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Abstract

Chickpea (Cicer arietinum) is the second most widely grown legume worldwide and is the most important pulse crop in the
Indian subcontinent. Chickpea productivity is adversely affected by a large number of biotic and abiotic stresses. MicroRNAs
(miRNAs) have been implicated in the regulation of plant responses to several biotic and abiotic stresses. This study is the
first attempt to identify chickpea miRNAs that are associated with biotic and abiotic stresses. The wilt infection that is
caused by the fungus Fusarium oxysporum f.sp. ciceris is one of the major diseases severely affecting chickpea yields. Of late,
increasing soil salinization has become a major problem in realizing these potential yields. Three chickpea libraries using
fungal-infected, salt-treated and untreated seedlings were constructed and sequenced using next-generation sequencing
technology. A total of 12,135,571 unique reads were obtained. In addition to 122 conserved miRNAs belonging to 25
different families, 59 novel miRNAs along with their star sequences were identified. Four legume-specific miRNAs, including
miR5213, miR5232, miR2111 and miR2118, were found in all of the libraries. Poly(A)-based gRT-PCR (Quantitative real-time
PCR) was used to validate eleven conserved and five novel miRNAs. miR530 was highly up regulated in response to fungal
infection, which targets genes encoding zinc knuckle- and microtubule-associated proteins. Many miRNAs responded in a
similar fashion under both biotic and abiotic stresses, indicating the existence of cross talk between the pathways that are
involved in regulating these stresses. The potential target genes for the conserved and novel miRNAs were predicted based
on sequence homologies. miR166 targets a HD-ZIPIIl transcription factor and was validated by 5 RLM-RACE. This study has
identified several conserved and novel miRNAs in the chickpea that are associated with gene regulation following exposure
to wilt and salt stress.
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Introduction miRNAs). The secondary structures of these precursors are well
conserved in plants. The pre-miRNA contains a miRNA-star

MicroRNAs  (miRNAs) are small, endogenous, non-coding  iRNA (miRNA#) intermediate duplex from which the miRNA*
RNAs that are present in animals, plants and some viruses. These

RNAs participate in the regulation of target genes by binding to
complementary mRNAs, resulting in either their cleavage or
translational repression. miRNAs are involved in diverse processes
in different organisms, including developmental timing in worms,
cell death and fat metabolism in flies, hematopoiesis in mammals
and leaf development, floral patterning and environmental stress
responses in plants [1].

MIRNA genes are transcribed as independent transcriptional
units by RNA polymerase II enzymes to generate primary
miRNAs (pri-miRNAs). pri-miRNAs form imperfect folded
structures that are processed by Dicer-likel nuclease (a member
of the RNase III endonuclease family) to precursor miRNAs (pre-

eventually is degraded. However, recent studies have revealed the
higher accumulation of miRNA* under certain conditions in
plants, indicating the probable role of miRNAs in modulating
plant growth and development [2]. Mature miRNAs are 19 to 24
nucleotides (nt) in length and interact with an RNA-induced
silencing complex (RISC) to cleave specific target mRNAs or
inhibit their translation. This complementarity plays an important
role in determining the fate of the mRNA. When the comple-
mentarity between the miRNA and mRNA is perfect or near
perfect, the mRNA is cleaved; however, if there are many
mismatches between them, translational repression occurs. There
are also instances in which miRNAs and mRNAs with perfect
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complementarities lead to the repression of translation and not to
the usual cleavage.

The first identified miRNAs were lin4 and let7 in Caenorhabdi-
lis elegans, which is a model nematode [3,4]. The first plant
miRNAs were identified in Arabidopsis [5] and later in other
plants. Currently, 7,321 mature miRNAs have been reported in 72
plant species (miRBase version 20) [6]. Among dicots, the
maximum number of miRNAs occurs in the legume family
(1,460), followed by Brassicaceae (863). Although the legume
family has the best representation in terms of the number of
miRNAs, chickpea is a notable omission from the list.

Chickpea (Cicer arietinum) is the world’s second most widely
grown legume and is cultivated in more than 40 countries. The
Indian subcontinent is the principal chickpea-producing and
consuming region, contributing almost 70% of the world’s total
production [7]. Chickpea seeds are a rich source of protein and
starch for the human population and the records of chickpea
cultivation date back to 6,000 BC. Globally, chickpea is grown on
11.5 million hectares (ha) to produce 10.4 million tons with an
average yield of approximately 0.9 t/ha, which is far below its
yield potential of 6 t/ha under optimal growth conditions [7]. The
disparity between the actual and potential yields can be explained
by large numbers of biotic and abiotic stresses that adversely affect
its productivity. Among the biotic stresses, wilt infection that is
caused by the fungus Fusarium oxysporum fsp. ciceris is a major
concern. Abiotic stress conditions, such as terminal drought and
salt stress, also lead to major losses. ICC4958 is a drought tolerant
chickpea cultivar and gets affected at terminal drought, which
occurs at the pod filling and seed-developing stage of the crop
[8,9]. However, recent studies on salinity tolerance and ion
accumulation in chickpea have revealed it as a highly sensitive
crop to salinity when compared to other species in cropping
systems [10,11]. Thus, salinity is another major constraint in
chickpea yield. A better understanding of genes and their
interactions with the environment can play a very important and
determinant role in tackling these stress conditions. The recently
available transcriptome and genome sequences that have been
reported by independent groups are important resources that will
facilitate the attainment of these goals in the chickpea [12,13,14].
Hu et al. (2013) identified 28 potential miRNA candidates
belonging to 20 families from 16 ESTs and 12 GSSs in the
chickpea using a comparative genome-based computational
analysis [15]. A total of 664 miRINA targets were predicted,
including genes encoding transcription factors (TTFs) in addition to
those that function in the stress response, signal transduction,
methylation and a variety of other metabolic processes. These
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Table 1. Distribution of the sequenced reads in the control, wilt- and salt-stressed chickpea libraries.
Library Control Wilt Stress Salt Stress

Total Unique Total Unique Total Unique
Total number of sequences 15,744,289 6,103,870 7,007,282 2,677,947 6,418,892 3,353,754
Sequences remaining after 3’ adaptor 14,782,514 5,033,168 6,412,190 2,130,060 5,761,024 2,683,044
removal (TCGTAT)
Sequences remaining after size-range 14,689,499 5,005,568 6,192,469 2,054,560 5,584,159 2,627,840
filtering (16 to 30 nt)
SSR/TR 1414 757 222 216 359 307
t/rRNA 720,912 35,136 645,529 37,632 538,049 32,987
Putative small RNA population 13,940,841 4,946,095 5,546,371 2,016,408 5,034,576 2,584,961
doi:10.1371/journal.pone.0108851.t001

findings lay the foundation for the elucidation of miRNA function
in the development and stress responses of the chickpea.

miRNAs have been discovered primarily using direct cloning
and bioinformatic approaches. All of the miRNAs in plants have
been identified via the cloning of small RNNAs or a computational
approach, in which the homologs of known miRNAs are searched.
We have generated small RNA libraries corresponding with the
control conditions, Fusarium wilt infection and salt stress, which
were sequenced using the Illumina sequencing platform to identify
miRNAs in the chickpea. This study is the first report in which
small RNA libraries have been constructed and sequenced to
identify miRNAs in the chickpea.

Results

Sequence analyses

Three separate small RNA libraries that were constructed from
the total RNA of the control, Fusarium wilt-infected and salt-
stressed plants were subjected to Illumina Solexa sequencing. This
sequencing generated 29,170,463 raw reads, which after process-
ing by UEA sRNA workbench 2.4- Plant version sequence file pre-
processing tool (http://srna-tools.cmp.uea.ac.uk/), produced ap-
proximately 12,135,571 total unique reads (Table 1). After
removing the adaptor sequences, filtering the low-quality tags
and eliminating the t/TRNA sequences, the putative small RNA
population accounted for approximately 88.5%, 79.1% and
78.4% in the control, wilt-infected and salt-stressed libraries,
respectively (Figure S1). The majority of small RNAs (approxi-
mately 50%) from the control and salt-stressed libraries were 24 nt
in length (Figure 1), which is similar to other plant species, such as
Arabidopsis thaliana, Solanum lycopersicum and Medicago trun-
catula [16,17,18]. Notably, in the wilt-infected library, small
RNAs that were 20 nt in length accounted for 20% of the
population, but when unique reads were analyzed, the small RNA
distribution revealed that 24 nt was the major size class. Similar
patterns have been reported in cucumber and soybean [19,20]. In
soybean, the unique and redundant sequence classes possessed
24 nt and 23 nt long small RNAs, respectively, as the most
abundant sequences. For the differential expression analysis, the
total numbers of miRNA reads in each given sample were
normalized as transcripts per million, and the fold changes
between the treated and control samples were calculated. Out of
122 conserved miRNAs, 44 were upregulated in response to wilt
stress, but in the case of salt stress, the number of down regulated
miRNAs was greater than that which was observed in response to
wilt stress. However, the differential expression of novel miRNAs
under both of these stresses showed relatively similar patterns, with
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Figure 1. Length distribution of small RNA population. Size distributions of the miRNAs in the three chickpea libraries. In the wilt stress library,
20 nt miRNAs are more frequent than 24 nt miRNAs. However, in the other two libraries 24 nt miRNAs are more frequent.

doi:10.1371/journal.pone.0108851.g001

approximately 60% of the miRNAs being down regulated under
either wilt and/or salt stress (Figure 2a, b).

Identification of conserved miRNAs in chickpea

The unique reads that were obtained from the miRCat analysis
tool (UEA small RNA workbench) were mapped to the miRNAs
that were available in miRBase version 18 (http://www.mirbase.
org/) [21,22,23]. The small RNA sequences that matched the
known miRNAs from the miRBase database were identified as
conserved miRNAs in the chickpea. The sequence analyses
revealed the presence of 122 miRNAs belonging to 25 conserved
families. The most abundant family was miR156 with 14
members. Among the others, miR171 (12 members), miR169
and miR172 (9 members each), miR166 and miR167 (8 members
each), miR319 and miR399 (6 members each) and miR396 (5
members) were present. The remaining miRNA families had less
than five members, with some families, such as miR530, miR162,
miR5232 and miR408, being represented by only one member
(Table 2; Table S1). In a recent report of the chickpea genome,
the sequences of 20 unique miRNA families were reported, of
which MIR169_2 and MIR159 were the most abundant [14]. In
our study, out of 25 conserved miRNAs families, 16 possessed
miRNA* sequences, thus providing additional evidence in support
of the authenticity of the miRNAs. However, no miRNA*
sequences were obtained for miR2111, miR162, miR164,
miR390, miR394, miR397, miR530, miR408 or miR5213.
Detailed information regarding the precursor structures of the
conserved miRNAs is provided in Table S2.

Identification of legume-specific miRNAs in chickpea
library

We obtained four legume-specific miRNAs, including miR2111,
miR2118, miR5213 and miR5232, in our libraries that were
previously reported in another legume, Medicago [24,25]. To
date, miR5232 has only been reported in Medicago in a study
involving miRNA regulation during arbuscular mycorrhizal
symbiosis [25]. Accordingly, miR5232 may be a legume-specific
miRNA that is involved in the biotic stress response. The multiple
sequence alignment of the mature miRNAs in addition to the
precursor sequences of these four legume-specific miRNAs
revealed that they were most closely similar to Medicago and
consequently has been conserved throughout evolution (Figure 3a,
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3b). However, in recent studies, sequences that are similar to
miR2118 have been reported in other non-leguminous plant
systems, such as tomato and rice [26]. Apart from Fabaceae,
miR2118 family members are most abundant in the Rutaceae and
Solanaceae plant families [27]. Even the nomenclature of the
miR2118 family is inconsistent in miRBase: the miR2118-like
sequences have been disparately named miR482 (sly-miR482),
miR5300 (as in tomato) and miR2809. The variation in the
miR2118 sequence is species specific. Thus, miR2118 sequences in
the chickpea are more similar with mtr-miR2118a [24] in
comparison with other plant systems.

Identification of novel miRNAs in chickpea

We identified 59 novel miRNAs using the miRCat module of
the UEA sRNA workbench, which aligned the pooled reads from
all three of the libraries to the chickpea genome (NCBI Genome:
PRJNA175619) [13], the ESTs database from NCBI and
transcriptome data from the chickpea transcriptome database
[28], and applied prediction criteria for plant miRNAs [29]
(Table 3; Table S3). The low abundance of novel miRNAs in our
data supports the earlier notion of the lower expression levels of
novel miRNAs compared with those of conserved miRNAs [30].
The precursor miRNA candidates were then tested using
RandFold with a cutoff of 0.1. The minimum free energy that
was required to form the predicted hairpin structure for the
precursor was in the range of —97.2 to —26.03 Kcal/mol, which
is similar to the values that were reported for the precursors of
other plant species (Table S4). The secondary structures of the
precursors of five validated novel miRNAs were evaluated using
the Mfold software (Figure 4) [31]. The data analysis revealed the
presence of miRNA* sequences for all of the 59 novel miRNAs of
the chickpea. The miRNA* supports the release of the miRNA
duplex from the predicted hairpin structure [32]; therefore, the
presence of miRNA* sequences further supports the identity of
these small RNNA sequences in our libraries as novel miRINAs.

Expression patterns of known and novel miRNAs in
chickpea

Total RNA from the tissues of control, wilt-infected and salt-
stressed plants were used to validate the miRNAs. The poly
(A)RNA of these three samples was reverse transcribed into cDNA
for the validation of the expression of eleven conserved and five
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novel miRNAs using qRT-PCR. The expression levels of the
chickpea miRNAs under wilt stress were significantly altered
compared with those of the control conditions. In contrast, those
that were observed under salt stress did not greatly change.
Among the validated conserved miRNAs, miR530 was upregu-
lated seventeen-fold during wilt stress, suggesting that it is an
important candidate miRNA that is involved in the plant wilt
stress response. miR156_1 and miR156_10 were slightly upregu-
lated under both the wilt and salt stresses. miR2118, which is one
of the legume-specific miRNAs, was also upregulated by
approximately 0.5-fold during wilt stress compared with the
control seedlings (Figure 5a, 5b). Conversely, no significant
expression patterns were detected with respect to the known
miRNAs in response to salt stress in the chickpea. The expression
analysis of the novel miRNAs revealed that three out of five (car-
miR008, car-miR011 and car-miR015) were approximately three
fold upregulated on average during salt stress (novel chickpea
miRNAs have been designated as “car-miRNA” throughout the
manuscript, in which “car” is an abbreviation for Cicer
arietinum). However, the expression patterns that were observed
during wilt stress revealed limited information because little
significant changes occurred.

Prediction and validation of miRNA targets in chickpea

The putative miRNA targets in chickpea were predicted using
the psRNATarget program [33]. The predicted target genes
(approximately 358 different transcripts) were extensively involved
in different biological processes involving a large number of gene
families. Some of these genes encoded TFs, DNA replication
proteins and those that are involved in cellular metabolism in
addition to a variety of stress response-associated proteins. The
target prediction analysis revealed the involvement of some of the
miRNAs in regulating metabolic processes through the target
genes. In chickpea, miR159 is involved in the metabolism of
amino acids, fatty acids and lipids. One of the target genes of
miR159 encodes acyltransferase, which is essential for ester
biosynthesis. The chickpea miR156 and miR166 target genes
encode squamosa promoter-binding protein and homeobox-
leucine zipper protein, respectively, as previously reported
[34,35]. Table 4 describes details of the target genes of validated
miRNAs; a complete list is provided as supporting information
(Table S5; Table S6). The most widely targeted class of genes is
the protein kinases, which are associated with plant defense
mechanisms via cell signaling-related processes. The novel car-
miRNAOO8 targets the chalcone synthase (CHS) gene. Chalcone,
which is an intermediate in flavonoid biosynthesis, is involved in
natural defense mechanisms. CHS expression is also involved in
salicylic acid defense pathways. car-miR2118 and car-miR5213
target two defense-response chickpea genes encoding Toll/
Interleukin-1 receptor-nucleotide binding site-leucine-rich repeats
(TIR-NBS-LRR). Members of the TIR-NBS-LRR gene family
are genuine targets for miR2118 [24]. Additionally, miR5213
suppresses defense-response genes in Medicago. The cleavage of
such transcripts as mediated by miR5213 is notably conserved in
AM  symbiosis-capable plants, such as Medicago truncatula,
Glycine max, Lotus japonicus, Populus trichocarpa and Cicer
arietinum, but not in plants for which this symbiosis is not
observed, such as Arabidopsis thaliana [25].

Members of the miR166/165 family target HD-ZIP III TF
genes by cleaving the mRNA at complementary base pairs in
leguminous plants [34,36,37]. These results are similar to those of
earlier predicted reports involving other plant systems. The target
gene of miR166 was experimentally validated by modified
5'RLM-RACE [38,39]. All of the positive clones were sequenced,
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Figure 3. Multiple sequence alignments of legume-specific miRNAs. (A) Mature miRNAs, (B) precursor miRNAs. Four legume-specific
miRNAs, including a) MIR5213, b) MIR5232, c) MIR2111and d) MIR2118, were used for the multiple sequence alignments by ClustalW2 in the different
plants. car- Cicer arietinum, mtr- Medicago truncatula, gma- Glycine max, ath- Arabidopsis thaliana, osa- Oryza sativa, zma- Zea mays, sbi- Sorghum
bicolor, sly- Solanum lycopersicum, hbr- Hevea brasiliensis, pvu- Phaseolus vulgaris, vun- Vigna unguiculata, ptc- Populus trichocarpa and mdm- Malus
domestica.

doi:10.1371/journal.pone.0108851.9g003

and cleavage was observed at the 17" and 18" positions of the our results are not in agreement with previous studies, such as
mRNA by the 5’ end of miR166 (Figure 6), unlike the previously those involving the soybean, in which miR166 target validation by
reported miRNA-target recognition parameters [40]. Although 5'RACE and degradome sequencing confirmed cleavage at the
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Figure 4. Predicted secondary structures of five validated novel miRNA precursors in chickpea using Mfold.

doi:10.1371/journal.pone.0108851.g004

10" and 11" positions [41], there have been reports of the
miRNA (belonging to different families)-mediated cleavage of
target mRNA, thus defying the recognition rule. A total of 18
miRNA/target pairs of Pinus taeda possessed non-conventional
cleavage sites, such as pta-miR951:AW065026, which is cleaved at
the 16™ and 17" positions [42]. Similar results have been reported
in other plant species, such as mtr-miR397:AC135467 [24], ath-
miR168:AGO1 [43], pvu-miR171:¢i62704692 [44] and ath-
miR398a:CSD1 [39]. Thus, it appears that the sequence of the
target gene and the miRINA sequence determine the cleavage site
apart from the conventional complimentary region-based target
cleavage. Therefore, it is quite possible that chickpea has a
different cleavage site for miR166 (pair miR166:TC04758)
compared with other plant species.

Analyses of GO terms and KEGG pathways

The GO terms of the target genes were annotated according to
their biological processes, molecular functions or involvement as
cellular components. The enzyme mapping of the annotated
sequences was performed using direct GO for the enzyme
mapping and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) for the definitions of the KEGG orthologs. The miRNA-
targeted genes belonged to various biological processes, cellular
components and molecular functions as depicted in Figure 7. The
maximum numbers of target genes were involved in biological
processes, including both metabolic and cellular processes.
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However, the target genes that were involved in binding were
the most abundant (80%) within the molecular functions category.

Discussion

In this study, high-throughput deep sequencing was used to gain
in-depth knowledge of gene regulation by miRNAs in the chickpea
under biotic and abiotic stresses. Salt stress is one of the major
constraints to increasing chickpea productivity. Soil salinity levels
affect germination in plants. Under salt stress conditions, chickpea
plants show high levels of anthocyanin pigmentation in their
foliage and reduced growth rates [45]. Among the biotic stresses,
Fusarium wilt is one of the major soil/seed-borne diseases severely
affecting chickpea growth. Its causative agent is Fusarium
oxysporum f.sp. ciceris, which is a fungal pathogen.

Most of the miRNAs that were obtained in our library have a
preference for the 5'-U as has been reported in other plants, which
is in accordance with the defined structures of the mature miRNAs
[1,46]. The lengths of the chickpea precursors ranged from 61 to
220 nt, which were similar to those of the soybean (55 to 239 nt)
and peanut (75 to 343 nt) [30,35]. The calculation of the
minimum free energy (MFE) values further added credence to
these predicted hairpin structures as putative miRNA precursors.
The chickpea precursors had minimum free energy values ranging
from —97.2 to —26.03 Kcal/mol with an average of
—50.1419 Kcal/mol, which was similar to the —50.01 Kcal/
mol that was observed in Arachis hypogaea and the reported value
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Figure 5. Expression analyses of selected miRNAs under wilt and salt stresses as evaluated by qRT-PCR. The relative expression levels
are shown as fold changes with the standard errors (SE) of three biological replicates. (A) Expression profiling of conserved miRNAs under control, wilt
and salt stress conditions. (B) Expression profiling of novel miRNAs under control, wilt and salt stress conditions.

doi:10.1371/journal.pone.0108851.g005

of —59.5 Kcal/mol in Arabidopsis thaliana (Table S2) [30].
Greater increases in miRNA expression were observed following
wilt stress compared with salt stress, suggesting the significant role
of small RNAs in the response to pathogen attack. The total
number of miRNAs was greater in the wilt stress library than in
the salt stress library. Four legume-specific miRNAs were
identified in the chickpea libraries, including miR2111,
miR2118, miR5232 and miR5213, which were previously
reported in Medicago. The sequence conservation among the
different legumes and the precursor sequence similarity of these
four chickpea miRNAs further substantiate their accurate identi-
fication in this study. car-miR5232 cleaves only two transcripts
encoding an ATPase EI-E2 type and an expressed protein of
unknown function, in concordance with a similar study in
Medicago, in which miR5232 targets were experimentally
confirmed by degradome sequencing [25].

The significance of miRNA* in authenticating the presence of
miRNA has previously been established. A comparison of
chickpea miRNA* and mature miRNA data revealed that they
vary in abundance in response to the different stress treatments,
which has also been previously reported [47,48]. Our target search
analysis indicated that miRNA* act upon different transcripts than
do their parental miRNAs (data not shown), which has been

PLOS ONE | www.plosone.org

13

observed in plants, animals and humans [25,49,50]. For example,
miR393 and its miRNA* counterpart regulated the expression of
genes belonging to entirely different protein families; i.e., TIR1
and SNARE, respectively [51,52].

Expression patterns during biotic stress

This study is the first attempt to identify miRNAs that are
associated with fungal attack in the chickpea. Alterations in the
expression of genes that are involved in defense during pathogen
attack have been previously reported. These genes are regulated
by small RNAs. miR393 was the first miRNA whose role in
pathogen attack was demonstrated [51]. Eleven conserved and five
novel miRNAs were analyzed in the chickpea under wilt and salt
stress. Interestingly, miR530 was significantly upregulated during
wilt stress. This observation suggests that its target genes are
expressed at lower levels, which included the zinc knuckle proteins
and microtubule-associated proteins. Zinc knuckle proteins are
involved in the regulation of morning-specific growth in
Arabidopsis [53]. The target of miR530 varies in different plants
under different conditions and tissues. In Populus trichocarpa, this
miRNA targets zinc knuckle (CCHC type) family proteins along
with a homeobox TF [54], whereas in soybean, it targets genes
that encode the CONSTANS interacting protein and nuclear
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Table 4. Predicted target genes of miRNAs in chickpea.

MicroRNAs in Chickpea

miRNA family Target

Putative Functions of Predicted Targets

Conserved miRNAs

mir156_1 TC12891, TC03863, TC05745,TC07318,
TC03684, TC29077, TC07318, TC15422,
TC04572

mir156_10 TC29077, TC15422, TC12891, TCO3863,
TC05745, TC03684, TC07318, TC19303,
TC10437, TC05493, TC18211

mir166_1 TC04758, TC15765, TC08004

mir167_4 TC21867, TC03743, TC03697

mir168_1 TC06138, TC16221, TC07642

mir171_1 TC15816, TC01767, TC07982

mir319_6 TC03909

mir390_1 TC12049, TC05305, TC19589

mir396_3 TC18749, TC21342, TC02165, TC16760,
TC09727, TC02085

mir530_1 TC01544, TC20787, TC01795, TCO1794

mir2118_1 TC01089, TC09480, TC00082, TC21040,

TC23505
Novel chickpea miRNAs
car-miRNA008
car-miRNAO11

TC06967, TC05545

TC02274, TC14659, TC17732, TC08052,
TC16830, TC06852, TC05883
car-miRNAO15 TC17182, TC10107
car-miRNA020 TC33381, TC29465, TC00653, TC28744,
TC05383

car-miRNA051 TC11550, TC31151, TC21283

Squamosa promoter-binding TF family protein, SCP1-like

small phosphatase

SCP1-like small phosphatase, squamosa promoter-
binding protein, cationic amino acid transporter,
allantoinase 1-like protein

Classlll HD-ZIP, REVOLUTA

Monosaccharide transport protein 1, MFS, tubulin-folding
cofactor E

GTP-binding protein, RNA binding (RRM/RBD/RNP motifs)
HAIRY MERISTEM 3 (HAM3), cdk protein kinase, ClpX3
Putative xylogalacturonanxylosyltransferase

Protein kinase, CZF1

RNA-directed DNA polymerase, NAD(P)-binding
Rossmann-fold

Zinc knuckle protein, expressed protein

NB-ARC disease resistance protein, expressed protein,

TIR-NBS-LRR

RING/U-box superfamily protein, chalcone synthase (CHS)
SERPIN family protein, amelogenin, RNA binding
(RRM/RBD/RNP motifs), LEA, anion channel protein family
Complex 1 protein (LYR family), ribosomal L23/L15e
family protein

TPR-like superfamily protein, ARM superfamily protein,
FAD/NAD(P)-binding oxidoreductase, Protein of unknown
function (DUF1423)

SMG7, HAD superfamily protein, unique electron

transfer flavoprotein

doi:10.1371/journal.pone.0108851.t004

transcription factor Y [55]. In Eugenia uniflora, miR530 targets
wall-associated receptor kinase-like 14, S-acyltransferase tip-1 and
a protein of unknown function in rice [56,57]. In a recent study in
maize plants that were resistant to the fungus Exserohilum
turcicum, miR530 was identified as a novel miRNA and was
predicted to target genes that are involved in kinase activities in
addition to DNA-binding TFs [58]. Based on the significant
upregulation of miR530 in response to Fusarium infection and its
unique target genes in the chickpea, it appears to be involved in
the response to pathogen attack.

The three legume-specific miRNAs (miR2111, miR2118 and
miR5213) play critical roles during pathogen attack. In the
chickpea, miR2111 targets a Kelch repeat-containing F-box
protein. F-box proteins are responsible for the controlled
ubiquitin-dependent degradation of cellular regulatory proteins
and are involved in defense responses, auxin responses and floral
organ development [59,60,61]. Targets of F-box proteins are
central regulators of key cellular events and include G1 cyclins and
inhibitors of cyclin-dependent kinases [62]. It appears that
miR2111 and F-box proteins act together to regulate the defense
response in chickpea following biotic stress. Other than F-box
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proteins, miR2111 also targets TIR domain-containing NBS-LRR
disease resistance proteins. miR2118 and miR5213 also target the
same class of R genes. TIR, which is an F-box protein, is a
receptor for the plant hormone auxin [63,64,65,51], and LRR
consists of tandem Kelch repeats [66]. Interestingly, the chickpea
miR2118 was upregulated in response to wilt infection and down
regulated following salt stress. miR2118 has also been shown to be
suppressed after Verticillium fungal attack in cotton [67].
Fusarium wilt leads to symptoms that are similar to those of
Verticillium wilt, whose common host plant is cotton. miR2118
functions through three novel target transcripts encoding TIR-
NBS-LRR disease resistance proteins, but its functional regulation
remains unclear. In the soybean, miR2118 targets the protein
family that is associated with disease resistance in addition to zinc
finger proteins [55] and replication termination factor 2 in
response to biotic (Asian soybean rust) and abiotic (water
deficiency) stresses [35].

Other miRNAs also target disease resistance genes. For
example, novel car-miRNA023 target proteins are involved in
disease resistance. The highly conserved miRNA171 family targets
more than 20 genes that are involved in different processes and
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A
10/10 B
TC04758 CUGGAAUGAAGCCUGGUCCGE
ol trttttttiittitlle
miR166 CCCCUUACUUCGGACCAGGCU
300bp
TC04758 Cleavage site of miR166
(class lll HD-ZIP family protein) S I 100bp
TCAAAGGCTACTGGAACTGCTGTTGAGTGGGTCCAAATGCCTGGAATGAAGCCTGGTCC
GGATTCCATTGGAATCGTTGCTATTTCTCATGGTTGCACTGGTGTGGCAGCAAGAGCTTGT (o

GGTCTAGTGGGACTAGAACCCACTAGGGTTGCAGAAATCCTCAAAGACCGTCCTTTGTGG
TTTCGCGATTGCCGAGCTATTGATATTGTCAATGTGCTGCCCACTGCAAATGGTGGAACCA
TTGAGCTGCTTTATATGCAGCTATATGCACCAACCACATTGGCACCTGCTCGAGACTTCTG

M- 100 bp DNA ladder
1- amplification using gene specific

GTTGTTACGCTACACTTCTGTTGTAGAAGACGGCAGCTTAGTGATCTGTGAGAGGTCTCTT ol Pimer o
AAAAATACTCAAAATGGTCCAAGCATGCCTCCTGTGCCGCATTTTGTTAGAGCAGACATGE 1 BT te: g gene sp

TGCCTAGTGG

Figure 6. Mapping of target mRNA cleavage site of miR166 by modified 5’ RACE. The target of miR166 (TC04758) encodes a transcription
factor belonging to class Il of the HD-ZIP family protein. The arrow indicates the cleavage site, and the numbers above the arrow denote the
frequencies of the sequenced clones.

doi:10.1371/journal.pone.0108851.9g006
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pathways in the chickpea. One particular member, miR171_7,
targets a disease resistance-responsive dirigent-like protein (DIR).
The conspicuous involvement of disease resistance genes in the
response to pathogen attack has been previously established. EST's
encoding dirigent proteins were identified in the SSH library of a
chickpea that was infected with Fusarium wilt [68]. Dirigent
proteins impart disease resistance through their involvement in
lignification during biotic stress. Similar studies have been
reported involving Gossypium barbadense that was infected with
Verticillium fungus, in which two DIR genes were isolated from
the SSH library [69].

Many of the genes that are targeted by miRNAs are involved in
disease resistance and growth-related processes. Therefore, it can
be surmised that these miRNAs are involved in the regulation of
plant development and pathogen growth by acting both as positive
and negative regulators, depending on their target genes.

Expression patterns during abiotic stress
Our library allowed for the identification of a large number of
conserved salt-responsive miRNAs, including miR390, miR172,

miR171, miR169, miR408, miR159, miR396, miR2111,
miR5213, miR397, miR393, miR162, miR168, miR166,
miR167, miR156, miR530, miR399, miR160, miR319,

miR 164, miR398, miR2118 and miR394. Among these miRNAs,
miR156, miR396 and miR319 were upregulated in response to
salt stress, which was confirmed using qRT-PCR. Our results
agreed with a previous study involving Arabidopsis, in which 10
salt-responsive miRNAs (miR156, miR165, miR319, miR393,
miR396, miR167, miR168, miR171, miR152 and miR394) were
reported to be involved in the high salinity stress response [70]. In
the chickpea, the transcript levels of miR156 family members were
elevated in response to salt stress compared with those of miR166
and others as has been reported in previous studies. Some of the
miRNAs that are regulated under salt stress in other plant systems
were not found in our library. This phenomenon may be due to
different stages or stress conditions; i.e., particular treatment
methods or species-specific responses.

Previous studies have demonstrated that miR169 family
members are associated with high salt stress [71]. From our target
prediction analysis, miR169-targeted genes belong to the nuclear
TF family, which contains a CCAAT-binding complex. This
CCAAT-binding complex is a eukaryotic promoter element that is
evolutionary conserved [72]. Recent studies have demonstrated
that these proteins play significant roles in abiotic stress-response
pathways [39,73]. The genes that are targeted by miR169 function
in transcriptional regulation, suggesting their significant involve-
ment in the salt stress response.

In this study, the salt-responsive miRNA miR390 explicitly
targeted protein kinases and the CZF1 TF. The CZF TF is
associated with intracellular signal transduction, is involved in the
negative regulation of programmed cell death and responds to
fungal attack via plant defense mechanisms. CZF1 contains a zinc
finger with a CCCH-type domain and has been reported in
Arabidopsis thaliana to be salt-inducible. A parallel study in
upland cotton reported that the LZF TT acted in response to salt
stress [74], and its network of protein-protein interactions was
deduced. The chickpea miR396 exhibited higher expression levels
under salt stress and was also reported to be salt-responsive in rice.
Additionally, transgenic lines over expressing osa-mir396¢ showed
reduced tolerances to salt and alkali stresses compared with wild
type plants [75].

In our analysis of the miRINA expression data under both biotic
and abiotic stresses, few were upregulated under both types of
stresses. miR396 and a member of the miR156 family were
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upregulated in response to both the wilt and salt stresses at levels of
approximately 1.5-fold, indicating the relative similarity between
fungal infection- and salinity stress-responses in the chickpea,
which was stated in a previous report, in which the chickpea
responded to fungal infection (Ascochyta blight) more similarly to
high salinity stress than to drought or cold stresses [76].
Additionally, cross talk exists between the stress-signaling pathways
that involve several kinases and TFs that are important targeting
candidates for several miRINAs under wilt and salt stresses [77,78].
Our data indicate that miR172, miR319, miR171, miR390 and
miR396 have serine/threonine protein kinases and MAPK protein
kinases as their target genes, which involve signaling pathways. It
can be presumed that together, these miRNAs might mediate
defense mechanisms under stress conditions via transcriptional
regulators. miRNAs also target genes that are directly or indirectly
involved in the defense against various stresses. For example, car-
miRO08 targets a chalcone synthase gene, which is an intermediate
in flavonoid biosynthesis. Flavonoids are secondary metabolites
that serve variable functions, including those involving pigmenta-
tion, UV protection and antifungal defense. Therefore, it can be
conferred that these miRNAs come into play during stress
management in plants by targeting the genes that are involved
either directly or indirectly.

The explicit role of miRNAs in regulating defense mechanisms
by the complementary binding of target genes is evident through
exhaustive literature reviews. This study will aid in the elucidation
of the stress response mechanisms that are utilized by the chickpea.
Further, there is limited available knowledge describing compre-
hensive studies of miRNA expression in the chickpea in response
to particular stresses.

Materials and Methods

Plant materials and stress treatments

The chickpea cultivar ICC4958 was used throughout the study.
1CC4958 1s a Fusarium wilt-resistant and salt-sensitive chickpea
cultivar [79,45]. The plants of the ICC4958 cultivar were grown
on a 16-h day/8-h night photoperiod cycle at 25+2°C. Fourteen-
day-old seedlings were subjected to the wilt and salt stresses
separately. The stress treatments were performed as follows: for
wilt stress, two-week-old plants that were grown under hydroponic
conditions were exposed to a toxin that was isolated from the
fungus Fusarium oxysporum f.sp. ciceris for one day. For salt stress,
the roots of two-week-old seedlings were immersed in a 150 mM
NaCl solution for 12 h. All of the tissues (control, wilt-stressed and
salt-stressed) were harvested at their respective time points, snap-
frozen in liquid nitrogen and maintained at —80°C for further
analyses.

Small RNA library preparation and sequencing

Total RNA was isolated using the TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s protocol.
For the construction of the small RNA library, low molecular
weight (LMW) RNA was enriched by the LiCl method. Equal
amounts of RNA were pooled from the root and shoot tissues for
each group to generate a LMW RNA library. The RNA was run
on a 15% polyacrylamide gel, and the 20 to 30 nt small RNA
fraction was extracted and eluted. A preadenylated adaptor was
ligated to the 5" end of the small RNAs with T4 ligase. The
ligation product was eluted, and subsequently, 3" end adaptor
ligation was performed [80] followed by RT-PCR. The PCR
products were checked for quality and quantified using a
Bioanalyzer (Agilent, Germany). The samples were then se-
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quenced using the Illumina Genome Analyzer IIx (Illumina Inc.,

USA).

Computational sequence analysis for identification of
miRNAs

The total reads were trimmed and filtered using the UEA small
RNA workbench 2.4- Plant version sequence file pre-processing
tool (http://srna-tools.cmp.uea.ac.uk/) [81]. The unique tags were
generated following a series of processing steps, which included
adaptor trimming (using the adaptor removal tool), the elimination
of low-quality sequences and the removal of contaminated and
other non-coding RNAs, including tRNAs, rRNAs, etc. The UEA
sRNA toolkit-Plant version filter pipeline (http://srna-tools.cmp.
uea.ac.uk/) was used to exclude the low-complexity and low-
quality sequences and eliminate the t/r RNA population by
mapping them to plant t/r RNAs from the "Rfam" database,
Arabidopsis tRNAs from “The Genomic tRNA Database” and
plant t/TRNA sequences from the “EMBL” release 95. Then, the
miRCat pipeline (miRNA categorization) was used to predict
novel miRNAs and their precursors using default parameters [82].
The secondary structures of the small RNA sequences were folded
using RNAfold (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi)
to predict potential miRNA precursors. The small RNA sequences
that had characteristic hairpin structures, together with additional
minimal folding free-energy indices (MFEI) [83,84], were consid-
ered to be candidate miRNAs by miRCat. The small RNA
sequences that matched the following criteria were considered to
be valid miRNA precursors: 1) no more than 3 consecutive
mismatches between the miIRNA and miRNA*; i1) at least 17 of
the 25 nt surrounding the miRNA must be involved in base
pairing; iii) the hairpin must be at least 75 nt in length; and iv) at
least 50% of the bases in the hairpin should be paired. The folding
structures of the precursors of the new miRNA with the miRNA*
were carried out using the UEA sRNA toolkit-RNA hairpin
folding and annotation tool, which uses the Vienna Package to
obtain the secondary structure of a precursor sequence, highlight-
ing the miIRNA/miRNA* sequences on the hairpin structure [85].
The data discussed in this publication has been deposited in Gene
Expression Omnibus [86] repository under the accession number
GSE57857 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
=GSE57857).

miRNA validation by poly(A) tail assay-based quantitative
real-time PCR (qRT-PCR)

The predicted chickpea miRNAs were validated by performing
poly(A)-tailed RT-PCR on sixteen miRNAs, including eleven
conserved and five novel miRNAs. The total RNAs from the
treated and control samples were extracted using the TRIzol
reagent (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s instructions. A 1-ug aliquot of this RNA was used
for the poly(A) tailing using the Poly(A) Tailing Kit (Ambion, USA)
according to the manufacturer’s instructions and then purified
using the RNeasyMinElute Cleanup Kit (QIAGENGmBH,
Germany). The poly(A) RNA (2 ug) was then reverse-transcribed
into cDNA that was primed by a standard poly(T) anchor adaptor
using an RTQ) primer. For the RT-PCR reaction, the conditions
were as follows: 65°C for 10 min, 4°C for 2 min, 50°C for 60 min
and 70°C for 15 min. Three biological replicates per sample were
used for the analyses.

The poly(T) cDNA was diluted 10-fold and used to perform
qRT-PCR using KAPA FAST SYBR Green chemistry (Kapa
Biosystems, USA). For the qRT-PCR, the sequences of the specific
miRNAs that were validated served as the forward primer and
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RTQ uni-primer, having an adaptor sequence as the reverse
primer (Table S7). The 5S rRNA was used as the reference gene
for all of the reactions. Three biological replicates were used per
sample in addition to three technical replicates along with a no-
template control and no-RT enzyme control. The data were
analyzed using the 2[-Delta DeltaC(T)] method [87] and reported
as the means = standard errors (SE) of three biological replicates.

Prediction and validation of chickpea miRNA target
genes

The chickpea transcript dataset, which was downloaded from
the chickpea transcriptome database (CTDB), was used to
determine the potential target mRINA candidates for the miRNAs
using the psRNATarget program with default parameters (http://
plantgrn.noble.org/psRINATarget/). To reduce the false-positive
prediction rate, the cut-off threshold was set at 0 to 3.0 points.
Thus, all of the sequences with =3.0 points were considered to be
miRNA targets. The functional annotations of the predicted target
transcripts were performed using the NCBI nucleic acid and
protein databases. Based on the predicted data, miRNA166 was
validated using modified 5 RACE. For this validation, the
FirstChoice RLM-RACE Kit (Ambion, USA) was used with minor
modifications, and the cDNA amplification was carried out using
1 pg of total RNA. A single PCR fragment was cloned into the
pGEM-T Easy Vector (Promega, USA) and sequenced to identify
the 5'end of the target gene.

Analyses of GO terms and KEGG pathways

The GO terms of the target genes were annotated according to
their biological processes, molecular functions or involvement as
cellular components using Blast2GO [88]. The enzyme mapping
of the annotated sequences was performed directly using the GO
terms, and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) was used to define the KEGG orthologs.
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Table S1 Conserved miRNAs that were identified in the
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(XLSX)
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(XLSX)
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pea miRNAs.
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(XLSX)

Table S5 List of the target genes that were identified for
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