,

glucocorticoids further enhance macrophage efferocytic capability.27–29 Not only is

efferocytosis important for clearance of dying cells before phlogistic disintegration,30 it

leads macrophages to produce anti-inflammatory mediators, such as IL-10, TGF-β, and

prostaglandin E2, which potently suppress inflammation.31–33 Impaired efferocytosis is

increasingly recognized in patients with chronic airway inflammatory disorders, including

severe asthma, chronic obstructive pulmonary disease, and cystic fibrosis, and is

hypothesized to contribute to persistent inflammation.29,34,35 For instance, airway

macrophages from patients with severe asthma have reduced ability to efferocytose

apoptotic cells, a function that can be increased approximately 3-fold by glucocorticoids.29

In light of the parallels in oxidative stress, proinflammatory cytokines, and macrophage

programming between obesity and glucocorticoid-insensitive or more severe asthma

phenotypes, we hypothesized that airway macrophage dysfunction, specifically impaired

efferocytosis, might play an important role with regard to the effect of obesity on airway

inflammation in patients with asthma. This hypothesis was tested in a cross-sectional study

in obese and nonobese adults with persistent asthma.

METHODS

Study population

Adults with mild-to-moderate persistent asthma36 (n = 33) were enrolled. All participants

were recruited from a single site (National Jewish Health) during participation in the run-in

period of 2 National Heart, Lung, and Blood Institute–sponsored asthma clinical trials.37
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The inclusion and exclusion criteria and design of the common run-in period have been

reported previously and are included in the Methods section in this article’s Online

Repository at www.jacionline.org.37 All participants were being treated with inhaled

corticosteroid (hydrofluoroalkane beclomethasone dipropionate, 80 µg twice daily). Lung

function, airway hyperresponsiveness, and fraction of exhaled nitric oxide were measured by

using standard techniques.38–40 Induced sputum was obtained from all participants, and

cytospin preparations were prepared by using standard techniques.41 A separate healthy

control population (n = 25) was comprised of nonsmoking adult participants with normal

lung function. In these subjects cytologic preparations from bronchoalveolar lavage

specimens42 were also prepared as above.41 Obesity was defined by using standard criteria43

as a body mass index (BMI) of 30 kg/m2 or greater. All participants provided written

informed consent, and all protocols were approved by the National Jewish Health

Institutional Review Board.

Efferocytosis and apoptotic cells in induced sputum

By using validated methodology,34,35 cytospin preparations of lower airway cells were

viewed in triplicate for assessment of in vivo efferocytosis and apoptotic cells by using light

microscopy according to a methodology described previously (see Fig E1, A, in this article’s

Online Repository at www.jacionline.org). Random fields were read in a blinded fashion by

a single reader for apoptotic cells and efferocytosis until a minimum of 500 macrophages

were counted. Previous measures of intraobserver and interobserver variance within the

laboratory demonstrate correlations of 0.92 and 0.91, respectively. The efferocytic index, as

a measure of overall clearance, was calculated by multiplying the percentage of

macrophages that had phagocytosed apoptotic bodies by the average number of apoptotic

bodies per macrophage.44 Apoptotic inflammatory cells were determined by the appearance

of pyknotic nuclear morphology.44

Efferocytosis by blood monocytes in vitro

Blood monocytes were isolated from a representative subset of the asthmatic patients (n = 9

obese and 15 nonobese, see Table E1 in this article’s Online Repository at

www.jacionline.org). Blood was phlebotomized into CPT tubes (Becton Dickinson, Franklin

Lakes, NJ), followed by negative selection with magnetic beads (Miltenyi Biotec, Auburn,

Calif). Monocytes (7 × 104 per well in a 96-well plate) were plated in X-VIVO 15 (10%

pooled human serum; Lonza, Basel, Switzerland) for 2 hours before testing for efferocytosis.

Five-micrometer carboxylated beads (Bangs Laboratories, Fishers, Ind), serving as apoptotic

cell mimics, were added at a ratio of 2 beads per monocyte for 1 hour.31 After vigorous

washing to remove free beads, efferocytosis of the beads was determined by means of visual

inspection (see Fig E1, B). A minimum of 200 monocytes were counted, and the efferocytic

index was calculated as above. Correlations of 0.95 and 0.91 for intraobserver and

interobserver variance, respectively, have been documented for monocyte uptake within the

laboratory.
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Reverse transcribed quantitative PCR

Total RNA was extracted from freshly isolated blood monocytes and reverse transcribed to

cDNA by using standard techniques. PCR was performed (7900H; Applied Biosystems,

Foster City, Calif) with commercially available primers for a panel of candidate M1 and M2

programming markers and efferocytic receptors, including arginase 1, a disintegrin and

metalloproteinase domain–containing protein (ADAM) 8, peroxisome proliferator-activated

receptor (PPAR) δ, PPARγ, macrophage mannose receptor, CX3C chemokine receptor 1,

adiponectin receptor, TGF-β receptor, and GP132 receptor.44–53 Glyceraldehyde-3-

phosphate dehydrogenase or 18s RNA served as endogenous controls.

Assessment of oxidative stress

Assays for 4-hydroxynonenal (4HNE), a product of lipid peroxidation and a marker of

systemic oxidative stress, were performed by using previously reported methods of gas

chromatography/mass spectrometry.54

Assessment of in vitro glucocorticoid responsiveness

PBMCs were isolated and stimulated with 10−7 mol/L dexamethasone for 4 hours. Mitogen-

activated protein kinase phosphatase 1 (MKP-1) expression was determined by using RT-

PCR in cells treated with medium alone and medium plus dexamethasone, as described

previously.55 Expression of glucocorticoid receptor (GCR) α was determined as described

previously.56

Statistical methods

All data were described as means ± SDs. Between-group differences (BMI category) were

evaluated by using the Mann-Whitney U test. Continuous relationships between parameters

were analyzed by using unadjusted linear regression. Nonparametric Spearman ρ correlation

coefficient was used to determine correlations between parameters.

RESULTS

Baseline characteristics of study participants with asthma (n = 33) are presented in Table I.

Obese (n = 14) and nonobese (n = 19) asthmatic patients were well matched for

demographics and markers of asthma severity and inflammation. Significant differences

between the obese and nonobese asthmatic patients were demonstrated for markers

associated with obesity, including leptin and high-sensitivity C-reactive protein. Cytospin

preparations of induced sputum (Table II) indicated that the percentage of airway

macrophages was increased in obese asthmatic patients. Airway macrophage percentages

were positively correlated with BMI (Spearman ρ = 0.47, P = .01). The percentage of

inflammatory cells demonstrating apoptotic features did not differ between nonobese and

obese asthmatic patients and was not correlated with BMI (ρ = −0.2, P = .2). The

percentages of sputum eosinophils and neutrophils did not differ between the 2 groups.

Although the percentage of airway macrophages containing 1 or more engulfed apoptotic

bodies was similar in nonobese and obese asthmatic patients (2.3% [SD, 1.23%] vs 2.0%

[SD, 1.6%]), the number of apoptotic bodies per macrophage was lower in the obese
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asthmatic patients at 1.07 (SD, 0.14) versus 1.29 (SD, 0.34) in nonobese asthmatic patients

(P = .05, Table III). Represented as the efferocytic index, uptake by airway macrophages of

obese asthmatic patients was 40% lower than in nonobese asthmatic patients at 1.77 (SD,

1.07) versus 3.00 (SD, 1.25; P < .01, Table III). In healthy nonasthmatic control participants

an opposite trend was observed, with an increased efferocytic index in obese control

subjects (n = 6; BMI, 34 kg/m2 [SD, 2.6 kg/m2]) versus nonobese control subjects (n = 19;

BMI, 24.5 kg/m2 [SD, 3.0 kg/m2]) at 3.73 (0.95) and 2.42 (0.87), respectively (P = .005).

When expressed as a ratio (ie, the percentage of inflammatory cells that were apoptotic

divided by the percentage of inflammatory cells that were macrophages), values for

nonobese asthmatic patients were higher than for obese asthmatic patients (1.04 [SD, 1.07]

vs 0.44 [SD, 0.6], P = .02). However, the percentage of inflammatory cells characterized as

apoptotic was not correlated with the efferocytic index (ρ = −0.07, P = .7), suggesting that

the proportion of inflammatory cells undergoing apoptosis was not tightly coupled to overall

clearance. When BMI was treated as a continuous variable, the efferocytic index inversely

correlated with BMI (ρ = −0.51, P = .003) in asthmatic patients, suggesting a dose-response

aspect to the categorical differences reported above. As with the categorical analyses above,

nonasthmatic participants showed an opposite relationship between BMI and airway

macrophage efferocytosis, with a positive correlation between BMI and efferocytic index (ρ

= 0.46, P = .02).

We then sought to directly determine whether blood monocytes (inflammatory macrophage

precursors)57 of obese asthmatic patients demonstrated impaired efferocytic capability in

vitro. In a subset of asthmatic participants, 9 obese and 15 nonobese and similar in

characteristics to the main cohort (group characteristics reported in Table E1), blood

monocytes were isolated and tested for their ability to take up carboxylated beads (apoptotic

cell mimics, see the Methods section). The percentage of monocytes taking up 1 or more

carboxylated beads was similar for both groups at 49.9% (SD, 15.9%) for nonobese

asthmatic patients versus 44.2% (SD, 27.8%) for obese asthmatic patients (P = .4), but

substantially fewer beads were taken up by monocytes of obese asthmatic patients compared

with nonobese asthmatic patients at 2.1 (SD, 0.6) versus 3.2 (SD, 1.2; P < .01, Table III).

Accordingly, when expressed as the efferocytic index, efferocytosis of bead targets was

significantly reduced in obese asthmatic patients relative to that seen in nonobese asthmatic

patients at 98.6 (SD, 83.0) versus 165.6 (SD, 89.2; P = .03, Table III), indicating a similar

40% reduction in efferocytosis by blood monocytes. When BMI was treated as a continuous

variable, a trend toward an inverse relationship of efferocytosis by blood monocytes was

noted (ρ = −0.37, P = .07), but no significant correlation between efferocytosis by airway

macrophages and blood monocytes was demonstrated (ρ = 0.26, P = .35).

Programming differences in blood monocytes from obese and nonobese asthmatic

participants were then evaluated. Candidate markers of M2 programming were evaluated by

using real-time quantitative PCR (Table IV). Of these, expressions of PPARδ and ADAM8

were inversely correlated with BMI (ρ = −0.41 and P < .05 for PPARδ; ρ = −0.61 and P < .

01 for ADAM8), suggesting diminished M2 programming with increasing obesity in

asthmatic patients. Expression of CX3 chemokine receptor 1, which is implicated in

efferocytosis,50 was also diminished in obese asthmatic patients (ρ = −0.56, P < .05).
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Arginase 1 and GP132 receptor expression correlated significantly with monocyte

efferocytic index. Neither PPARγ nor macrophage mannose receptor, both of which are

reported to be expressed at very low levels in human monocytes before differentiation into

macrophages,46 were correlated with either BMI or efferocytic index. None of the markers

were significantly correlated with efferocytosis by airway macrophages. When the specific

M1 programming candidate markers IL-8, monocyte chemotactic protein 1, IL-6, and TNF-

α were assessed, none were found to be associated with obesity or related to the efferocytic

capability of monocytes or airway macrophages. Serum leptin levels were inversely

correlated with the efferocytic index of airway macrophages (ρ = −0.32, P < .05) and blood

monocytes (ρ = −0.43, P < .05). However, when adjusted for BMI, these relationships with

serum leptin were no longer significant.

To explore the relationship between obesity, efferocytic function, and markers of oxidative

stress, we assayed concentrations of plasma 4HNE, a product of lipid peroxidation and a

biomarker of systemic oxidative stress. 4HNE levels were significantly increased in obese

asthmatic patients (n = 10) at 0.33 ng/mL (SD, 0.15 ng/mL) versus 0.17 ng/mL (SD, 0.08

ng/mL) in nonobese asthmatic patients (n = 10, P = .006, Fig 1). 4HNE levels were

significantly and inversely correlated with the efferocytic index in airway macrophages (ρ =

−0.67, P = .02, n = 11, Table V) but not in blood monocytes, which demonstrated a similar

trend that did not achieve statistical significance (ρ = −0.53, P = .18).

Because glucocorticoids are reported to enhance efferocytosis,27–29 the relationship of

efferocytosis by airway macrophages to in vitro markers of glucocorticoid responsiveness

was then investigated in asthmatic participants. Efferocytosis in airway macrophages was

significantly correlated with both the induction of MKP-1 expression by dexamethasone (ρ

= 0.56, P = .003) and GCRα expression (ρ = 0.49, P = .009) in PBMCs (Table V). When

adjusted for BMI in a standard least-squares model, these relationships remained significant

(r = 0.61 and P = .002 for MKP-1; r = 0.49 and P = .01 for GCRα). There was no

relationship between airway macrophage efferocytosis and GCRβ, which was expressed at

very low levels. No relationship between these markers of glucocorticoid response and

efferocytosis in blood monocytes was demonstrated (ρ = 0.03 and P = .9 for MKP-1; ρ =

−0.1 and P = .7 for GCRα).

DISCUSSION

Asthma and obesity are major public health issues, and there is increasing evidence of

interaction of these 2 disorders in both adults and children.58–63 Studies suggest that asthma

in obese persons can be characterized by both increased severity and reduced glucocorticoid

responsiveness demonstrated both in vivo and in vitro, although not uniformly

so.55,60,61,63–65 Traditional markers of TH2-type inflammation, such as fraction of exhaled

nitric oxide and airway eosinophil numbers, are not increased in obese compared with

nonobese patients with asthma,60 and the basis of this harder-to-control phenotype is not

well understood.

In an attempt to begin to identify the underlying mechanisms, we report the first data

comparing efferocytosis by airway macrophages and peripheral blood monocytes in obese
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and nonobese participants with asthma. This difference was not observed in subjects without

asthma, suggesting that interactions between these 2 diseases result in the observed

impairment in efferocytosis. The findings in obese asthmatic patients occur in the context of

decreased expression of certain markers of alternative (M2) macrophage programming and

are significantly related to in vitro assessment of glucocorticoid response, with the degree of

impaired efferocytosis increasing as glucocorticoid responsiveness decreased. Furthermore,

we demonstrate a significant relationship between efferocytic capacity and degree of

systemic oxidative stress, suggesting a possible role of oxidative stress in modulating these

pathways. Given these findings, we hypothesize that impaired efferocytosis by airway

macrophages contributes to increased severity of asthma in the setting of obesity.

Given the increased numbers of activated macrophages found in adipose tissue and muscle

in patients with obesity associated with insulin resistance,3,47,66,67 it is reasonable to

hypothesize that lung macrophages might be a key inflammatory cell in patients with asthma

complicated by obesity. On the basis of inflammatory cell differentials for induced sputum,

the percentage of airway macrophages was increased in obese asthmatic patients. The lack

of absolute macrophage quantification is a shortcoming of our current approach, although to

our knowledge, no studies to date have shown that absolute numbers of airway macrophages

are greater in obese patients with asthma. This question is relevant for future investigation.

Notably, there were no differences in the percentages of apoptotic cells between obese and

nonobese asthmatic patients. However, there was a decrease in the percentage of apoptotic

cells to the percentage of macrophages expressed as a ratio for obese asthmatic patients.

Direct assessment of isolated sputum macrophages “fed” exogenous apoptotic cells will be

required to determine whether impaired efferocytosis by airway macrophages of obese

subjects is due to limited apoptotic target availability. Direct assessment of sputum

macrophages was not performed in this study and is technically challenging. Importantly,

direct assessment of blood monocyte efferocytic capacity mirrored findings in the airway

macrophages, suggesting that phagocytic functional alterations are systemic in obese

asthmatic patients.

Our results suggest that monocyte/macrophage programming is altered in obese asthmatic

patients. We demonstrated evidence of diminished M2 programming, which is typically

required for efficient efferocytosis. Monocyte mRNA expression of the M2 markers (eg, the

nuclear receptor PPARδ and ADAM8) correlated inversely with BMI, and several of the

target markers were positively associated with monocyte efferocytic capability (Table IV).

As such, assessments of the programming and functions of monocytes, as precursors of

tissue macrophages and as cells exposed to the same systemic inflammatory milieu, might

serve as biomarkers, reflecting the status of macrophages in inflamed airways. Nonetheless,

we acknowledge that investigation of blood monocytes as a surrogate for airway

macrophages is a potential limitation of this report in that resident macrophages in tissues

can demonstrate both phenotypic and functional differences when compared with circulating

blood monocytes.68

There is controversy regarding M1 markers in human subjects versus murine models in

obesity,16,17,69 and we were unable to demonstrate an increase in expression of candidate
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M1-related markers in monocytes of our obese study participants with asthma. Nonetheless,

some evidence of M1 programming of airway macrophages18 and, to a limited extent,

monocytes20 has been described in patients with severe steroid-resistant asthma and, in turn,

associated with reduced MKP-1 induction.70 Thus it is possible that the reduced MKP-1

induction and low GCRα expression observed herein can be considered a functional readout

reflective of disproportionate M1 programming, explaining significant correlation between

these markers of glucocorticoids response and impaired efferocytosis by airway

macrophages. In our earlier work we demonstrated that impaired glucocorticoid

responsiveness in vitro required a disease-by-disease interaction; it was demonstrated only

in obese asthmatic patients and not subjects with obesity alone. Our data from this disparate

study population suggest that this same interaction is also required for the impairment of

efferocytosis.

Finally, although not conclusive, our data also suggest that oxidative stress might be an

important mechanistic link between obesity, macrophage programming and function, and

glucocorticoid insensitivity in asthmatic patients. Obesity is known to be associated with

increases in systemic oxidative stress,2 and increased oxidant production by macrophages

inhibits the ability of macrophages to recognize, phagocytose, and clear apoptotic cells,

particularly after stimulation with TNF-α.71,72 Thus the systemic proinflammatory

environment in obese patients might affect asthma through proinflammatory cytokines and

associated increases in oxidative stress. These, in turn, impair macrophage/monocyte

function in ways that are critical to the maintenance or resolution of airway inflammation,

while also altering glucocorticoid response pathways.

Taken together, these data point to the need for future investigations designed to improve

our understanding of airway macrophage programming and function in asthma complicated

by obesity, with the goal of identifying novel therapeutic targets. Given that the nuclear

receptors PPARδ and PPARγ are both robustly implicated in M2 programming of

macrophages and efferocytosis, as well as suppression of inflammation and enhanced

systemic insulin sensitivity,23,44,66,67 targeting these pathways might constitute a novel and

relevant clinical therapeutic approach in the treatment of obese asthmatic patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key message

• Airway macrophages from obese asthmatic adults demonstrate impaired

efferocytosis that is associated with increased oxidants, altered monocyte

programming, and reduced glucocorticoid responsiveness.
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FIG 1.
4HNE concentrations in the plasma of nonobese (n = 10) and obese (n = 10) asthmatic

patients.
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TABLE I

Characteristics of the study population

Nonobese
subjects

Obese
subjects

P
value

No. 19 14 —

Age (y) 39 (10) 38 (14) .7

Female sex (no.) 9 (48) 5 (36) .5

African American (no.) 4 (25) 4 (33) .8

BMI (kg/m2) 23.6 (2.8) 37.2 (5.1) <.01

FEV1 (L [before albuterol]) 2.7 (0.8) 2.7 (0.9) .8

FEV1 (L [after albuterol]) 3.0 (0.8) 3.2 (0.8) .5

FVC (L [before albuterol]) 3.8 (1.1) 4.3 (0.9) .9

FVC (L [after albuterol]) 4.0 (1.1) 4.4 (0.9) .9

FEV1/FVC ratio 0.7 (0.1) 0.7 (0.1) .5

PC20 FEV1 (mg/mL methacholine) 2.2 (2.4) 1.6 (1.3) .8

FENO (ppb) 23 (12) 23 (21) .3

Adiponectin (µg/mL) 8.9 (6.3) 8.4 (4.9) .7

Leptin (ng/mL) 8.4 (12.5) 29.2 (11.4) <.01

IL-6 (pg/mL) 1.4 (1.8) 1.5 (0.8) .06

TNF-α (pg/mL) 1.6 (1.0) 1.5 (0.6) .8

hs-CRP (mg/mL) 2.6 (4.5) 4.8 (3.3) <.01

Data are presented as counts (percentages of population) or means (SDs).

FENO, Fraction of exhaled nitric oxide; hs-CRP, high-sensitivity C-reactive protein.
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TABLE II

Induced sputum cell differential counts in nonobese and obese participants

Nonobese subjects Obese subjects P value

Eosinophils (%) 3.4 (4.6) 1.3 (2.5) .07

Neutrophil (%) 55.6 (20.7) 39.5 (21.9) .06

Macrophages (%) 28.1 (15.0) 42.1 (19.7) .02

Lymphocytes (%) 0.8 (0.9) 0.7 (0.7) .90

Apoptotic cells (%) 31.6 (18.9) 22.9 (16.6) .26

Data are presented as means (SDs).
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TABLE III

Efferocytosis by airway macrophages and peripheral blood monocytes in nonobese and obese asthmatic

participants

Nonobese
subjects

Obese
subjects

P
value

Airway macrophages

  No. of apoptotic bodies per macrophage 1.29 (0.34) 1.07 (0.14) .05

  Efferocytic index 3.00 (1.25) 1.77 (1.07) <.01

  Apoptotic cells (%)/airway macrophage (%) ratio 1.04 (1.07) 0.44 (0.6) .02

Peripheral blood monocytes

  No. of engulfed beads per monocyte 3.2 (1.2) 2.1 (0.6) <.01

  Efferocytic index 165.6 (89.2) 98.6 (83.0) .03

Data are presented as means (SDs).
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TABLE IV

Correlation of M2 programming/efferocytosis markers in blood monocytes with BMI and EI

M2/efferocytic markers ρ vs BMI P value ρ vs monocyte EI P value

PPARδ −0.41 .04 0.38 .06

ADAM8 −0.61 <.01 0.37 .07

CX3CR1 −0.56 .02 0.43 .07

PPARγ 0.01 .98 0.29 .16

MMR −0.29 .18 0.34 .10

Arginase 1 −0.20 .33 0.42 .04

Adiponectin receptor −0.13 .55 0.38 .06

TGF-β receptor −0.09 .67 0.39 .06

GP132 receptor −0.22 .30 0.51 .01

CX3CR1, CX3 chemokine receptor 1; EI, efferocytic index; MMR, macrophage mannose receptor.
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TABLE V

Correlation (unadjusted) of sputum efferocytic index with markers of oxidative stress and glucocorticoid

response

ρ P value

4HNE vs EI in airway macrophages −0.67 .02

MKP-1 expression vs EI in airway macrophages 0.56 .003

GCRα expression vs EI in airway macrophages 0.49 .009

EI, Efferocytic index.
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