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Abstract

In the last two decades, complex traits have become the main focus of genetic studies. The

hypothesis that both rare and common variants are associated with complex traits is increasingly

being discussed. Family-based association studies using relatively large pedigrees are suitable for

both rare and common variant identification. Because of the high cost of sequencing technologies,

imputation methods are important for increasing the amount of information at low cost. A recent

family-based imputation method, GIGI, is able to handle large pedigrees and accurately impute

rare variants, but does less well for common variants where population-based methods perform

better. Here, we propose a flexible approach to combine imputation data from both family- and

population-based methods. We also extend the association test SKAT-RC, originally proposed for

data from unrelated subjects, to family data in order to make use of such imputed data. We call

this extension “famSKAT-RC”. We compare the performance of famSKAT-RC and several other

existing burden and kernel association tests. In simulated pedigree sequence data, our results show

an increase of imputation accuracy from use of our combining approach. Also, they show an

increase of power of the association tests with this approach over the use of either family- or

population-based imputation methods alone, in the context of rare and common variants.

Moreover, our results showed better performance of famSKAT-RC compared to the other

considered tests, in most scenarios investigated here.
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Introduction

In the last two decades, complex traits have become the main focus of genetic studies.

Complex traits are likely to be influenced by variants in several genes located on different
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chromosomes [Bodmer and Bonilla 2008; Frazer, et al. 2009]. Many plausible hypotheses

postulate the implication of multiple genetic factors in complex traits, including copy

number variations (CNV), gene-gene and gene-environment interactions, and multiple rare

variants [Bansal, et al. 2010b]. Linkage analysis in pedigrees has succeeded in identifying

mutations in multiple genes for rare Mendelian forms of some complex traits [Delepine, et

al. 1997; Goate, et al. 1991; Paunio, et al. 2001; Polymeropoulos, et al. 1997; Saad, et al.

2011; Schellenberg, et al. 1992; Zimprich, et al. 2004]. For some of these traits, Genome

Wide Association Studies (GWAS) in data of unrelated subjects have also succeeded in

identifying common variants in the same genes discovered by linkage analysis, such as the

gene SNCA associated with Parkinson’s disease [Nalls, et al. 2011; Saad, et al. 2011]. This

suggests that there is a continuum between the spectrum of rare and common variants

associated with complex traits, which signifies the investigation of the “Multiple Rare and

Common Variants - Complex Disease” (MRCV-CD) hypothesis. The MRCV-CD

hypothesis states that rare and common variants are both jointly involved in at least some

complex traits [Curtis 2012; Ionita-Laza, et al. 2013].

For common variant identification, the majority of GWAS are based on population-based

designs that use unrelated subjects. For adequate sample sizes, GWAS are relatively

powerful for identifying common variants [Risch and Merikangas 1996], which generally

have moderate to small effects on complex traits. However for detecting rare variants, which

are likely to have large effects and possibly obvious functional consequences [Cirulli and

Goldstein 2010], GWAS with unrelated subjects lack power for available/feasible sample

sizes. In this context, traditional family-based linkage analyses, which are fairly robust to

allelic heterogeneity [Ott 1991], are well known to be more powerful. Nonetheless, the rare

functional variant model is not inconsistent with the absence of secure linkage evidence for

most common diseases [Cirulli and Goldstein 2010]. Therefore, family-based GWAS appear

to be an attractive and well suited option for the study of rare variants. Their advantage is

the enrichment of copies of rare alleles in pedigrees [Wijsman 2012]. Unlike linkage

analysis, family-based GWAS are also powerful for identifying association with common

variants. The reason this design has not yet been widely used is the difficult and expensive

need to sample family members coupled with some limitations to available analytical tools

[Bansal, et al. 2010b]. With the increasing discussions about the involvement of both rare

and common variants [Curtis 2012; Gibson 2011; Ionita-Laza, et al. 2013; Iyengar and

Elston 2007], separately or jointly in complex trait etiologies, and development of suitable

analytical tools, family-based GWAS have become practical, and useful for the

identification of new susceptibility genes. Several association tests have been proposed to

deal with rare and common variants jointly, such as SKAT/famSKAT [Chen, et al. 2013;

Schifano, et al. 2012; Schifano, et al. 2013; Wu, et al. 2011], SKAT-RC [Ionita-Laza, et al.

2013], and CMC (Combined Multivariate Collapsing, [Li and Leal 2008]). The last two tests

split rare and common SNPs into two bins and treat them separately via a kernel test

(SKAT-RC) and multiple regression (CMC) framework. The SKAT-RC and CMC tests

have been proposed for population-based designs but not yet for family-based designs.

With the rapid advances of current sequencing technologies, rare and common variants can

be genotyped at the same time. The genotyping quality depends on several factors including
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sequencing depth. The required sequencing depth for good genotyping quality of rare

variants is greater than that required for common variants [Bansal, et al. 2010a]. Despite the

decrease in sequencing costs, performing large GWAS on sequence data is still cost-

prohibitive. In addition, some subjects cannot be sequenced because of the absence of DNA

or its low quantity and quality (especially for diseases with late onset age [Jacobs, et al.

2012; Laurie, et al. 2012]). Interestingly, the pseudo-sequencing strategy based on

imputation makes these studies more affordable. This strategy consists of combining

sequence data on a small subset of subjects with SNP or other marker data on the remaining

subjects to finally obtain imputed sequence data for the un-sequenced subjects. The idea of

imputation came from family-based designs: in the same pedigree, subjects share large

chunks of chromosomes, typically quantified by identity by descent estimates (IBD). So

basically, if we know the chromosome marker allele data on a few subjects at a particular

marker position and we know how these chromosomes are transmitted in the pedigree, we

may impute the missing chromosome marker alleles on all pedigree subjects who inherited

the same copy of the chromosome at the position of the marker. The same idea has been

extended to population-based designs [Li, et al. 2009] under the assumption that all humans

belong to one big family with a large number of generations. Therefore, the shared chunks

of chromosomes between unrelated subjects are much smaller than the shared chunks

between family subjects. These small chunks of chromosomes are typically quantified by

linkage disequilibrium (LD) blocks. LD and IBD are orthogonal sources of correlation

information used by population-based (MACH [Li, et al. 2006], IMPUTE [Marchini, et al.

2007], and BEAGLE [Browning and Browning 2009]) vs, family-based (MERLIN

[Burdick, et al. 2006] and GIGI [Cheung, et al. 2013]) imputation methods, respectively.

Family-based imputation is especially challenging for large pedigrees. GIGI (Genotype

Imputation Given Inheritance) is able to handle large pedigrees, accurately impute rare

variants (Minor Allele Frequency (MAF) ≤ 0.01), and also impute data on completely

untyped subjects. However, GIGI’s authors showed in a limited evaluation that for common

variants, GIGI can be moderately outperformed by the population-based imputation method

implemented by BEAGLE, which ignores pedigree structure. On the other hand, they

showed that BEAGLE has much poorer imputation performance for rare variants. These

conclusions were not investigated for different LD patterns or for a variety of pedigree

structures. Yet, if the LD between common SNPs is low, the imputation accuracy of

BEAGLE decreases [Browning and Browning 2009] and hence GIGI may provide better

accuracy in such regions, even for common SNPs. In addition, for the spectrum of

uncommon variants with MAF ranging between 0.01 and 0.1, the best imputation accuracy

might come from either GIGI or BEAGLE. Therefore, a natural question is how to combine

the orthogonal sources of correlation information used by GIGI (IBD) and BEAGLE (LD) in

order to increase the imputation accuracy in family-based designs and then to efficiently

perform association studies under the MRCV-CD hypothesis.

In Genetic Analysis Workshop 18, a first attempt to combine imputation data from GIGI and

BEAGLE was made, providing promising results [Marchani, et al. (in press)]. In our study

here, we extend this idea and propose a practical and flexible approach to combine

population-and family-based imputation data in large pedigrees. We call this approach

“GIGI+BEAGLE”, because it uses imputed data from both GIGI and BEAGLE, although
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different imputation methods or programs could be used. We evaluate the imputation

accuracy of the combined approach via simulation of sequence data on large pedigrees under

low and high LD patterns. In addition, we extend the SKAT-RC test to family-based designs

(famSKAT-RC), we evaluate its statistical performance, and also the performance of two

other association tests: 1) famSKAT [Chen, et al. 2013; Schifano, et al. 2012], and an

extension of CMC (Combined Multivariate Collapsing [Li and Leal 2008]) that we propose

for family data (famCMWS; Combined Multivariate Weighted Sum). Furthermore, we show

a considerable gain of power using imputed data from the combining approach, and also

using the famSKAT-RC test, for a variety of scenarios. We implemented famSKAT-RC in

R, based on the source code of famSKAT [Chen, et al. 2013] and SKAT [Wu, et al. 2011],

and GIGI+BEAGLE in a C program. The source code of the programs is available at http://

faculty.washington.edu/wijsman/software.shtml.

Material and Methods

Imputation

Family-based imputation—We used GIGI [Cheung, et al. 2013] to impute untyped

SNPs in pedigree data, proceeding pedigree by pedigree. For a pedigree of size N, suppose

that we have dense SNP data (e.g. sequence data) for Nd subjects and sparse SNP data (e.g. 1

SNP each ~0.5 centi-Morgan (cM)) for all subjects. To impute the dense SNP genotypes on

the N-Nd subjects, this method starts by using inheritance vector (IV) realizations estimated

on the sparse SNP data for all subjects. We used the gl_auto program implemented in

MORGAN to obtain these IV realizations [Thompson 2011]. Then, based on these IV

realizations, the dense SNP data, the meiotic map, the allele frequencies of the dense SNPs,

and the pedigree structure, GIGI calculates the probabilities (pAA, pAa, and paa) of the three

possible genotypes (AA, Aa, aa), the allelic dosages toward the minor allele “a” (Allelic

Dosage = 2 × paa + 1 × pAa + 0 × pAA), and the best-guess genotypes for each N-Nd subject

at untyped dense SNPs. The mathematical and other details concerning GIGI are described

elsewhere [Cheung, et al. 2013]. To provide intuition, recall that GIGI imputes SNPs one by

one, ignoring the LD information between them. Its method is based on relating the founder

genome labels (FGL) to the corresponding allelic types (A, a) via IBD graphs. FGLs, which

represent the IBD pattern, are given by the gl_auto package in MORGAN. In brief, GIGI

uses three principles based on inheritance in pedigrees to assign allelic types to FGLs. First,

GIGI uses the concept of “phasing” a SNP genotype with respect to a pair of FGLs in an

individual [Wijsman 1987]. Phasing in an individual, or equivalently, assigning each of two

SNP alleles in an individual to one of the two FGLs in the individual, can occur only when

the SNP is homozygous in that individual. This phasing is frequency dependent, with a

lower probability of occurrence per individual for SNPs with higher MAF than for SNPs

with lower MAF. Second, GIGI uses the information that IBD, as represented by a particular

FGL, implies that once an allelic type has been assigned to an FGL anywhere in a pedigree,

that allelic type can be assigned to all carriers of that FGL. This results in phasing of

heterozygote SNP genotypes to their respective FGLs, when one of the two alleles was

previously phased as a homozygote within an individual. Finally, any subjects who share the

same pair of FGLs must also share both allelic types, even if the particular allelic types
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cannot be phased relative to the pair of FGLs. These latter two principles are frequency

independent since they depend only on allelic or genotypic IBD.

Population-based imputation—We used BEAGLE [Browning and Browning 2009] to

impute untyped SNPs assuming that all pedigree subjects are unrelated. This method uses

LD information between SNPs rather than IBD information between subjects. BEAGLE

puts all subjects having dense SNP data (Dense SNP Subjects, DSS) across all pedigrees in a

first pool, which forms the reference panel, and the subjects that have only sparse SNP data

in a second pool. Then, using a general class of hidden Markov models (HMMs), it infers

the haplotype phase of both pools’ subjects, and based on the estimates of phased haplotypes

of the first pool’s subjects, it imputes the second pool’s subjects at their untyped dense

SNPs. For these SNPs, BEAGLE calculates the probabilities of the three possible genotypes

(AA, Aa, aa), the allelic dosages, and the best-guess genotypes. In the population-based

imputation methods, the density of sparse SNPs and the size of the reference panel (number

of DSS) are important factors that influence the imputation accuracy. In general, the

imputation accuracy increases with the density of sparse SNPs and the reference panel

sample size [Badke, et al. 2013; Pei, et al. 2008]. For data consisting of low density sparse

SNPs, like that used for GIGI, BEAGLE is unlikely to be able to accurately impute any

untyped SNP. This is because the LD between distant SNPs (~500 Mbp) is generally very

low. However, note that unlike GIGI that requires the DSS to be selected from the

pedigrees, BEAGLE can use external DSS (e.g., 1000 Genomes Project) and can, therefore,

impute variants that are not observed in the sequenced pedigree subjects.

Data combination of GIGI and BEAGLE imputation (GIGI+BEAGLE)—We

propose a flexible approach to combine family-based and population-based imputation

results. We called our approach here GIGI+BEAGLE because we used GIGI and BEAGLE

independently as family- and population-based imputation methods, respectively.

Alternative programs and methods could also be used with the expectation of similar results.

Our approach is based on a vote strategy between both imputation methods. For every SNP

of every individual, we choose the most certain imputation allelic dosage given by either of

these methods (GIGI and BEAGLE). The decision criterion of selecting one of the two

allelic dosages is based on the highest variance among the corresponding genotype

probabilities. The motivation for using this measure comes from the fact that the lowest

variance comes from the set of the following probabilities: p0=0.333, p1=0.333, and

p2=0.333 (p0=pAA, p1=pAa, and p2=paa). This means that the imputation approach cannot

choose any one of the three possible genotypes over another. On the other hand, the highest

variance results from one of the following sets of probabilities: (pAA, pAa, paa) = (0, 0, 1), (0,

1, 0), or (1, 0, 0). These three cases mean that the imputation approach is able to definitively

call one of the three possible genotypes. Figure 1 shows all possible probability sets and

their variances.

Our strategy splits SNPs into two bins: SNPs with rare minor allele (SNPs with MAF≤0.01),

which we call “rare” SNPs, and SNPs with common minor allele (SNPs with MAF>0.01),

which we call “common” SNPs. For common SNPs, it selects the set of three probabilities

having the highest variance between GIGI’s and BEAGLE’s estimates and calculates the
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corresponding allelic dosage. For rare SNPs, as GIGI clearly has the advantage over

BEAGLE because of the low LD between rare and common SNPs, we weight the variance

of BEAGLE probabilities of rare SNPs by their imputation accuracy estimates, R2,

calculated by BEAGLE. In general, the R2 values of rare SNPs are very small and usually

equal to zero. Therefore, allelic dosages will come from GIGI for the majority of rare SNPs.

In the rare case of a tie between GIGI and BEAGLE (equal variances), the allelic dosages

come from GIGI for rare SNPs and come from BEAGLE for common SNPs.

We also considered two different approaches to combine data from GIGI and BEAGLE. The

first one, which we call G+B+T (GIGI+BEAGLE+Threshold), merges data of rare and

common SNPs based on MAF threshold: It extracts allelic dosages of rare SNPs from GIGI

and allelic dosages of common SNPs from BEAGLE. The second one, which we call G_S

+B (GIGI strict+BEAGLE), first extracts the most certain genotypes (dictated by the

pedigree structure) given by GIGI for both rare and common SNPs using very strict

imputation calling thresholds (t1=0.999 and t2=0.999); that is, only the very confident

genotypes are used and the remaining genotypes are set to be missing. Then, it fills in these

missing genotypes by their corresponding allelic dosages from the GIGI+BEAGLE

approach. G_S+B uses both best-guess genotypes and allelic dosages. If the best-guess

genotypes are not accurate, G_S+B may face a decrease of imputation accuracy. This

approach is similar to the GAW18 study [Marchani, et al. (in press)] as the authors used

strict imputation calling thresholds for GIGI. However, they used the BEAGLE best-guess

genotypes rather than allelic dosages, used in our combining approach.

Association analysis

Several association tests have been proposed to deal with rare and common SNPs jointly,

such as SKAT/famSKAT [Chen, et al. 2013; Schifano, et al. 2012; Wu, et al. 2011], SKAT-

RC [Ionita-Laza, et al. 2013], and CMC [Li and Leal 2008]. The last two tests split rare and

common SNPs into two bins and treat them separately via a kernel test (SKAT-RC) and a

multiple regression (CMC) framework. The SKAT-RC and CMC tests have been proposed

for population-based designs. We propose extensions of these two tests to family-based

designs, famSKAT-RC and famCMWS. In famCMWS, rare SNPs are collapsed into a

mega-variable, which is treated as single variable with common SNPs, each separately, as

fixed effects. However in famSKAT and famSKAT-RC, all SNPs are treated separately and

considered as random effects. All these tests account for family relationships through a

random effect structured by the kinship matrix. Unlike famSKAT and famSKAT-RC,

famCMWS suffers when the effects of associated SNPs are in opposite directions. However,

we do not consider this scenario in our simulations because it has been widely discussed in

the literature and SKAT-type tests are generally expected to outperformed the burden-type

tests [Chen, et al. 2013; Schifano, et al. 2012; Wu, et al. 2011].

We performed association analysis on a quantitative trait, only, using four tests: famSKAT,

famSKAT-RC, famCMWS, and famSKAT-B, which is similar to famSKAT but with rare

SNPs collapsed as in famCMWS. We used this test as a parallel comparison with

famCMWS (with same variables in the model). We compared these four tests, in the

sequence data, while taking only associated SNPs in the analysis into account, or including
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both associated and non-associated SNPs in the analysis. In the different imputation

datasets, we only used famCMWS taking only associated SNPs in the analysis into account.

Performing the other tests would lead to the same conclusions.

Before describing the models, we introduce the following notation:

Y is the vector of quantitative trait values of all N individuals;

R(N×r) = [wR,1R1 … wR,jRj … wR,rRr] and C(N×c) = [wC,1C1 … wC,jCj … wC,cCc] are the

weighted genotype matrices of the N individuals at the r and c rare and common SNPs in a

region of interest (e.g. gene), where genotypes are coded as the number (or the expected/

estimated number in imputation) of copies of minor alleles. The variables wR,. and wC,. are

the weights for rare and common SNPs, respectively, where  [Wu, et al.

2011] and  [Ionita-Laza, et al. 2013];

X(N×p) = [X1 … Xj … Xp] is the matrix of p covariates;  is the

vector of individual specific random effects where  is the genetic variance, Φ(N×N) is a

matrix of twice the coefficient of kinship between pairs of individuals, and I(N×N) is the

identity matrix. Note that the use of twice the coefficient of kinship is important if one want

to correctly estimate the value of . In our analysis, it is just a scaling parameter;

and finally,  is the vector of residual errors where  is the

residual variance.

Combined Multivariate Weighted Sum approach accounting for family
relationship: “famCMWS”—The famCMWS model is

where: α(p,1), βr(1,1), and βc(c,1) are the fixed effect coefficients. To test the association

between the trait and the region of interest, we used the log likelihood ratio test (LRT) to

compare the two models M0: Y = Xα + u + ε and

. The test statistic is twice the difference of the

two models’ likelihoods: , where L0 and L1 are the

likelihoods of M0 and M1, respectively. This test corresponds to the null hypothesis H0:βr =

0, βc = 0. In real data analysis, if this test gives significant results, we should consider testing

H0:βr = 0, or H0:βc = 0 in order to determine if the test is driven by rare or common SNPs

alone.

Sequence Kernel Association Test accounting for family relationship:
“famSKAT-RC”—The famSKAT-RC model is
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where βr(r,1) and βc(c,1) are the vectors of random effect coefficients of rare and common

SNPs, respectively, with E(βr) = 0, E(βc) = 0, Var(βr) = ϕτ, Var(βc) = (1 − ϕ)τ, τ is a

variance component, and ϕ is the part of the variance explained by rare SNPs. The log-

likelihood is

where . The first derivative of the log-

likelihood respect with τ is

Testing the null hypothesis of βr = βc = 0 is equivalent to testing the null hypothesis of τ = 0.

Under this null hypothesis, , and the score test statistic is written as:

It is straightforward to see that this test is equivalent to the original famSKAT for rare SNPs

if ϕ = 1 or for common SNPs if ϕ = 0. In our analysis, we compared the performance of

famSKAT-RC for three different values of ϕ:0.3, 0.5, and . The test using

the last value was used by [Ionita-Laza, et al. 2013] and yielded greater power than the test

that uses a grid of different values ϕ(0, 0.25, 0.5, 0.75, 1).

The statistic Q follows a sum of chi-square distributions with one df each [Zhang and Lin

2003]:

where λis are the eigenvalues of the matrix , P = V̂−1 −

V̂−1X(XV̂−1X′)−1X′V̂−1. P-values can be estimated analytically using the Davies

approximation [Lee, et al. 2012; Wu, et al. 2011]. Note that the nuisance parameter ρ used in

[Jiang and McPeek 2014; Lee, et al. 2012] to combine the advantages of both burden and

kernel tests was not implemented in our model and will be implemented in future studies.
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Simulation

We simulated sequence data on a large collection of extended pedigrees extracted from an

Alzheimer’s disease cohort under study at the University of Washington. These pedigrees

are therefore representative of what may be found in a real study. We considered five

datasets: 1) D1: All subjects are sequenced; 2) D2: 20% of subjects are sequenced and the

remaining subjects, which have sparse SNP data, are imputed using GIGI (same strategy of

[Saad and Wijsman 2014]); 3) D3: This dataset is the same as the previous one except that

imputation was carried out using BEAGLE; 4) D4, D5, and D6: These three datasets are the

combination of D2 and D3 using the GIGI+BEAGLE, G+B+T, and G_S+B approaches,

respectively.

Simulated Sequence Data

We used the same simulation strategy used in a previous study [Saad and Wijsman 2014] to

obtain 100 semi-realistic sequence datasets that mimic the 1000 Genomes Project sequence

data [Abecasis, et al. 2010]. Briefly, we simulated 20,000 haplotypes for a region of 10

Mbp. In the center of this region, we considered a gene of 30 Kbp length (313 SNPs). We

considered two LD pattern scenarios: LowLD and HighLD. From the pool of 20,000

haplotypes, we started by randomly selecting haplotypes, without replacement, for the

unrelated founders. Then, we passed the haplotypes down through the generations (the

number of generations varies between three and five) using a recombination rate of 1% per

cM per meiosis. We repeated this last step 100 times for each LD pattern to obtain 100

sequence datasets.

We considered 40 pedigrees with mean size 30 subjects, and sizes ranging from 20 to 53

subjects. The pedigrees we considered contain a total of 1197 subjects (384 founders).

Simulated Phenotype

Type 1 Error and Power simulation—For each simulated sequence dataset, we

simulated 100 quantitative traits under the null hypothesis of no association. We fitted the

model Y = ε where ε follows a multivariate normal distribution N(0, Σ), with Σ = h2Φ + (1 −

h2)I. We fixed the genetic variance due to polygenic effects as  and the residual

variance as , so the heritability is . This model has genetic variation

defined by the pedigree structure but not by the gene.

Under the alternative hypothesis of association, we simulated 100 quantitative traits for each

simulated sequence dataset by fitting the model: Y = GAβA + ε where βA is the vector of

effect sizes of the “A” associated SNPs, GA is the (N × A) matrix of their genotypes and ε is

defined above (type 1 error simulation). The effect sizes of the associated SNPs were

determined by the function , where MAFj is the minor allele

frequency of the associated SNP j estimated in the generated sequence data, and  is the

total additive variance of all associated SNPs combined. The genetic variation of this model

is defined by both pedigree structure and associated SNPs. In our simulation, we set the total
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additive variance to 1%, so 99% of the genetic variance is not explained by SNPs in the

gene. We tuned the value of the total additive variance in such a way that the power of the

association test is neither very low nor very high to maximize power differences among the

methods. We randomly selected associated SNPs from the list of rare and common SNPs in

the gene and we varied their numbers as 10 and 20. We also varied the proportion of rare (fr)

and common (fc) associated SNPs among all associated SNPs as (fr, fc) = (0.7, 0.3) and (0.5,

0.5). We also added non-associated SNPs in the model for some settings. We set the number

of non-associated SNPs (U) as the double of the number of associated SNPs (U=2A), using

the same proportions of common SNPs, fc. Note that all associated SNPs have the same

effect directions.

We estimated both type 1 error and power rates at threshold α as the proportion of replicates

for which the p-value of the association test is lower than α.

Imputation Analysis

Sparse and dense SNPs for GIGI—Prior to imputation for each genetic dataset, we

used the program gl_auto in MORGAN (http://www.stat.washington.edu/thompson/Genepi/

MORGAN/Morgan.shtml) [Thompson 2011] to obtain a set of 1000 IVs, at the positions of

the sparse SNPs, realized from the joint distribution of SNP genotypes given the pedigree

and observed data. The sparse SNP set consisted of 20 SNPs, approximately equally distant

(one SNP is each 0.5 Mb ~0.5 cM), in linkage equilibrium (LE), highly informative

(MAF>0.4), and typed on all subjects. The dense SNP dataset is limited to the considered

gene, which contains 313 SNPs.

Sparse and dense SNPs for BEAGLE—For BEAGLE, the sparse SNP (tag SNP)

dataset should be denser than the sparse SNP dataset used for GIGI in order to achieve good

imputation accuracy. We limited the dense SNP dataset to the gene region plus 250 Kbp up

and downstream (3599 SNPs). Among these SNPs, we used the HapBlock [Nicolas, et al.

2006] software in both LowLD and HighLD pattern datasets to select the list of tag SNPs.

This software gives a sorted list of the most informative SNPs. We chose the first 400 SNPs,

which yielded a density of one SNP every ~1.3 Kbp. Increasing this density would likely

improve the imputation accuracy, and hence the power of association. However, our

conclusions do not depend on this particular choice of SNP density. Note that during

phasing, BEAGLE completely ignores relationships among individuals and only uses the

LD information. Including the pedigree structure information would add extra information

and improve the phasing. BEAGLE can use trio samples to improve the phasing but not the

complete pedigree structure. The influence of doing this on the accuracy of imputation needs

evaluation in further studies.

Dense SNP Subjects (DSS) selection—Although the selection of DSS is of great

importance to absolute power, as discussed earlier [Saad and Wijsman 2014], we simply

selected d = 20% of subjects, at random, from each pedigree to be the DSS, rounding up the

number of selected subjects. This led to a selection of 240 different subjects in each of the

100 simulated sequence datasets. A good selection of DSS is not the focus of our study and

the selection strategy we conducted should not affect our conclusions. Nonetheless, by
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selecting different sets of subjects in each replicate of our simulation datasets, we covered

the space of possible combinations of DSS.

Results

Imputation accuracy

Our aim is to compare the imputation accuracy between three main approaches: GIGI,

BEAGLE, and GIGI+BEAGLE. We used the correlation estimate between the allelic

dosages and the true genotypes as a measure of imputation accuracy. Correlation estimates

may not be efficient for measuring imputation accuracy, especially for rare SNPs. However,

our aim here is not to evaluate the imputation accuracy per se, but to compare it between

different approaches. Four correlation values were attributed to every SNP. The first three

values are the correlations between the true genotypes and the allelic dosages obtained by 1)

GIGI (i.e. ρGIGI = cor(True, GIGI)), 2) BEAGLE (i.e. ρBEAGLE = cor(True, BEAGLE)), and

3) our approach GIGI+BEAGLE (i.e. ρGIGI+BEAGLE = cor(True, GIGI + BEAGLE)). The

last value is the greater correlation of GIGI’s and BEAGLE’s correlations (i.e. MAX: ρMAX

= max(ρGIGI, ρBEAGLE)). These four correlation values are the correlation averaged across

the 100 simulated datasets. We compared these four correlation values for rare and common

SNPs, separately. First, we compared GIGI to BEAGLE to show the best performance of

both approaches for rare and common SNPs. Second, we compared GIGI+BEAGLE to

GIGI and BEAGLE separately. Finally, we compared GIGI+BEAGLE and MAX to show

the relative performance of our approach to the best (unknown in real data) of GIGI and

BEAGLE. All of these comparisons were made for the two LD patterns (i.e. LowLD and

HighLD).

GIGI versus BEAGLE (Figure 2)—We observed that GIGI had greater correlations with

the truth than BEAGLE for almost all SNPs (even for common SNPs) under the LowLD

pattern (Figure 2A). However, for the HighLD pattern, BEAGLE outperformed GIGI for

SNPs with MAF greater than 0.1. For the majority of the remaining SNPs, GIGI appeared to

be better (Figure 2B).

GIGI+BEAGLE versus BEAGLE and GIGI (First and second row of Figure 3)—
Interestingly, for both LowLD and HighLD patterns, GIGI+BEAGLE performed better or at

least similar to BEAGLE for common SNPs (First row of Figure 3A and 3B). The better

imputation accuracy of GIGI+BEAGLE was more striking for the LowLD pattern. This is

expected because BEAGLE’s performance decreases with decreasing LD. Moreover for

common SNPs, GIGI+BEAGLE shows greater imputation accuracy than does GIGI alone,

especially for the HighLD pattern (Second row of Figure 3B). On the other hand for rare

SNPs, GIGI+BEAGLE was better than BEAGLE for the majority of SNPs but performed

similarly to GIGI, which indicates that the rare SNPs’ allelic dosages of GIGI+BEAGLE

come from GIGI.

GIGI+BEAGLE versus MAX (Third row of Figure 3)—More importantly, we

observed that GIGI+BEAGLE had an advantage even over the best of GIGI and BEAGLE

for common SNPs (LowLD and HighLD). However, the MAX approach was slightly more
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advantageous for a few rare SNPs. These are SNPs imputed by BEAGLE from outside

information that did not segregate down through the generations in the pedigree(s).

Our previous correlation results showed that our approach of combining imputation results

across population and family data tends to improve the accuracy of imputation, regardless of

the allele frequency spectrum and the LD patterns. In the next section, we investigate the

gain of power of association tests using our approach’s combined data. Indeed, we compare

the power of using data from GIGI+BEAGLE to that of using data from GIGI, BEAGLE,

and the true simulated sequence data.

Association Analysis

We performed association analysis on the following datasets described above: D1

(Sequence), D2 (GIGI), D3 (BEAGLE), D4 (GIGI+BEAGLE), D5 (G+B+T), and D6 (G_S

+B). We estimated the type 1 error and power rates at a threshold of α=0.01.

Type 1 Error Results

Over all scenarios we considered, type 1 error rates for all tests were well controlled. Under

the LowLD pattern, the type 1 error rates of famSKAT-RC, famCMWS, famSKAT, and

famSKAT-B including only associated SNPs in sequence data are shown in Table 1 and are

very close to the target α=0.01. Type 1 error rates of famCMWS including only associated

SNPs in imputation data under the LowLD pattern are shown in Table 2. Under the HighLD

pattern, the corresponding results are shown in Table S1 and Table S2 in supplementary

material. Finally, the results for association tests including both associated and non-

associated SNPs in sequence data are shown in Table S3 and Table S4 in supplementary

material for both LD patterns.

Power Results

We show our power results in two sections. The first one is “Comparison of association tests

in sequence data”, in which we compare the power of famSKAT-RC, famCMWS,

famSKAT, and famSKAT-B. For famSKAT-RC, we use a value of ϕ = 0.5 for all our

comparisons, as we observed a slightly greater power using this value (Figure S1 in

supplementary material). The second section is “famCMWS in imputation data”, in which

we compare the power of famCMWS achieved using the different imputation datasets.

1) Comparison of association tests in sequence data—We started first by only

including associated SNPs in the association model. Our results, under the LowLD pattern

(Figure 4A), showed that famSKAT-RC was the most powerful test for all scenarios we

considered, except for A=10 and fc=0.3 where famSKAT-B and famSKAT-RC were

essentially equivalent and fell between famSKAT and famCMWS. The second most

powerful test was famCMWS. The original famSKAT was the least powerful. The

difference of power between famSKAT-RC and famCMWS increased with the number of

common SNPs: for three, five, six, and ten common SNPs, the difference of power increased

from −0.07, to 0.01, 0.02, and to 0.09. As expected, famSKAT-B performed better than

famSKAT because it collapses rare SNPs (associated risk SNPs), and hence this test was

less penalized in this setting by the increasing df. Note that this result would no longer be
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true if protective and risk variants were included in the model. Interestingly, famCMWS

performed better than famSKAT and famSKAT-B. The explanation of this result is that the

burden tests are known to perform better when only associated SNPs are included in the

model and have the same effect directions. However, including non-associated (and even

protective) rare SNPs in the models would most likely decrease the power of famCMWS

and famSKAT-B (as suggested in the literature [Chen, et al. 2013; Ionita-Laza, et al. 2013;

Schifano, et al. 2012; Wu, et al. 2011]), but not as much as for famSKAT. Therefore, we

evaluated the influence of including non-associated SNPs in the model on the power. Here,

the power of famSKAT-RC, famCMWS, and famSKAT-B decreased, under the LowLD

pattern (Figure 4B). FamCMWS and then famSKAT-B, were the most affected by the

inclusion of non-associated SNPs. However, famSKAT was more robust: the power did not

change much for A=10 and it increased for A=20. More importantly, famSKAT-RC

substantially outclassed all other tests. The smallest and greatest differences of power

between famSKAT-RC and the second most powerful test across all scenarios were 0.09

(for A=10, U=20, fc=0.3) and 0.34 (for A=20, U=40, fc=0.5), respectively. For the HighLD

pattern, we observed the same trends (results not shown). Note that the weighting schemes

used in the association tests may be of great importance and influence the power, especially

when we study both common and rare SNPs jointly (results not shown). Therefore, this

needs to be investigated more in future studies.

In the following section, we show the power results of famCMWS with a model including

only associated SNPs, because the other tests with the other methods led to the same

conclusions (results not shown), and also, famSKAT-RC was more computationally

intensive.

2) famCMWS in imputation data—Figure 5 shows the power results of all imputation

designs and the power achieved from using sequence data (all subjects are sequenced; D1).

The D1 dataset is expected to give the greatest power and we consider it as our baseline

comparison.

For the LowLD pattern, we observed that GIGI and GIGI+BEAGLE were substantially

more powerful than BEAGLE for all numbers of associated SNPs (Figure 5A). For example,

for A=20 and fc=0.3, the power of GIGI, GIGI+BEAGLE, and BEAGLE was 0.42, 0.45, and

0.18, respectively (most of the advantage of GIGI+BEAGLE is derived from GIGI). This

result is congruent with our imputation accuracy results, in which we observed that GIGI

had more accuracy than BEAGLE for almost all SNPs under the LowLD pattern.

Interestingly, our approach GIGI+BEAGLE produced (slightly) better power compared to

GIGI. This suggests that although BEAGLE had poor performance in the LowLD pattern,

GIGI+BEAGLE resulted in more information than GIGI alone did. This is consistent with

the results in figures 3, which showed a few SNPs with low MAF that were better imputed

by BEAGLE than GIGI, probably because no transmission information in the pedigrees was

obtained by the choice of sequenced subjects.

On the other hand, under the HighLD pattern (Figure 5B), the difference of power between

BEAGLE and GIGI (D) depends on the number of common SNPs in the model: for three,

five, six, and ten common SNPs, D increased from −0.16 to −0.11, 0.01, and to 0.1. The
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explanation of this observation is that BEAGLE outperformed GIGI for common SNPs, so

BEAGLE is better when the number of common SNPs increased. More importantly, GIGI

+BEAGLE was still better than both of GIGI and BEAGLE for all scenarios.

All these results show that the gain of power using combined family- and population-based

imputation via GIGI+BEAGLE results in a consistent increase of power of association

testing.

LD pattern: As the amount of LD is a major factor for the success of BEAGLE’s

imputation, it is important to evaluate the behavior of association tests using the combined

data for different LD patterns. First, we did not observe any influence of LD on the power of

association testing using either sequencing data or GIGI imputation data (results not shown),

which is in agreement with what has been shown in the literature [Saad and Wijsman 2014].

This trend did not hold for BEAGLE and GIGI+BEAGLE (Figure S2, S3 in supplementary

material). The power of association tests using these approaches increased when the LD

between SNPs increased. This is expected because BEAGLE depends on the LD to impute

untyped SNPs and GIGI+BEAGLE uses BEAGLE imputation data.

GIGI+BEAGLE versus alternative combinations: Finally, we compared GIGI+BEAGLE

to G+B+T and G_S+B. GIGI+BEAGLE consistently performed better than the other

approaches for both LowLD (Figure 6) and HighLD (Figure S4) patterns, as well for all

other considered scenarios of the number of associated SNPs and the ratio of common SNPs

among them. The result of GIGI+BEAGLE being better than G_S+B is initially counter-

intuitive. We would expect that G_S+B would give results that were at least similar to those

from GIGI+BEAGLE. After investigating this result, we found that the reason for the

decrease in performance with the G_S+B approach is that even the very confident genotypes

dictated by the pedigree were not always correct, especially for common SNPs.

Discussion

The involvement of rare and common variants, jointly or separately, in the etiologies of

complex traits is a plausible hypothesis [Curtis 2012; Gibson 2011; Iyengar and Elston

2007]. Family-based association studies represent an attractive approach to study these two

types of variants. However, even with the use of this design, large sample sizes are still

needed to achieve good power, especially for rare variants. Moreover, to genotype these

variants, the use of sequencing techniques are required. Despite decreasing sequencing

costs, sequencing (Whole Genome and Exome Sequence (WGS/WES)) large family datasets

(thousands of samples) is still prohibitive. Nonetheless, the pseudo-sequencing strategy

[Saad and Wijsman 2014], based on imputation methods, makes the large family-based

GWAS more affordable.

The imputation method GIGI [Cheung, et al. 2013] can handle large (and possibly complex)

pedigrees (>100 subjects per pedigree). Despite the ability of GIGI to accurately impute rare

variants, it does less well with common variants, particularly when dense framework data

are available [Cheung, et al. 2013]. Here, population-based imputation methods, which use

LD information and the dense framework panel of SNPs to guide imputation, are more
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suitable for common variant imputation. Several population-based imputation methods exist

and perform very well for common variant imputation (MACH [Li, et al. 2006], IMPUTE

[Marchini, et al. 2007], BEAGLE [Browning and Browning 2009]). In our study, we

proposed a simple flexible approach to combine population- and family-based imputation

data in large pedigrees. The main aim of our approach was to improve the imputation

accuracy of both rare and common variants and jointly study them via association analysis.

Our results showed a substantial and consistent increase of power using combined

imputation approaches compared to the use of population- or family-based imputation data

alone. The approach we propose is a straightforward two-step approach and has the

advantage that it can be immediately applied to combining results from any such pair of

programs. Other approaches may also be developed in the future to combine imputation data

from more than one approach, or to incorporate ideas from population-based imputation into

pedigree-based imputation. However, such approaches will be challenging to implement,

and are clearly the topic of future work.

Our combining approach is based on allelic dosages. The combining approach that uses the

most confident genotypes given by GIGI (G_S+B), dictated imputation from pedigree

information, led to a decrease of power compared to the use of allelic dosages. Possible

explanations of such a result include the fact that sampled inheritance vectors, even with

1000 realizations, might not always capture all possible inheritance vectors, and low-

probability genotypes (e.g., homozygotes for the minor allele) may never be sampled. This

suggests that the use of best-guess/most confident genotypes is advised neither in combining

imputation data nor in downstream association analysis. Use of the allelic dosages instead,

which take into account the imputation uncertainty, gives better imputation accuracy and

hence greater power of association tests.

Several association tests have been proposed to deal with rare and common variants jointly,

such as CMC [Li and Leal 2008] and SKAT/famSKAT [Chen, et al. 2013; Schifano, et al.

2012; Wu, et al. 2011]. Recently, a new kernel test, SKAT-RC, has been proposed for data

of unrelated subjects [Ionita-Laza, et al. 2013]. This test outperformed the existing tests for

many scenarios and simulation settings. We extended this test to family-based designs

(famSKAT-RC) along with the CMC test (famCMWS). Our results showed that famSKAT-

RC also outperformed all tests under the conditions we considered so far (famCMWS,

famSKAT). The model used by famSKAT-RC splits variants into two classes (rare and

common) using an arbitrary choice of MAF. However, when the spectrum of associated

variant frequencies varies widely, moving between rare, uncommon, and common variant

categories (and maybe more categories), considering a model of famSKAT-RC with a few

extra classes of variants might yield better power and it is worth more investigation in the

future. In addition, it is important to investigate thoroughly the influence of pedigree

structure and size along with the number of rare and common associated and non-associated

variants, together with the mix of protective and risk effects.

In summary, in our study, we showed the benefit of combining population- and family-based

imputation data in a simple approach that is practical and useful for use on real data analysis.

We also showed that famSKAT-RC generally has greater power than several other existing

tests we considered, which encourages considering it in future family-based GWAS, hunting
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for rare and common variants jointly. The source code for famSKAT-RC, implemented in R,

and of GIGI+BEAGLE, implemented in a C program, is available at http://

faculty.washington.edu/wijsman/software.shtml.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Joint probabilities of possible genotypes (AA, Aa, aa) and their variances.
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Figure 2.
Correlation between allelic dosages obtained by GIGI and the true genotypes (x-axis) versus

correlation between allelic dosages obtained by BEAGLE and the true genotypes (y-axis),

for different bins of MAFs: A) LowLD pattern, B) HighLD pattern.
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Figure 3.
Correlation between allelic dosages obtained by GIGI+BEAGLE and the true genotypes (x-

axes) versus correlation between allelic dosages obtained by: BEAGLE (first row figures),

GIGI (second row figures), and the MAX between the correlations obtained by GIGI and

BEAGLE (third row figures) with the true genotypes (y-axes). A) LowLD pattern, B)
HighLD pattern. Left part of every LD pattern column figures: MAF>0.01; Right part of

every LD pattern column figures: MAF<=0.01.
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Figure 4.
Power of famSKAT, famSKAT-B, famSKAT-RC, and famCMWS in the sequence data,

under the LowLD pattern, for the different settings of number of associated and non-

associated SNPs and the proportion of common SNPs among them; A) For a model with

associated SNPs only: A=10, fc=0.3; A=10, fc=0.5; A=20, fc=0.3; and A=20, fc=0.5; B) For a

model with associated and non-associated SNPs: A=10, U=20, fc=0.3; A=10, U=20, fc=0.5;

A=20, U=40, fc=0.3; and A=20, U=40, fc=0.5, where fc is the proportion of common SNPs.
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Figure 5.
Power of famCMWS for the different imputation and the sequence data, for a model with

associated SNPs only, for the different settings of number of associated SNPs and the

proportion of common SNPs among them: A=10, fc=0.3; A=10, fc=0.5; A=20, fc=0.3; and

A=20, fc=0.5, where fc is the proportion of common associated SNPs. A) LowLD pattern; B)
HighLD pattern.

Saad and Wijsman Page 23

Genet Epidemiol. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6.
Power of famCMWS for the different combined imputation data (GIGI+BEAGLE, G+B+T,

and G_S+B), under the LowLD pattern, for a model with associated SNPs only, for the

different settings of number of associated SNPs and the proportion of common SNPs among

them: A=10, fc=0.3; A=10, fc=0.5; A=20, fc=0.3; and A=20, fc=0.5, where fc is the proportion

of common associated SNPs.
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