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Abstract

ANOVA decompositions are a standard method for describing and estimating heterogeneity

among the means of a response variable across levels of multiple categorical factors. In such a

decomposition, the complete set of main effects and interaction terms can be viewed as a

collection of vectors, matrices and arrays that share various index sets defined by the factor levels.

For many types of categorical factors, it is plausible that an ANOVA decomposition exhibits some

consistency across orders of effects, in that the levels of a factor that have similar main-effect

coefficients may also have similar coefficients in higher-order interaction terms. In such a case,

estimation of the higher-order interactions should be improved by borrowing information from the

main effects and lower-order interactions. To take advantage of such patterns, this article

introduces a class of hierarchical prior distributions for collections of interaction arrays that can

adapt to the presence of such interactions. These prior distributions are based on a type of array-

variate normal distribution, for which a covariance matrix for each factor is estimated. This prior

is able to adapt to potential similarities among the levels of a factor, and incorporate any such

information into the estimation of the effects in which the factor appears. In the presence of such

similarities, this prior is able to borrow information from well-estimated main effects and lower-

order interactions to assist in the estimation of higher-order terms for which data information is

limited.
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1. Introduction

Cross-classified data are prevalent in many disciplines, including the social and health

sciences. For example, a survey or observational study may record health behaviors of its

participants, along with a variety of demographic variables, such as age, ethnicity and

© Institute of Mathematical Statistics, 2014

Department of Statistics, Harvard University, 1 Oxford St, Cambridge, Massachusetts 02138, USA, volfovsky@fas.harvard.edu
Department of Statistics, University of Washington, Box 354322, Seattle, Washington 98195 USA, pdhoff@uw.edu
1Supported in part by NICHD Grant 1R01HD067509-01A1.

SUPPLEMENTARY MATERIAL
Data and code for simulations and analysis (DOI: 10.1214/13-AOAS685 SUPP;.zip). A bundle containing data sets and code files
to perform the simulations and data analysis.

NIH Public Access
Author Manuscript
Ann Appl Stat. Author manuscript; available in PMC 2015 March 01.

Published in final edited form as:
Ann Appl Stat. 2014 March 1; 8(1): 19–47. doi:10.1214/13-AOAS685.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



education level, by which the participants can be classified. A common data analysis goal in

such settings is the estimation of the health behavior means for each combination of levels

of the demographic factors. In a three-way layout, for example, the goal is to estimate the

three-way table of population cell means, where each cell corresponds to a particular

combination of factor levels. A standard estimator of the table is provided by the table of

sample means, which can alternatively be represented by its ANOVA decomposition into

additive effects and two- and three-way interaction terms.

The cell sample means provide an unbiased estimator of the population means, as long as

there are observations available for each cell. However, if the cell-specific sample sizes are

small, then it may be desirable to share information across the cells to reduce the variance of

the estimator. Perhaps the simplest and most common method of information sharing is to

assume that certain mean contrasts among levels of one set of factors are equivalent across

levels of another set of factors or, equivalently, that certain interaction terms in the ANOVA

decomposition of population cell means are exactly zero. This is a fairly large modeling

assumption, and can often be rejected via plots or standard F-tests. If such assumptions are

rejected, it still may be desirable to share information across cell means, although perhaps in

a way that does not posit exact relationships among them.

As a concrete example, consider estimating mean macronutrient intake across levels of age

(binned in 10 year increments), ethnicity and education from the National Health and

Nutrition Examination Survey (NHANES). Table 1 summarizes the cell-specific sample

sizes for intake of overall carbohydrates as well as two subcategories (sugar and fiber) by

age, ethnicity and education levels for male respondents (more details on these data are

provided in Section 4). Studies of carbohydrate intake have been motivated by a frequently

cited relationship between carbohydrate intake and health outcomes [Chandalia et al. (2000),

Moerman, De Mesquita and Runia (1993)]. Studies of obesity in the US have shown an

overall increase in caloric intake primarily due to an increase in carbohydrate intake from 44

to 48.7 percent of total calories from 1971 to 2006 [Austin, Ogden and Hill (2011)].

Recently, the types of carbohydrates that are being consumed have become of primary

interest. For example, in the study of cardiovascular disease, simple sugars are associated

with raising triglycerides and overall cholesterol while dietary fiber has been associated with

lowering triglycerides [Albrink and Ullrich (1986), Yang et al. (2003)]. Total carbohydrates

and the types of carbohydrates have also been targeted in recent studies of effective weight

loss [e.g., sugar consumption in the form of HFCS in drinks, Nielsen and Popkin (2004)].

However, these studies generally report on marginal means of carbohydrate intake across

demographic variables, and do not take into account potential nonadditivity, or interaction

terms, between them [Basiotis et al. (1989), Johansson et al. (2001), Montonen et al. (2003),

Park et al. (2011), Verly Junior et al. (2010)]. In a study where nonadditivity was

considered, the authors only tested for the presence of a small subset of possible interactions

and did not consider any interactions of more than two effects [Austin, Ogden and Hill

(2011)]. A more detailed understanding of the relationship between mean carbohydrate

intake and the demographic variables can be obtained from a MANOVA decomposition of

the means array into main-effects, two- and three-way interactions. Evidence for interactions
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for multivariate data can be assessed with approximate F-tests based on the Pillai trace

statistics [Olson (1976)].

For our data, the F-tests presented in Table 2 indicate strong evidence that the two- and

three-way interactions are not zero. Based on these results, standard practice would be to

retain the full model and describe the interaction patterns via various contrasts of cell sample

means. Often this is done by visual examination of interaction plots, that is, plots of cell

means by various combinations of factors. For example, Figure 1 gives the age by education

interaction plots for each of the four ethnicity groups. The three-way interaction between

ethnicity, age and education can be described as the inconsistency of the two-way

interactions across levels of ethnicity. Visually, there is some indication that Mexican

respondents have a different age by education interaction than the other ethnicities, but it is

difficult to say anything more specific. Indeed, it is difficult to even describe the two-way

interactions, due to the high variability of the cell sample means.

Much of the heterogeneity in these plots can be attributed to the low sample sizes in many

cells and the resulting sampling variability of the cell sample means. A cleaner picture of the

three-way interactions could possibly be obtained via cell mean estimates with lower

variability. A variety of penalized least squares procedures have been proposed in order to

reduce estimate variability and mean squared error (MSE), such as ridge regression and the

lasso. Recent variants of these approaches allow for different penalties on ANOVA terms of

different orders, including the ASP method of Beran (2005) and grouped versions of the

lasso [Friedman, Hastie and Tibshirani (2010), Yuan and Lin (2007)]. Corresponding

Bayesian approaches include Bayesian lasso procedures [Genkin, Lewis and Madigan

(2007), Park and Casella (2008), Yuan and Lin (2005)] and multilevel hierarchical priors

[Cui et al. (2010), Hodges et al. (2007), Park, Gelman and Bafumi (2006), Pittau, Zelli and

Gelman (2010)].

While these procedures attain a reduced MSE by shrinking linear model coefficient

estimates toward zero, they do not generally take full advantage of the structure that is often

present in cross-classified data sets. In the data analysis example above, two of the three

factors (age and education) are ordinal, with age being a binned version of a continuous

predictor. Considering factors such as these more generally, suppose a categorical factor x is

a binned version of some underlying continuous or ordinal explanatory variable x̃ (such as

income, age, number of children or education level). If the mean of the response variable y is

smoothly varying in the underlying variable x̃, we would expect that adjacent levels of the

factor x would have similar main effects and interaction terms. Similarly, for nonordinal

factors (such as ethnic group or religion) it is possible that two levels represent similar

populations, and thus may have similar main effects and interaction terms as well. We refer

to such similarities across the orders of the effects as order consistent interactions.

Returning to the NHANES data, Figure 2 summarizes the OLS estimates of the main effects

and two-way interactions for the three outcome variables (carbohydrates, sugar and fiber).

Not surprisingly, the main effects for the ordinal factors (age and education) are “smooth,”

in that the estimated main effect for a given level is generally similar to the effect for an

adjacent level. Additionally, some similarities among the ethnic groups appear consistent
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across the three outcome variables. To assess consistency of such similarities between main

effects and two-way interactions, we computed correlations of parameter estimates for these

effects between levels of each factor. For example, there are 3 × 10 = 30 main-effect and

two-way interaction estimates involving each level of age: For each of the three outcome

variables, there is 1 main-effect estimate for each age level, 4 estimates from the age by

ethnicity interaction and 5 estimates from the age by education interaction. We compute a

correlation matrix for the five levels of age based on the resulting 30 × 5 matrix of parameter

estimates, and similarly compute correlations among levels of ethnicity and among levels of

education. The second row of Figure 2 gives grayscale plots of these correlation matrices.

The results suggest some degree of order consistent interactions: For the ordinal factors, the

highest correlations are among adjacent pairs. For the ethnicity factor, the results suggest

that, on average, the effects for the Mexican category are more similar to the Hispanic (not

Mexican) category than to the other ethnic categories, as we might expect.

The OLS estimates of the main effects and three-way interactions presented above, along

with the fact that two of the three factors are ordinal, suggest the possibility of order

consistent interactions among the array of population cell means. More generally, order

consistent interactions may be present in a variety of data sets encountered in the social and

health sciences, especially those that include ordinal factors, or factors for which some of

the levels may represent very similar populations. In this paper, we propose a novel class of

hierarchical prior distributions over main effects and interaction arrays that can adapt to the

presence of order consistent interactions. The hierarchical prior distribution provides joint

estimates of a covariance matrix for each factor, along with the factor main effects and

interactions. Roughly speaking, the covariance matrix for a given factor is estimated from

the main effects and interactions in which the factor appears. Conversely, an estimate of a

factor’s covariance matrix can assist in the estimation of higher-order interactions, for which

data information is limited. We make this idea more formal in the next section, where we

construct our prior distribution from a set of related array normal distributions with

separable covariance structures [Hoff (2011)] and provide a Markov chain Monte Carlo

algorithm for inference under this prior. In Section 3 we provide a simulation study

comparing estimation under our proposed prior to some standard estimators. As expected,

our approach outperforms others when the data exhibit order consistent interactions.

Additionally, for data lacking any interactions, our approach performs comparably to the

OLS estimates obtained from the additive model (i.e., the oracle estimator). In Section 4 we

extend this methodology to MANOVA models in order to analyze the multivariate

NHANES data presented above. In addition to estimates of main effects and interactions,

our analysis provides measures of similarity between levels of each of the factors. We

conclude in Section 5 with a summary of our approach and a discussion of possible

extensions.

2. A hierarchical prior for interaction arrays

In this section we introduce the hierarchical array (HA) prior and present a Markov chain

Monte Carlo (MCMC) algorithm for posterior approximation and parameter estimation. The

HA prior is constructed from several semi-conjugate priors, and so the MCMC algorithm

can be based on a straightforward Gibbs sampling scheme.
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2.1. The hierarchical array prior

For notational convenience we consider the case of three categorical factors, and note that

the HA prior generalizes trivially to accommodate a greater number of factors. Suppose the

three categorical factors have levels {1, …, m1}, {1, …,m2} and {1, …,m3}, respectively.

The standard ANOVA model for a three-way factorial data set is

(1)

Let a denote the m1 × 1 vector of main effects for the first factor, (ab) denote the m1 × m2

matrix describing the two-way interaction between the first two factors, (abc) denote the m1

× m2 × m3 three-way interaction array, and let b, c, (ac) and (bc) be defined similarly.

Bayesian inference for this model proceeds by specifying a prior distribution for the

ANOVA decomposition θ = {μ, a, b, c, (ab), (ac), (bc), (abc)} and the error variance σ2.

As described in the Introduction, if two levels of a factor represent similar populations, we

would expect that coefficients of the decomposition involving these two levels would have

similar values. For example, suppose levels i1 and i2 of the first factor correspond to similar

populations. We might then expect ai1 to be close to ai2, the vector {(ab)i1,j, j = 1, …, m2} to

be close to the vector {(ab)i2,j, j = 1, …, m2}, and so on. We represent this potential

similarity between levels of the first factor with a covariance matrix Σa, and consider a mean

zero prior distribution on the ANOVA decomposition such that

where kab, kac and kabc are scalars. Here, (abc)(1) is the matricization of the array (abc),

which converts the m1 × m2 × m3 array into an m1 × (m2m3) matrix by adjoining the m3

matrices of dimension m1 × m2 that form the array (abc) [Kolda and Bader (2009)]. To

accommodate similar structure for the second and third factors, we propose the following

prior covariance model for the main effects and interaction terms:

where “⊗” is the Kronecker product. The covariance matrices Σa, Σb and Σc represent the

similarities between the levels of each of the three factors, while the scalars γab, γac, γbc,

γabc represent the relative (inverse) magnitudes of the interaction terms as compared to the

main effects. Further specifying the priors on the ANOVA decomposition parameters as

being mean-zero and Gaussian, the prior on a is then the multivariate normal distribution

Nm1(0, Σa), and the prior on vec(ab) is Nm1m2 (0, Σb ⊗ Σa/γab). This latter distribution is
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sometimes referred to as a matrix normal distribution [Dawid (1981)]. Similarly, the prior on

vec(abc) is Nm1m2m3 (0, Σc ⊗ Σb ⊗ Σa/γabc), which has been referred to as an array normal

distribution [Hoff (2011)].

In classical ANOVA decompositions, it is common to impose an identifiability constraint on

the different effects. In a Bayesian analysis it is possible to place priors over identifiable sets

of parameters, but this is cumbersome and not frequently done in practice [Gelman and Hill

(2007), Kruschke (2011)]. The priors we propose for the effects in the ANOVA

decomposition in this article induce a prior over the cell means, which are identifiable.

These priors have an intuitive interpretation and do not negatively affect the convergence of

MCMC chains generated by the proposed procedure as can be seen in the Simulation and

Application sections.

In most data analysis situations the similarities between the levels of a given factor and

magnitudes of the interactions relative to the main effects will not be known in advance. We

therefore consider a hierarchical prior so that Σa, Σb, Σc and the γ-parameters are estimated

from the data. Specifically, we use independent inverse-Wishart prior distributions for each

covariance matrix, for example, , and gamma priors for

the γ-parameters, for example, , where ηa, Sa, νab0 and  are

hyperparameters to be specified (some default choices for these parameters are discussed at

the end of this section). This hierarchical prior distribution can be viewed as an adaptive

penalty, which allows for sharing of information across main effects and interaction terms.

For example, estimates of the three-way interaction will be stabilized by the covariance

matrix Σc ⊗ Σb ⊗ Σa, which in turn is influenced by similarities between levels of the

factors that are consistent across the main effects, two-way and three-way interactions.

2.2. Posterior approximation

Due to the semi-conjugacy of the HA prior, posterior approximation can be obtained from a

straightforward Gibbs sampling scheme. Under this scheme, iterative simulation of

parameter values from the corresponding full conditional distributions generates a Markov

chain having a stationary distribution equal to the target posterior distribution. For

computational simplicity, we consider the case of a balanced data set in which the sample

size in each cell is equal to some common value n, in which case the data can be expressed

as an m1 × m2 × m3 × n four-way array Y. A modification of the algorithm to accommodate

unbalanced data is discussed in the next subsection.

Derivation of the full conditional distributions of the grand mean μ and the error variance σ2

are completely standard: Under a  prior for μ, the corresponding full conditional

distribution is , where  and

, where r̄ = Σijkl (yijkl − [ai + bj + ck + (ab)ij + (ac)ik + (bc)jk

+ (abc)ikj])/n. Under an  prior distribution, the full

conditional distribution of σ2 is an  distribution, where ν1 =

ν0 + nm1m2m3,  and μijk = μ + ai + bj + ck + (ab)ij + (ac)ik +
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(bc)jk + (abc)ikj. Derivation of the full conditional distributions of parameters other than μ

and σ2 is straightforward, but slightly nonstandard due to the use of matrix and array normal

prior distributions for the interaction terms. In what follows, we compute the full conditional

distributions for a few of these parameters. Full conditional distributions for the remaining

parameters can be derived in an analogous fashion.

Full conditionals of a and (abc)—To identify the full conditional distribution of the

vector a of main effects for the first factor, let

that is, rijkl is the “residual” obtained by subtracting all effects other than a from the data.

Since {εijkl } ~ i.i.d. normal(0, σ2, we have

where r̄ = (r̄1, …,r̄m1) with r̄i = Σjkl rijkl/(m2m3n), θ = {μ, a, b, c, (ab), (ac), (bc), (abc)} and

“∝a” means “proportional to as a function of a.” Combining this with the Nm1 (0, Σa) prior

density for a, we have

and so the full conditional distribution of a is multivariate normal with

where I is the m1 × m1 identity matrix.

Derivation of the full conditional distributions for the interaction terms is similar. For

example, to obtain the full conditional distribution of (abc), let rijkl be the residual obtained

after subtracting all other components of θ from the data, so that rijkl = (abc)ijk + εijkl. Let r̄

be the three-way array of cell means of {rijkl }, so that r̄ijk = Σl rijkl/n. Combining the

likelihood in terms of r̄ with the Nm1m2m3 (0, Σc ⊗ Σb ⊗ Σa/γabc) prior density for vec(abc)

gives
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and so vec(abc) has a multivariate normal distribution with variance and mean given by

Full conditional distributions for the remaining effects can be derived analogously.

Full conditional of Σa—The parameters in the ANOVA decomposition whose priors

depend on Σa are a, (ab), (ac) and (abc). For example, the prior density of (ab) given Σa, Σb

and γab can be written as

where  and etr(A) = exp{trace(A)} for a square matrix A. Similarly,

the priors for a, (ac) and (abc) are proportional to  (as a

function of Σa) for i ∈ {a, ac, abc} where

and da = dac = m3 and dabc = m2m3. The  prior density for Σa

can also be written in a similar fashion: it is proportional to

. Multiplying together the prior densities for a, (ab),

(ac), (abc) and Σa and simplifying by the additivity of exponents and the linearity of the

trace gives
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It follows that the full conditional distribution of Σa is , where

ηa1 = ηa0 + (1 + m2 + m3 + m2m3) and Sa1 = Sa0 + Sa + Sab + Sac + Sabc. The full conditional

expectation of Σa is therefore Sa1/(ηa1 − m1 − 1), which combines several estimates of the

similarities among the levels of the first factor, based on the main effects and the

interactions.

Full conditional of γabc—The full conditional distribution of γabc depends only on the

(abc) interaction term. The normal prior for (abc) can be written as

Combining this density with a  prior density yields a full

conditional for γabc that is , where

2.3. Balancing unbalanced designs

For most survey data we expect the sample sizes {nijk } to vary across combinations of

factors. As a result, the full conditional distributions of the ANOVA decomposition

parameters are more difficult to compute. For example, the conditional variance of the three-

way interaction vec(abc) changes from (γabc(Σc ⊗ Σb ⊗ Σa)−1 + In/σ2)−1 in the balanced

case to (γabc(Σc ⊗ Σb ⊗ Σa)−1 + D/σ2)−1 in the general case, where D is a diagonal matrix

with diagonal elements vec({nijk }). Even for moderate numbers of levels of the factors, the

matrix inversions required to calculate the full conditional distributions in the unbalanced

case can slow down the Markov chain considerably. As an alternative, we propose the

following data augmentation procedure to “balance” an unbalanced design. Let Ȳo be the

three-way array of cell means based on the observed data, that is, . Letting

n = max({nijk }), for each cell ijk with sample size nijk < n and at each step of the Gibbs

sampler, we impute a cell mean based on the “missing” n − nijk observations as

, where μijk is the population mean for cell ijk based on

the current values of the ANOVA decomposition parameters. We then combine  and 

to form the “full sample” cell mean . This array of cell

means provides the sufficient statistics for a balanced data set, for which the full conditional

distributions derived above can be used.

2.4. Setting hyperparameters

In the absence of detailed prior information about the parameters, we suggest using a

modified empirical Bayes approach to hyperparameter selection based on the maximum

likelihood estimates (MLEs) of the error variance and mean parameters. Priors for μ and σ2
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can be set as unit information priors [Kass and Wasserman (1995)], whereby

hyperparameters are chosen so that the prior means are near the MLEs but the prior

variances are set to correspond roughly to only one observation’s worth of information. For

the covariance matrices Σa, Σb and Σc, recall that the prior for the main effect a of the first

factor is Nm1 (0, Σa). Based on this, we choose the prior for Σa to be

 with νa0 = m1 + 2 and Sa0 = ||a||2Im1/m1, where â is the MLE of

a and ||â|| is the L2 norm of â. Under this prior, E[tr(Σa)] = ||â||2, and so the scale of the prior

matches the empirical estimates. Finally, the γ-parameters can be set analogously, using

diffuse gamma priors but centered around values to match the magnitude of the OLS

estimates of the interaction terms they correspond to, relative to the magnitude of the main

effects. For example, in the next section we use a  prior for γab in

which νab0 = 1 and , where â, b̂ and ( ) are the OLS estimates.

The above procedure can be modified to accommodate an incomplete design, where not all

the OLS estimates are available for a complete model. For example, in a two-way example,

if exactly one cell is empty, then the OLS estimates are available for all effect levels except

for the two-way interaction for the missing cell. Abusing notation a bit, let ||( )|| be the L2

norm of available OLS estimates for the two-way interaction. There are m1m2 − 1 of these.

Note that this will likely underestimate ||(ab)||, as it is missing the component contributed by

the missing cell. To correct for this underestimate, we propose the following modification

for setting the hyperparameters: . The choice of 

above becomes .

3. Simulation study

This section presents the results of four simulation studies comparing the HA prior to

several competing approaches. The first simulation study uses data generated from a means

array that exhibits order consistent interactions. Estimates based on the HA prior outperform

standard OLS estimates as well as estimates from a standard Bayesian (SB) approach as in

Gelman (2005), and is also related to a grouped version of the lasso procedure [Yuan and

Lin (2006)]. The second simulation study uses data from a means array that exhibits “order

inconsistent” interactions, that is, interactions without consistent similarities in parameter

values between levels of a factor. In this case the HA prior still outperforms the OLS and

standard Bayes approaches, although not by as much as in the presence of order consistent

interactions. In the third simulation we study the Bayes risk of the HA procedure when data

is generated directly from the SB prior. Unlike the second simulation study, where

interactions were “order inconsistent” but had potential similarities, in this case all effects

were completely independent and so the oracle SB approach that imposes independence on

the interaction effects outperforms HA, though not by much. The fourth simulation study

uses data from a means array that has an exact additive decomposition, that is, there are no

interactions. The HA prior procedure again outperforms the standard Bayes and OLS

approaches, although it does not do as well as OLS and Bayes oracle estimators that assume

the correct additive model.
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The Markov chain Monte Carlo algorithms were implemented using the R statistical

programming language on a computer with a 2.5 GHz processor. The additive Bayes

approach is significantly faster than the other two Bayesian procedures since it contains the

fewest parameters. The other two procedures are comparable, but with SB being somewhat

faster than HA on average. Specifically, for the simulations conducted below, SB ran an

estimated 17% faster than HA, which had a run time on the order of 16 minutes per data set

(depending on sample size). The overall runtime improves by almost 50% if the data set is

balanced.

3.1. Data with order consistent interactions

The data in this simulation study is generated from a model where the means array exhibits

order consistent interactions. The dimensions of the means array M were chosen to be m1 ×

m2 × m3 = 15 × 7 × 3, which could represent, for example, the number of categories we

might have for age, education level and political affiliation in a cross-classified survey data

set. The means array was generated from a cubic function of three variables that was then

binned. Figure 3 plots the mean array across the third factor, demonstrating the nonadditivity

present in M. By decomposing M into the main, two-way and three-way effects in the same

manner as described in Section 2, we can summarize the nonadditivity of M through the

magnitudes of the different sums of squares. The magnitudes of the main effects, given by

the squared L2 norm of the effects, ||a||2/m1, ||b||2/m2 and||c||2/m3, are 5.267, 0.012, 0.004,

respectively. Those of the two-way interactions ||ab||2/(m1m2), ||ac||2/(m1m3) and ||

bc||2/(m2m3) are 1.365, 1.312 and 0.384, and the magnitude of the three-way interaction ||

abc||2/(m1m2m3) is 0.474. For each sample size {400, 1000, 5000, 10,000}, we simulated 50

data sets using the mean array M and independent standard normal errors. In order to make a

comparison to OLS possible, we first allocated one observation to each cell of the means

array. We then distributed the remaining observations uniformly at random (with

replacement) among the cells of the means array. This leads to a complete but potentially

unbalanced design. The average number of observations per cell under the sample sizes

{400, 1000, 5000, 10,000} was {1.3, 3.2, 15.9, 31.7}.

For each simulated data set we obtained estimates under the HA prior (using the

hyperparameter specifications described in Section 2.4), as well as ordinary least squares

estimates (OLS) and posterior estimates under a standard Bayesian prior (SB). The SB

approach is essentially a simplified version of the HA prior in which the parameter values

are conditionally independent given the hyperparameters:

 and , and similarly

for all other main effects and interactions. To facilitate comparison to the HA prior, the

hyperpriors for these σ2-parameters are the same as the hyperpriors for the inverses of the γ-

parameters in the HA approach. As a result, this standard Bayes prior can be seen as the

limit of a sequence of HA priors where the inverse-Wishart prior distributions for the Σ-

matrices converge to point masses on the identity matrices of the appropriate dimension.

For each simulated data set, the Gibbs sampler described in Section 2 was run for 11,000

iterations, the first 1000 of which were dropped to allow for convergence to the stationary

distribution. Parameter values were saved every 10th scan, resulting in 1000 Monte Carlo
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samples per simulation. Starting values for all the mean effects were set to zero and all

variances set to identity matrices of the proper dimensions. We examined the convergence

and autocorrelation of the marginal samples of the parameters in each procedure. Since the

number of parameters is large, we present the results of Geweke’s z-test and estimates of the

effective sample size for the error variance σ2, as it provides a parsimonious summary of the

convergence results. The minimum effective sample size across all simulations was 233 out

of the 1000 recorded scans, and the average effective sample size was 895. Geweke’s z-

statistic was less than 2 in absolute value in 93, 93, 97 and 95 percent of the Markov chains

for the four sample sizes (with the percentages being identical for both Bayesian methods).

While the cases in which |z| > 2 were not extensively examined, it is assumed that running

the chain longer would have yielded improved estimation.

For each simulated data set, the posterior mean estimates M̂HA and M̂SB were obtained by

averaging their values across the 1000 saved iterations of the Gibbs sampler. The average

squared error (ASE) of estimation was calculated as ASE(M̂) = ||M̂ − M||2/(m1m2m3), where

M is the means array that generated the data. These values were then compared across the

three approaches. The left panel of Figure 4 demonstrates that the SB estimator provided a

reduction in ASE when compared to the OLS estimator for all data sets with sample sizes

400 and 1000, 96% of the data sets with sample size 5000 and 90% of data sets with sample

size 10,000. The second panel demonstrates that the HA estimator provides a substantial

further reduction in ASE for all data sets. As we would expect, the reduction in ASE is

dependent on the sample size and decreases as the sample size increases.

These results are not surprising: By estimating the variances , etc. from the data, the

SB approach provides adaptive shrinkage and so we expect these SB estimates to

outperform the OLS estimates in terms of ASE. However, the SB approach does not use

information on the similarity among the levels of an effect, and so its estimation of higher

order interactions relies on the limited information available directly in the corresponding

sufficient statistics. As such, we expect the SB estimates to perform less well than the HA

estimates, which are able to borrow information from well-estimated main effects and low-

order interactions to assist in the estimation of higher-order terms for which data information

is limited.

This behavior is further illustrated in Figure 5 that provides an ASE comparison for the

effects in the decomposition of the means array. To produce these plots, we decomposed

each estimated means array and considered the ASE for each effect when compared to the

decomposition of the true means array. It is immediate that the gains in ASE are primarily

from improved estimation of the higher order interaction terms. The top row of Figure 5

demonstrates that the SB estimator performs at least as well as the OLS estimator in terms of

ASE for the main effect a, and provides a detectable reduction in ASE for two- and three-

way interactions. The reduction in ASE for the higher order terms is due to the shrinkage

provided by SB. The second row of Figure 5 demonstrates that the HA estimator provides a

moderate reduction in ASE for the main effect a and a substantial further reduction in ASE

for the higher order terms. This is exactly the behavior we expect, as the HA procedure is

able to borrow information from lower order terms in order to further shrink higher order

interactions. We have also evaluated the width and coverage of nominal 95% confidence
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intervals for the cell means. The results for HA and SB are presented in Table 3. The

confidence intervals for the entries in the means array were smaller for the HA procedure

than for SB, while the coverage was approximately 95% for both.

Recall that the parameters in the mean array M were generated by binning a third-degree

polynomial, and were not generated from array normal distributions, that is, the HA prior is

“incorrect” as a model for M. Even so, the HA prior is able to capture the similarities

between adjacent factor levels, resulting in improved estimation. However, we note that not

all of the improvement in ASE achieved by the HA prior should be attributed to the

identification of order-consistent interactions. The simulation study that follows suggests

some of the performance of the HA prior is due to additional parameter shrinkage provided

by the inverse-Wishart distributions on the Σ-matrices.

3.2. Data with order inconsistent interactions

In this subsection we evaluate the HA approach for populations which exhibit interactions

that are order inconsistent. The means array M is constructed by taking the means array from

Section 3.1, decomposing it into main effects, two- and three-way interactions, permuting

the levels of each factor within each effect, and reconstructing a means array. That is, if {ai :

i = 1, …, m1} is the collection of parameters for the first main effect and {(ab)ij : i = 1, …,

m1, j = 1, …, m2} is the collection of parameters for the two-way interaction between the

first and second factors in Section 3.1, then {aπ1(i)} and {(ab)π2(i) π3(j)} are the main effect

and two-way interaction parameters for the means array in this section, where π1, π2 and π3

are independent permutations. The remaining effects were permuted analogously. Due to

this construction, the magnitudes of the main effects, two- and three-way interactions remain

the same, but the process becomes less “smooth,” as can be seen in Figure 6.

Again, 50 data sets were generated for each sample size, and estimates M̂HA, M̂SB and M̂OLS

were obtained for each data set, where the Bayesian estimates were obtained using the same

MCMC approximation procedure as in the previous subsection. Figure 7 compares ASE

across the different approaches. The left panel of Figure 7, as with the left panel of Figure 4,

demonstrates that the SB estimator provides a reduction in ASE when compared to the OLS

estimator. As expected, since neither of these approaches take advantage of the structure of

the order consistent interactions, this plot is nearly identical to the corresponding plot in

Figure 4.

The second panel demonstrates that the HA estimator provides a further reduction in ASE

for all data sets, although this reduction is less substantial than in the presence of order

consistent interactions. The lower ASE of the HA estimates may be initially surprising, as

there are no order consistent interactions for the HA prior to take advantage of. We

conjecture that the lower ASE is due to the additional shrinkage on the parameter estimates

that the inverse-Wishart priors on the Σ-parameters provide. For example, under both the SB

and HA priors we have Cov[vec(ab)] = Σb ⊗ Σa/γab, but under the former the covariance

matrices are set to the identity, whereas under the latter they have inverse-Wishart

distributions.
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As with the previous simulation, we evaluated the width and coverage of nominal 95%

confidence intervals for the cell means. The results for HA and SB are presented in Table 4.

As in the previous simulation, the coverage for both procedures is approximately 95%. The

confidence intervals are wider for SB than for HA, but the differences between the two

procedures are much smaller in this simulation as compared to the previous one.

3.3. Data with order inconsistent interactions: Bayes risk

The surprising outcome of the previous section requires further study of the behavior of the

HA approach when order inconsistent interactions are present. To get a more complete

picture of this behavior, we evaluate the Bayes risk of the procedure when data is generated

directly from the SB prior. We construct 200 means arrays M1, …, M200 of the same

dimensions as in the previous subsections using the following procedure:

1. Generate γa, γb, γc, γab, γac, γbc,  with shape paramter ν

= 4 and rate parameter τ2 = 2. These are the precision components for the 3 main

effects, 3 two-way interactions and 1 three-way interaction, respectively.

2. Generate effect levels as follows: {a1, …, a15} ~ N(0, I/γa), {ab1,1, …, ab15,7} ~

N(0, I/γab), and similarly for the remaining 5 effects.

3. Combine the effects from (2) into a means array Mi according to equation (1).

For each sample size {400, 1000, 5000, 10,000} we generated 50 data sets, each using a

unique means array Mi, in the same manner as in the previous two simulation studies. We

obtained estimates M̂iHA, M̂iSB and M̂iOLS for each data set, where the Bayesian estimates

were obtained using the same MCMC procedure as in the previous two subsections.

ASE represents the posterior quadratic loss of an estimation procedure for a particular data

set, and so by varying the true means array Mi between simulated data sets, we can estimate

the Bayes risk of an estimation procedure by taking the average of ASE across simulated

data sets. The Bayes risk for the SB procedure is guaranteed to be smaller than that for OLS

and HA for all sample sizes and so we report the results of the simulation study as ratios of

estimated Bayes risk for SB to the estimated Bayes risk of the other procedures in Table 5.

For example, the first entry in the top row of Table 5 states that the Bayes risk for SB is 41%

lower than the Bayes risk for the OLS procedure for a sample size of 400. As is expected,

the difference in Bayes risk shrinks with increasing sample size for both OLS and HA. The

results of this simulation study suggest that even for moderately sized data sets, the relative

risk of using the HA procedure when compared to SB is rather small even when all effects

are completely independent. Additionally, the posterior estimates of all of the effects in the

decomposition of the means array had similar variances under both SB and HA priors. This

suggests that using the HA procedure is not detrimental even when the “order consistency”

of the interactions cannot be verified.

3.4. Data without interactions

In this subsection we evaluate the HA approach for populations in which interactions are not

present. The data in this simulation is generated from a model where the means array M is

exactly additive and was constructed by binning a linear function of three variables. As in

Volfovsky and Hoff Page 14

Ann Appl Stat. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the previous simulations, M is of dimension m1 × m2 × m3 = 15 × 7 × 3. The magnitudes of

the three main effects are ||a||2/m1 = 3.0, ||b||2/m2 = 1.3 and ||c||2/m3 = 0.3, while all

interactions are exactly zero. In addition to the SB and OLS estimators, we compare the HA

approach to two “oracle” estimators: the additive model least squares estimator (AOLS) and

the Bayes estimator under the additive model (ASB). The prior used by the ASB approach is

the same as the SB prior, but does not include terms other than main effects in the model.

As before, 50 data sets were generated for each sample size, and estimates M̂HA, M̂SB,

M̂OLS, M̂ASB and M̂AOLS were obtained for each data set, where the Bayesian estimates

were obtained using the same MCMC approximation procedure as in the previous two

subsections. Some results are shown in Figure 8, which compares ASE across the different

approaches. In the top row of Figure 8 we see that the performance of the HA estimates is

comparable to but not as good as the oracle least squares and Bayesian estimates in terms of

ASE. Specifically, the ASE for the HA estimates is 24.2, 18.6, 20.1 and 17.4 percent higher

than for the AOLS estimates for data sets with sample sizes 400, 1000, 5000 and 10,000,

respectively. Similarly, the ASE for the HA estimates is 25, 19.7, 20.3 and 17.8 percent

higher than for the ASB estimates for data sets with sample sizes 400, 1000, 5000 and

10,000, respectively. However, the bottom row of Figure 8 shows that the HA prior is

superior to the other nonoracle OLS and SB approaches that attempt to estimate the

interaction terms.

These results, together with those of the last two subsections, suggest that the HA approach

provides a competitive method for fitting means arrays in the presence or absence of

interactions. When order consistent interactions are present, the HA approach is able to

make use of the similarities across levels of the factors, thereby outperforming approaches

that cannot adapt to such patterns. Additionally, the HA approach does not appear to suffer

when interactions are not order consistent. Finally, in the absence of interactions altogether,

the HA approach adapts well, providing estimates similar to those that assume the correct

additive model.

4. Analysis of carbohydrate intake

In this section we estimate average carbohydrate, sugar and fiber intake by education,

ethnicity and age using the HA procedure described in Section 2. Our estimates are based on

data from 2134 males from the US population, obtained from the 2007–2008 NHANES

survey. Nutrient intake is self reported on two nonconsecutive days. Each day’s data

concerns food and beverage intake from the preceding 24 hour period only, and is calculated

using the USDA’s Food and Nutrient Database for Dietary Studies 4.1 [USDA (2010)]. All

intake was measured in grams, and we average the intake over the two days to yield a single

measurement per individual. When intake information is only available for one day, we treat

that as the observation (we do not perform any reweighing to account for this partial

information). We are interested in relating the intake data to the following demographic

variables:

• Age: (31–40), (41–50), (51–60), (61–70), (71–80).
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• Education: Primary (P), Secondary (S), High School diploma (HD), Associates

degree (AD), Bachelors degree (BD).

• Ethnicity: Mexican (Hispanic), other Hispanic, white (not Hispanic) and black (not

Hispanic).

Sample sizes for age-education-ethnicity combination were presented in Table 1 in Section

1. Of the 2234 male respondents within the above demographic groups, 100 were missing

their nutrient intake information for both days, with similar rates of missingness across the

demographic variables, and were excluded from the analysis. For the 2134 individuals

included in the analysis, 291 were missing nutrient intake information one of the two days.

For those individuals, the available day’s information was used as their nutrient intake,

while for the remaining 1843 individuals an average over the two days was used.

The data on the original scale are somewhat skewed and show heteroscedasticity across the

demographic variables. Since different variances across groups can lead to bias in the sums

of squares, making F-tests for interactions anti-conservative [Miller and Brown (1997)],

stabilizing the variance is desirable. Figure 9 provides two-way scatterplots of the response

variables after applying a quarter power transformation to each variable, which we found

stabilized the variances across the groups better than either a log or square-root

transformation. Additionally, following the quarter power transformation, we centered and

scaled each response variable to have mean zero and variance one.

4.1. MANOVA model and parameter estimation

As presented in Table 2 of Section 1, F-tests indicate evidence for the presence of

interactions in the array of population cell means. However, 12% of all age-education-

ethnicity categories have sample sizes less than 5, and so we are concerned with overfitting

of the OLS estimates. As an alternative, we extend the HA methodology described in

Section 2 to accommodate a MANOVA model. Our MANOVA model has the same form as

the ANOVA model given by equation (1), except that each effect listed there is a three-

dimensional vector corresponding to the separate effects for each of the three response

variables. Additionally, the error terms now have a multivariate normal distribution with

zero-mean and unknown covariance matrix Σy.

We extend the hierarchical array prior discussed above to accommodate the p-variate

MANOVA model as follows: Our prior for the m1 × p matrix a of main effects for the first

factor is vec(a) ~ Nm1p(0, I ⊗ Σa), where Σa is as before. Our prior for the m1 × m2 × p array

(ab) of two-way interaction terms is given by .

Here, Γab is a p × p diagonal matrix whose terms determine the scale of the two-way

interactions for each of the p response variables. If we consider only the first response, then

(Γab)11 is exactly the γab scalar described in the ANOVA setup. Similarly, our prior for the

four-way array (abc) of three-way interaction terms is

. Priors for other main effects and

interaction terms are defined similarly. The hyperpriors for each diagonal entry of Γ are

independent gamma distributions, chosen as in Section 2.4 so that the prior magnitude of the
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effects for each response is centered around the sum of squares of the effect from the OLS

decomposition.

An alternative prior would be to include a covariance matrix representing similarities of

effects across the three variables. This would be achieved by replacing I ⊗ Σa in the prior

for a with Σp ⊗ Σa,  with  in the prior for ab, and so on. Such a covariance term

might be appropriate for data in which marginal correlations between the p response

variables were driven by similarities in the cell means, rather than by within-cell

correlations. In such a case we would expect, for example, that if a1, the main effects for

variable 1, were positively correlated with a2, the main effects for variable 2, then b1 and b2

would be positively correlated, as would c1 and c2, as well as any other pair of effects in the

decompositions of variables 1 and 2. However, such consistency does not appear in our

NHANES data: For example, considering correlations between the ANOVA decomposition

parameters for sugar and carbohydrates, we observe positive correlations for the main

effects of age and education and negative correlations for the interaction terms age×ethnicity

and age×ethnicity×education. These observations support the choice of Σp = I in the prior

for the analysis of these data, although estimating Σp might be warranted for other data sets.

A Gibbs sampling scheme similar to the one outlined in Section 2 was iterated 200,000

times with parameter values saved every 10 scans, resulting in 20,000 simulated values of

the means array M and the covariance matrices {Σeth, Σage, Σedu} for posterior analysis.

Mixing of the Markov chain for M was good: Figure 10 shows MCMC samples of 4 out of

300 entries of M (chosen so that their trace plots were visually distinct). The autocorrelation

across the saved scans was low, with the lag-10 autocorrelation for the thinned chain less

than 0.14 in absolute value for each element of M (97.3% of entries have lag-10

autocorrelation less than 0.07 in absolute value) and effective sample sizes between 1929

and 13,520. The mixing for the elements of the covariance matrices Σeth, Σage, Σedu is not as

good as that of the means array M: The maximum absolute value of lag-10 autocorrelation

of the saved scans for the three rescaled covariance matrices is 0.18, 0.12 and 0.19,

respectively. The effective sample sizes for the elements of the covariance matrices are at

least 1684.

4.2. Posterior inference on M and Σs

We obtain a Monte Carlo approximation to M̂ = E[M|Y] by averaging over the saved scans

of the Gibbs sampler. Figure 11 provides information on the shrinkage and regularization of

the estimates due to the HA procedure, as compared to OLS. The first panel plots the

difference between the OLS and Bayes estimates of the cell means versus cell-specific

sample sizes. For small sample sizes, the Bayes estimate for a given cell is affected by the

data from related cells, and can generally be quite different from the OLS estimate (the cell

sample mean). For cells with large sample sizes the difference between the two estimates is

generally small. The second panel of the figure plots the OLS estimates of the cell means for

carbohydrate intake of black survey participants across age and education levels. Note that

there appears to be a general trend of decreasing intake with increasing age and education

level, although the OLS estimates themselves are not consistently ordered in this way. In

contrast, these trends are much more apparent in the Bayes estimates plotted in the third
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panel. The HA prior allows the parameter estimates to be close to additive, while not

enforcing strict additivity in this situation where we have evidence of nonadditivity via the

F-tests. The smoothing provided by the HA prior is attributed to its ability to share

information across levels of an effect and across interactions. When more levels are present

for a particular effect, the smoothing of the HA prior closely resembles the behavior one

would expect from an unbinned continuous effect. On the other hand, OLS will continue to

model each cell-specific mean separately, ignoring the similarities among levels and failing

to recognize the continuous nature of the effect. The third panel of the figure was also more

consistently ordered than a similar analysis performed with the SB prior, suggesting that the

added shrinkage due to the inverse-Wishart priors and the ability to share information across

effect levels leads to more realistic behavior of the estimates.

The range of cell means for the centered and scaled effects is −0.58 to 0.4 for carbohydrates,

−0.38 to 0.38 for sugar and −1 to 0.51 for fiber. The average standard errors for the cell

means for the three responses are 0.08, 0.09 and 0.13, respectively. When fitting the data

with the SB prior (analysis not included here), the average standard errors for the cell means

were substantially larger: 0.12, 0.13 and 0.15 for the three responses, respectively. The first

row of Figure 12 provides the estimates of the main effects from the HA procedure. The

second row of Figure 12 summarizes covariance matrices {Σeth, Σage, Σedu} via the posterior

mean estimates of the correlation matrices  for d ∈ {eth,

age, edu}. In this figure, the diagonal elements are all 1, and darker colors represent a

greater departure from one. The range of the estimated correlations was −0.34 to 0.42 for

age categories, −0.30 to 0.35 for ethnic groups, and −0.17 to 0.38 for educational categories.

For the two ordered categorical variables, age and education, we see that closer categories

are generally more positively correlated than ones that are further apart. While the ethnicity

variable is not ordered, its correlation matrix informs us of which categories are more

similar in terms of these response variables. The middle panel of the second row of Figure

12 confirms the order-consistent interactions we observed in Figure 2: Mexican survey

participants are more similar to Hispanic participants in terms of carbohydrate intake

patterns than to white or black participants.

For fiber intake, the top row of Figure 13 gives age by education interaction plots for each

level of ethnicity, using cell mean estimates obtained from the HA procedure. Comparing

these plots to the analogous plots for the OLS estimates presented in Figure 1, we see that

the smoother HA estimates allow for a more interpretable description of the three-way

interaction. Recall that a three-way interaction can be described as the variability of a two-

way interaction across levels of a third factor. Based on the plots, the two-way age by

education interactions for the Mexican and Black groups seem quite small. In contrast, the

White and Other Hispanic groups appear to have interactions that can be described as

heterogeneity in the education effect across levels of age. For both of these groups, this

heterogeneity is ordered by age: For the Other Hispanic group, the education effects seem

similar for the three youngest age groups. For the White group, the education effects seem

similar for the two youngest age groups.
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This similarity in education effects for similar levels of age is more apparent in these HA

estimates than in the corresponding parameter estimates from the SB procedure, presented in

the second row of Figure 13, particularly for the White ethnicity. In contrast to the SB

approach, the HA procedure was able to recognize the similarity of parameters

corresponding to adjacent age levels and to use this information to assist with estimation.

Our expectations that age effects are likely to be smooth, as well as the good performance of

the HA procedure in the simulation study of the previous section, give us confidence that the

HA procedure is providing more realistic and interpretable cell mean estimates than either

the OLS or SB approaches.

5. Discussion

This article has presented a novel hierarchical Bayes method for parameter estimation of

cross-classified data under ANOVA and MANOVA models. Unlike least-squares

estimation, a Bayesian approach provides for regularized estimates of the potentially large

number of parameters in a MANOVA model. Unlike the nonhierarchical Bayesian

approach, the hierarchical approach provides a data-driven method of regularization, and

unlike the standard hierarchical Bayes, the hierarchical array prior can identify similarities

among categories and share this information across interaction effects to assist in the

estimation of higher-order terms for which data information is limited. In a simulation study

the HA approach was able to detect interactions when they were present, and to estimate the

means array better than a full least squares or standard Bayesian approaches (in terms of

mean squared error). When the true means array was completely additive, the HA prior was

able to adapt to this smaller model better than the other full model estimation approaches

under consideration.

An immediate extension to our approach modifies the priors on the covariance matrices to

incorporate known structure. For example, in the case of observations for different time

periods, an autoregressive covariance model might be desirable. In the simplest case of an

AR(1) model, Berger and Yang (1994) suggest the use of a reference prior πR(ρ) for the

single parameter ρ. We also note that due to the scale nonidentifiability of the Kronecker

product we can assume that the variance parameter is equal to 1. The posterior

approximation follows the outline of Section 2.2: the full conditionals for the effects and the

full conditionals for the covariance matrices that do not exhibit a specific structure remain

the same. The only difference is in the posterior approximation procedure for the structured

covariance matrix, where a posterior sample of ρ can be obtained by importance sampling.

The HA procedure can easily accommodate other structured covariances as well, with the

only changes to the posterior approximation steps reflecting this additional prior information

for the covariance matrix.

Generalizations of the HA prior are applicable to any model whose parameters consist of

vectors, matrices and arrays for which some of the index sets are shared. This includes

generalized linear models with categorical factors, as well as ANCOVA models that involve

interactions between continuous and categorical explanatory variables. As an example of the

latter case, suppose we are interested in estimating the linear relationship between an

outcome and a set of explanatory variables for every combination of three categorical
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factors. The regression parameters then consist of an m1 × m2 × m3 × p array, where m1, m2,

m3 are the numbers of factor levels and p is the number of continuous regressors. The usual

ANCOVA decomposition can be used to parametrize this array in terms of main effects and

interactions arrays, for which a hierarchical array prior may be used.

Computer code and data for the results in Sections 3 and 4 are available in the

supplementary material [Volfovsky and Hoff (2013)].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Three-way interaction plot of fiber cell means by ethnicity, age and education level.
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Fig. 2.
Plots of main effects and interaction correlations for the three outcome variables

(carbohydrates, sugar and fiber). The first row of plots gives OLS estimates of the main

effects for each factor. The second row of plots gives correlations of effects between levels

of each factor, with white representing 1 and black representing −1. The interactions are

calculated based on OLS estimates of the main effects and two-way interactions of each

factor.
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Fig. 3.
The means array M across levels of the third factor.
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Fig. 4.
Comparison of ASE for different estimation methods when the true means array exhibits

order consistent interactions.
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Fig. 5.
ASE comparisons for the main effect, a two-way interaction and a three-way interaction that

involve a are in the three columns, respectively. The first row compares ASE between SB

and OLS and the second row compares ASE between HA and SB.
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Fig. 6.
The means array M for the second simulation study, across levels of the third factor.
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Fig. 7.
Comparison of ASE for different estimation methods when the true means array exhibits

order inconsistent interactions that have the same magnitude as the order consistent

interactions of Section 3.1.
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Fig. 8.
Comparison of ASE for different estimation methods when the true means array is additive.
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Fig. 9.
Two-way plots of the transformed data.
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Fig. 10.
MCMC samples of 4 out of 300 entries of the means array M.
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Fig. 11.
Shrinkage and regularization plots. The first panel plots the difference between the OLS and

HA estimates of a cell mean against the cell-specific sample sizes. The second a third panels

plot estimated cell means of carbohydrate intake for black survey participants across age and

education levels, where lighter shades represent higher levels of education.
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Fig. 12.
Plots of main effects and interaction correlations for the three outcome variables

(carbohydrates, sugar and fiber). The first row of plots gives HA estimates of the main

effects for each factor. The second row of plots gives correlations of effects between levels

of each factor, with white representing 1 and darker colors representing a greater departure

from one.
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Fig. 13.
HA and SB interaction plots of estimated mean fiber intake by ethnicity, age and education

level. HA and SB estimates are in the top and bottom rows, respectively.
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Table 2

MANOVA testing of interaction terms via Pillai’s trace statistic

approx F num df den df p-value

Education 11.15 15 6102 <0.01

Ethnicity 18.07 9 6102 <0.01

Age 21.38 12 6102 <0.01

Education:Ethnicity 1.67 36 6102 0.01

Education:Age 1.60 48 6102 0.01

Ethnicity:Age 2.05 36 6102 <0.01

Education:Ethnicity:Age 1.44 144 6102 <0.01
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Table 3

Actual coverage and interval widths of 95% nominal confidence intervals for the cell means as estimated by

HA and SB when order consistent interactions are present

OBS

Coverage Width

HA SB HA SB

400 0.94 0.93 1.55 3.18

1000 0.93 0.95 1.04 2.32

5000 0.94 0.94 0.49 1.00

10,000 0.95 0.95 0.36 0.70
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Table 4

Actual coverage and interval widths of 95% nominal confidence intervals for the cell means as estimated by

HA and SB when order inconsistent interactions are present

OBS

Coverage Width

HA SB HA SB

400 0.95 0.94 2.26 2.98

1000 0.95 0.95 1.56 2.15

5000 0.96 0.95 0.73 0.98

10,000 0.96 0.94 0.53 0.69
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Table 5

Ratio of estimated Bayes risk for SB to OLS and HA by sample size

Sample size 400 1000 5000 10,000

OLS 0.59 0.69 0.93 0.97

HA 0.78 0.91 0.97 0.98
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