1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny Yd-HIN

o NATIG,

R HE

N WS)))\

D)

NS

NIH Public Access

Author Manuscript

Published in final edited form as:
Stat Med. 2014 November 20; 33(26): 4605-4626. doi:10.1002/sim.6258.

Multiple imputation methods for nonparametric inference on
cumulative incidence with missing cause of failure

Minjung Lee?", James J. Dignam®, and Junhee Han®
aDepartment of Computer Science and Statistics, Chosun University, Gwangju, South Korea

bDepartment of Health Studies, University of Chicago, Chicago, IL 60637, U.S.A

°Research And Statistical Support, Research Institute of Convergence for Biomedical Science
and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea

Abstract

We propose a nonparametric approach for cumulative incidence estimation when causes of failure
are unknown or missing for some subjects. Under the missing at random assumption, we estimate
the cumulative incidence function using multiple imputation methods. We develop asymptotic
theory for the cumulative incidence estimators obtained from multiple imputation methods. We
also discuss how to construct confidence intervals for the cumulative incidence function and
perform a test for comparing the cumulative incidence functions in two samples with missing
cause of failure. Through simulation studies, we show that the proposed methods perform well.
The methods are illustrated with data from a randomized clinical trial in early stage breast cancer.
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1. Introduction

In studies of time to event data, competing risks, where individuals may fail from one of
several mutually exclusive causes, are frequently present. For example, after cancer
diagnosis and treatment, patients may die of cancer but also may die of other causes prior to
death from cancer. In such a case, medical investigators may be interested in predicting the
probability of dying of cancer by a particular time t in the presence of death from other
causes. The probability is defined by the cumulative incidence function

Fi(6)=Pr(T" < t,e=k), @
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where T is the time to failure and ¢ € {1, 2, ... K} is the cause of failure. This quantity is
useful in the analysis of competing risks in the sense that it reflects the risk of the cause of
interest without ignoring the presence of other competing events. Another useful quantity in
the analysis of competing risks is the cause-specific hazard function defined by

Pr(t < T<t+At,e=k|T > t)
T AI—0 At '

which is the instantaneous rate of cause k at time t in the presence of other competing risks.
The cumulative incidence function given in (1) can be expressed as a function of all cause-
specific hazards as

Fi(t)=[0S(w)dAy(u),

K
where S(t)=Pr(I'>t)=exp{—) _ ~ Ax(t)} is the overall survival function and

Ay (t)= [t (u)du is the cumulative cause-specific hazard function for cause k.

In competing risk studies, it may be known that a failure has occurred but the failure type
may be unknown. For example in the cancer example, the cause of death may be unknown
or missing for some patients due to incomplete reporting or documentation, or other reasons.
The simplest way to deal with missing causes of failure may be to exclude subjects with
missing causes from the analysis. However, such an approach will result in information loss
and may yield biased results. Goetghebeur and Ryan [1] and Lu and Tsiatis [2] proposed
methods for estimating regression parameters under the cause-specific proportional hazards
model for competing risk data with missing cause of failure. Gao and Tsiatis [3] and Lu and
Liang [4] proposed inference procedures for estimation of regression parameters under a
linear transformation model and an additive hazards model for competing risks with missing
cause of failure, respectively. Bakoyannis et al. [5] used multiple imputation to estimate
regression parameters for the proportional subdistribution hazards model. Moreno-Betancur
and Latouche [6] proposed a general framework for regression modeling of the cumulative
incidence function with missing causes of failure using pseudo-values.

However, methods for estimating the cumulative incidence function in the presence of
missing cause of failure have not been widely studied. Recently, Lee et al. [7] proposed
multiple imputation methods for estimating the cumulative incidence function with missing
cause of failure under the cause-specific proportional hazards model. Nicolaie et al. [8] used
vertical modeling to estimate the cumulative incidence function with missing cause of
failure. In this paper, we propose nonparametric inferences for the cumulative incidence
function with missing cause of failure using methods in Lin [9] and Lu and Tsiatis [2].
Assuming missingness is random conditional on the observed data, we impute missing cause
of failure multiple times and estimate the cumulative incidence function by averaging
nonparametric cumulative incidence estimators obtained from each of several imputed data
sets. We prove the asymptotic normality of the cumulative incidence estimators obtained
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from multiple imputation methods and derive a consistent variance estimator for the
cumulative incidence estimators. We describe how to construct confidence intervals for the
cumulative incidence function and perform a test for comparing two cumulative incidence
functions in the presence of missing cause of failure. The performance of the proposed
methods are extensively evaluated by simulation studies. Finally, we apply the methods to
study the influence of tamoxifen treatment on mortality from breast cancer, using data from
a randomized clinical trial in early stage breast cancer.

2. Inference procedures

For simplicity, we consider two competing events, ¢ € {1, 2}. Define X = min(T, C), where
T and C are the failure time and censoring time, respectively. We assume that the censoring
time C is independent of (T, &). Let 5= I(T < C)¢, where I(:) is an indicator function. When
causes of failure are known for all subjects, the observed data consist of (X;, &) (i=1, ..., n).

A nonparametric estimator of the cumulative incidence function (called the Aalen-Johansen
estimator [10]) is given by

Frt)=[1S(u—)dAr(u), k=1,2, ()

where S(t-) is the left-continuous Kaplan-Meier estimator [11] and Alz(t) is the Nelson-
Aalen estimator [12] for Ag(t). Aalen [13] first established the uniform consistency and weak
convergence of the Aalen-Johansen estimator using a non-homogeneous Markov process
formulation. Recently, variance estimation of the Aalen-Johansen estimator in small samples
has caused some discussion [14, 15, 16]. Aalen’s variance formula [13] is generally smaller
than the so-called Greenwood estimator in small samples, resulting in narrow confidence
intervals and inflated type | error rates (more power). Building off Aalen’s work [13], Lin
[9] presented a martingale-based estimator for the asymptotic variance of the Aalen-
Johansen estimator. Lee and Fine [17] note that Lin’s martingale-based variance estimator
equals the Greenwood type estimator given in Equation (7) of Allignol et al. [18] in the
absence of ties. As an alternative to Aalen’s work [13], we use Lin’s result for variance
estimation of the Aalen-Johansen estimator.

Define the counting process notation Ni(t) = I(Xj <t, g = k), Y;i(t) = I1(X; 2 1),

Ne(t)=3_"  Nii(t),and Y(6)=D_  Yilt). Let My (t)=Npi(t)— [\ A (w)Y; (w)du. Lin
(1997) showed that

VAE(1) - Fy(0)}= VA Uit +oy 1),
=1

where
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et L= Fa(w)—Fi(6)}dMyi(u) o {51 (w) = F1(8) pdMyi(w)
=y ) L (0

)

by the martingale theory, \/ﬁ{ﬁl(t)—Fl (t)} converges weakly to a zero-mean Gaussian
process, and the variance can be consistently estimated by

i ey | AP =i AN () o (B ) =10} dN () |
Z‘I’h(t) [ 0 Y (w)’ +Jo ) .

=1

When cause of failure is missing for some patients, the cumulative incidence estimator and
its variance may be obtained from the above after excluding those with the missing cause
information. However, such an approach may lead to biased inferences. We propose
multiple imputation methods (referred to as improper multiple imputation) for
nonparametric estimation of the cumulative incidence function with missing cause of failure.

2.1. Multiple imputation method

Lu and Tsiatis [2] proposed multiple imputation methods to estimate the proportional
hazards regression parameters for competing risks data with missing cause of failure. In this
section, we propose a nonparametric approach for estimating cumulative incidence with
missing cause of failure using imputation methods described in Lu and Tsiatis [2].

Define the missingness indicator R;, that is, Rj = 1 if the cause of failure is known and R; = 0
if the cause of failure is missing or unknown. When the failure time is censored, we set R =
1 since this is known and it is not related to missing cause of failure. The observed data
consist of (R;, Xi, Rj&) (i =1, ..., n). We assume that the cause of failure is missing at
random [19], which implies that given &(> 0) and X;, the probability that the cause of failure
is missing depends only on the observed information X;, not on the unobserved &. That is,

Pr(Ri:0|5i, 6;>0, Xi):PI‘(Ri:0|5i>O, Xl)

Let Dyj = I(5 = 1) and 7(X;) = Pr(& =1|R; =0, & > 0, X;). When the cause of failure is
missing, we impute missing D;; values from the conditional distribution of D4; given the
observed data as in Lu and Tsiatis [2]. D;; has a Bernoulli distribution with success
probability 7(X;) which can be specified by a parametric model with an unknown parameter
y. It is natural to fit the logistic regression model for #(X;), logita(X;, y) = 1 + 1»X;, where y
= (1, »)- Let 1 = (301, 102) be the true value of y. The assumption that the cause of failure
is missing at random implies

T(Xi, ’70):P1"(51:1|RZ:O, 5i>07 Xz):Pr(51:1|Rz:17 5i>0> Xz)

Stat Med. Author manuscript; available in PMC 2015 November 20.
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Thus we can infer #(X;, yg) from the complete cases for whom (Rj = 1, & > 0). Maximizing
the likelihood function for the complete cases

Hﬂ_(Xi, ,y)DliI(Ri:175i>O) {1—7T(X1, 7)}(1—D1i)I(Ri:1,5i>0)
=1

yields the maximum likelihood estimator yaf y. If the model #(X, y) for #(X) is correctly
specified, y is consistent and asymptotically normal under the regularity conditions. The
asymptotic normality follows from the influence function expansion given in Appendix A.
Using the maximum likelihood estimator y,Athe missing value can be imputed as

AN Dy, if R;=1,
P 1”<R“7)_{ Bernoulli(1, 7(X;,4)) if R;=0,

where Dyjj(R;, y)Ais the imputed value of Dqj from the jth imputed data set, j =1, ..., m, and
is randomly selected to be 1 or 0 from a Bernoulli distribution with success probability #(X;,
y)AWhen Rj=0. Let FkJ-A(t) be a nonparametric estimator, estimated as in (2), of cumulative
incidence for cause k from the jth imputed data set. The multiple imputation estimator for
Fi(t) is given by averaging nonparametric estimators obtained from each of m imputed data
sets as

. 13 .
Fk(t):EZij(t), k=1,2.
j=1

As noted in Lu and Tsiatis [2], Rubin [20]’s variance calculation is not applicable here;
since we generate imputations from the conditional distribution of missing data (D;;) given
the observed data evaluated at the fixed yécross imputations, our imputation is not proper in
the sense of Rubin [20]. Wang and Robins [21] indicates that under these conditions,
Rubin’s variance will yield an inconsistent estimator for the sampling variance. We derive
variance estimators for Fk}(t) and kat) directly as in Lu and Tsiatis [2] (see Appendix A).

To establish the asymptotic properties for Fljf(t) and FlA(t), we assume that the parametric
model for 7(X) is correctly specified. Using the methods described in Lu and Tsiatis [2] or
Tsiatis et al. [22], we show that Us(t) = nY2{Fy;(t) - F1()} and U () = nY2{Fy(t) - F1(H)}
are asymptotically equivalent to (A.3) and (A.6) which converge weakly to mean zero
Gaussian processes with respective variances Vyj(t) and V4 (t) given by eguations (5.4) and
(A.7) in Appendix A. The variances can be consistently estimated by Vy(t) and Vy(t) in
equations (A.5) and (A.8).

Note that we imputed missing causes of failure from the conditional distribution of missing
data based on the maximum likelihood estimation of . The second term of Vy;(t) in (A.4)
accounts the variability of y from single imputation. When there are no missing causes of
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failure, the second term vanishes since s (70,6)=0 and our inference procedures reduce
to those in Lin [9]. Equation (A.7) shows that V1(t) < Vy(t) for all m and Vy(t) is decreased
as the number of imputations m is increased, indicating an improvement in efficiency from
multiple imputation over single imputation. Although more imputations provide more
efficient estimators, the number of imputations should be determined based on the
magnitude of V4j(t) and the second term in equation (A.7). In practice, a few imputations
(such as 5-10) would be sufficient to achieve good efficiency.

2.2. Confidence intervals

Pointwise (1 - a) confidence intervals for F1(t) can be constructed based on a
transformation of F4(t) to let F; be bounded by 0 and 1 and improve the coverage
probability. Denote K(t) = nY2¢(t) [g{F1(1)} - g{F1(D)}], where g is a known function with
non-zero continuous derivative g’ and ¢ is a weight function which converges to a non-
negative bounded function. By the functional delta method, the process K(t) is
asymptotically equivalent to o(t)g’{F1(t)}U1(t), where U (t) = nY2{F(t) - F1(t)}. Pointwise
(1 - a) confidence intervals for F4(t) are given by

RO R RV TON ETOREEN R

where z, is an upper /2 percentile of the standard normal distribution. With g(x) = log{-
log(x)} and o(x) = F1(t) log{F1(t)}V1(t)~2/2, pointwise (1 — ) confidence intervals for F1(t)
are given by

A n_1/2 "/ 1/2
exp {exp {1og{_1og(F1(t))} iza/zmﬁa)}}] - @

2.3. Two-sample tests

We consider a test which compares the cumulative incidence functions in two samples. Let
Fl(l) be the cumulative incidence function for cause 1 in group | (I = 1, 2). With two

competing risk samples, we are interested in testing the null hypothesis HU;Fl(l)(t):Fl(2) (t)
for all t < 7, where zis the observed largest time point. Gray [23] proposed a test comparing
weighted averages of the subdistribution hazards in several groups. Pepe [24] proposed a
test based on the integrated weighted difference between the cumulative incidence estimates
in two samples. Lin [9] proposed a Kolmogorov-Smirnov type statistic which compares the
maximum difference between the cumulative incidence estimates in two samples. Pepe’s
test and Lin’s test directly compare the cumulative incidence functions in two samples while
Gray’s test compares subdistribution hazards in several groups. Pepe’s test is sensitive to

stochastic ordering alternatives £ () > F® (.ywith 7" (t)  F?(¢) for some t and can
be used as an alternative to Gray’s test when the cumulative incidence functions cross [24,
25]. Lin’s test uses the Kolmogorov-Smirnov type statistic which is rank-based thus it may

Stat Med. Author manuscript; available in PMC 2015 November 20.
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share some shortcomings of the rank statistic. As noted in Pepe and Fleming [26], the
Kolmogorov-Smirnov type statistic may be sensitive to a large difference over a short period
of time but can be very insensitive to a moderate difference over a long period of time. The
latter case is of more interest in practice. Among the three tests, we focus on Pepe’s test to
directly compare the cumulative incidence functions in two samples.

Let F(ll) be the Aalen-Johansen estimator of Fl(l) ingroup I (I =1, 2). Pepe [24] developed a
test statistic @/ \/&ZQ for comparing two cumulative incidence functions, where

ning

r ~(1 = (2
e [T Y ()= (w)

Q=

52 is a variance estimator of Q and ny is the number of subjects in group I. Here, W(:) is a
data-dependent weight function used to ensure stability of a test statistic under the null

hypothesis Hy: F" (t)=F? (¢) for all t < 7. In practice, the weight function should be
chosen based on alternative hypotheses and the choice of the weight function is analogous to
that for weighted Kaplan-Meier statistics [26, 27]. A decreasing (increasing) weight function
gives less weight to differences between two cumulative incidence estimates over later

(early) time periods. Under the null hypothesis Ho:Fl(l)(t):Fl(2) (t) forall t < 7, the test

statistic @/ /& 2 has an asymptotic standard normal distribution. Pepe [24] notes that
method of moment type estimator 52 tends to be too small and underestimates the variance,

resulting in larger type | errors. As an alternative to method of moment type estimator 52,
Bajorunaite and Klein [28] proposed a martingale-based estimator for the variance of the
statistic Q. Through simulation studies, they demonstrated that the method of moment type
estimator underestimated the true variance and Pepe’s test with this variance estimator had
larger type | errors, especially when the sample size was small, while the test with the
martingale-based variance estimator performed well. Hence, we use Bajorunaite and Klein’s
result for variance estimation of the statistic Q.

In the presence of missing cause of failure, we modify Pepe’s test statistic by using an

. . . B ~ (1 . . .
imputation estimator for Fgl). Let Fij) be a nonparametric estimator of the cumulative

incidence function for cause 1 from the jth imputed data set in group | and Ff) be the

multiple imputation estimator obtained by averaging Fgl])s from m imputed data sets in

group l. To simplify the presentation, we let W(t) = 1. Then the statistic Q can be defined by

ning

Qu= T )= B (w)}du

ni+ns

for single imputation and

Stat Med. Author manuscript; available in PMC 2015 November 20.
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ning .. A ~ (2
Qu= /22t b ()~ P () }du

ni1+n9

for multiple imputation. To establish the asymptotic properties for Qg and Qps, we assume
that a parametric model for #(X) is correctly specified. We derive variance estimators for Qg

and Qu in Appendix B. Under the null hypothesis Hy:F{" (t)=F® (t) for all t < 7, we show
that Qg and Qp have asymptotic normal distributions with respective variances

2 N2 1) ny (2)
UQan1+n2 vy (T)+n1+n2 vy (7)
and
2 "2 I/§1)(7')—|——n1 7/(2)(7'),

QM _n1+n2 ni+ne E

where l/ﬁ-) (r)and ,,§l> (7)are given in (B.2) and (B.5) in Appendix B. The variances can be

consistently estimated by replacing l/ﬁ») () and I/l(l)(T) with their estimators f/%) (t)and

ﬁgl) (7) given in (B.3) and (B.6). Note that when there are no missing causes of failure, our
test statistic reduce to Pepe’s [24] test statistic with the martingale-based variance estimator

proposed by Bajorunaite and Klein [28] since %ﬂg)(%l, 7)=0in (B.1).

3. Numerical studies

Simulation studies were conducted to evaluate the performance of the proposed estimators
for the cumulative incidence function when the cause of failure is missing. Cumulative
incidence estimators and corresponding variance estimators were examined under various
missingness mechanisms, followed by evaluations of performance for the two-sample tests.

3.1. Performance under correct imputation model

The cumulative incidence functions for cause 1 and 2 are assumed to be F(t) = m{1 -
exp(-v1t?)} and Fy(t) = m{1 — exp(-vot?2)} with (1, m, v1, Vo, 64, ) = (2/3,1/3, 1, 0.8,
1, 1) as in configuration I described in Section 3.1 of Peng and Fine [25]. The type 1 and 2
failures were generated from a Bernoulli distribution with success probability Pr(e= 1) = .
The failure times (T) were generated from the conditional distribution of T given e =k, Pr(T
<t| e=k) = Fy(t)/Pr(e=k) for k = 1, 2. The censoring times (C) were generated from a
uniform distribution U(0, 7.2). The observed times (X) were obtained by min(T, C) and the
range of X was 4.568 on average. Under this setting, on average, we had 57% failures from
cause 1, 28% failures from cause 2, and 15% censoring. We generated the missingness
indicator R from logitPr(R = 0| §> 0, X) = iy + 7pX. With different choices of 7’s, we
generated 20, 30, and 40% missing causes of failure. Following Rubin’s taxonomy of

Stat Med. Author manuscript; available in PMC 2015 November 20.
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missingness [19], given &> 0 and X, if the probability that the cause of failure is missing
does not depend on the unobserved cause of failure &, the missingness mechanism is called
missing at random (MAR), otherwise missing not at random (MNAR). If the missingness
probability is constant, the missingness mechanism is called missing completely at random
(MCAR). In Table 1, the first scenario indicates MCAR case and the second to fifth
scenarios correspond to MAR case. Note that from the missing at random assumption, 7(X)
=Pr(6=1|R=0,6>0,X)=Pr(6=1| 5> 0, X). Thus 7(X) is related to the ratio of the
cause-specific hazards for cause 1 and 2, that is, A1(x)/12(x) = 7(x)/{1 — #(x)}. By this
relationship, the true model for 7(X) is logitz(X) = log(5/2) — 0.2X since
Ae(2)=26C) /€1 Fy (2)— Fy(z)} for k =1, 2. We fitted a correctly specified logistic
regression model logitz(X, ) = »1 + 1»»X. We conducted 1000 simulations with sample sizes
of 100 and 300. Table 1 shows the true value of F1(0.7), bias of FlA(O.7), empirical variance
(Var(Fﬁ), averages of the variance estimate (E(Vﬁ), mean square error (MSE), and
empirical coverage probabilities (CP) for 95% confidence intervals given in (3) from single
imputation (m = 1), 10 imputations (m = 10), and the complete case analysis (CC) obtained
by excluding subjects with missing cause of failure. Under the correct imputation model, the
imputation estimate shows that the bias is small and the variance estimate agrees with the
empirical variance. The empirical coverage probabilities are close to the nominal level.
Multiple imputation estimates have slightly smaller variance estimates than single
imputation estimates and have the smallest MSEs. However, the complete case estimates
result in larger biases and MSEs, and lower coverage probabilities compared to the
imputation estimates. Supplemental analyses (see Figures 1-3 in Supplementary Materials)
show that the complete case analysis can either underestimate or overestimate cumulative
incidence, depending on whether deaths with missing cause occur early or late in follow-up.
In either case, the imputation method performs well.

To deal with missing cause of failure, Bakoyannis et al. [5] considered Rubin’s multiple
imputation procedure under the MAR assumption, which is referred to as proper imputation.
Their imputation methods can be applied to nonparametric estimation of the cumulative
incidence function with missing cause of failure by using proper multiple imputation to
impute missing cause of failure. The cumulative incidence function F1(t) can be estimated
by averaging nonparametric estimators obtained from each of multiply imputed data sets. Its

variance can be estimated by Rubin’s variance formula var( £, )=Wa+(1+m ) Byar
where the within imputation variance W, is the mean of the variance estimates across m
imputations and the between imputation variance By, is the sample variance of the m
cumulative incidence estimates. Pointwise 95% confidence intervals for F1(t) can be

computed by using (3) with replacing zg g5 by £3;">°, where ¢;°*” iis the upper 2.5th

percentile of a t-distribution with y degrees of freedom, = (m — 1)[1 + Wy, /{(1 +
m~1)Bya}]2. We compared our imputation procedure (referred to as improper imputation)
with that of Bakoyannis et al. [5] in the case of nonparametric estimation of the cumulative
incidence function with missing cause of failure. As an imputation model for methods of
Bakoyannis et al. [5], we fitted a correctly specified logistic regression model logit#(X, y) =
n + yX. As shown in Table 1, under the correct imputation model, the multiple imputation
estimates from 10 proper imputations (m™ = 10) show that the biases are small and the

Stat Med. Author manuscript; available in PMC 2015 November 20.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Leeetal.

Page 10

variance estimates agree with the empirical variance. The empirical coverage probabilities
are close to the nominal level. However, the variance estimates from our imputation
methods are smaller than those from Bakoyannis et al. [5]. This is because we derive
variance estimators for imputation estimators directly. The MSEs of both methods are
similar. This is because the proper multiple imputation estimators are consistent and
unbiased, and its variances can be correctly estimated by Rubin’s variance formula when the
imputation and analysis models agree (i.e., congenial as defined in [29]).

3.2. Performance under misspecified imputation model

Our imputation estimators are obtained based on the maximum likelihood estimation of y
from a parametric model specified for #(X). Therefore, the estimators may be biased if the
parametric model is misspecified [30]. To justify the robustness of the imputation
estimators, we fitted an incorrectly specified logistic regression model logit7(X, ) = 1 + »»
log(1 + exp(—X)), where we generated data from the same scenario as before. We conducted
1000 simulations with sample sizes of 100 and 300. In Table 2, the biases, variance
estimates, and MSEs of the imputation estimates are small even if the parametric model is
misspecified. The variance estimates agree with the empirical variances, and the empirical
coverage probabilities of 95% confidence intervals are close to the nominal level.
Supplemental analyses (see Supplemental Figures 4-6) confirm that the imputation method
performs well under a misspecified parametric model.

Table 2 shows results from proper multiple imputation of Bakoyannis et al. [5] under the
misspecified imputation model logit7(X, ) = 11 + 1 log(1 + exp(—X)), where we did not use
a non-parametric bootstrap method as suggested in [5] to avoid biases in the variance

estimates Var(ﬁl) obtained by Rubin’s variance formula under misspecification of an
imputation model: because we found that the use of the bootstrap method for variance
estimation was not necessary. The multiple imputation estimates show that the biases and
variance estimates are small even if the imputation model is misspecified. The variance
estimates agree with the empirical variances, and the empirical coverage probabilities for
95% confidence intervals are close to the nominal level. The variance estimates from our
improper multiple imputation methods are slightly smaller than those from [5]. The MSEs of
both approaches are similar.

3.3. Additional evaluations for two-sample tests

Additional numerical studies were conducted to evaluate the performance of the proposed
test in two samples with missing cause of failure. As described in Section 3.1 of Peng and
Fine [25], we considered configurations 11, 111, and IV along with configuration I; (7, m,
Vi, Vo, 6, &) = (2/3,1/3,1, 1.2, 1, 1) in configuration 11, (2/3, 1/3,1, 1.2, 0.5, 1) in
configuration 111, and (1/2, 1/2, 0.8, 1.2, 1, 1) in configuration IV. We generated the sample
indicator Z from a Bernoulli distribution with success probability 0.5. When Z = 1 (denoted
by group 1), we generated data from configuration I, while we generated data from
configuration I1, 11, or IV when Z = 0 (denoted by group 2). The censoring times (C;) were
generated from a uniform distribution U(0, 7.2) for group 1 and from a uniform distribution
U(cq, cp) for group 2, giving the censoring proportion of 15% for each group | (I =1, 2). As
noted in Peng and Fine [25], the cumulative incidence functions for cause 1 are identical

Stat Med. Author manuscript; available in PMC 2015 November 20.
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under configurations | and I, there is a crossover of the cumulative incidence functions for
cause 1 under configurations I and 111, and the cumulative incidence function for cause 1
under configuration | is stochastically larger than that under configuration IV. For each
group | (1 = 1, 2), we generated the missingness indicator Rj from

logitPr(R;=0|5;>0, X,)=n\" +n" X,, where X; = min(T}, C)). With different choices of
17f0’s, we generated 20, 30, and 40% missing causes of failure for group 1, and 10% missing
causes of failure for group 2. The true model for 7(X) is logit#(X) = log(5/2) — 0.2X in
configuration I, logit7(X) = log(5/3) + 0.2X in configuration I, logit7(X) = log(5/6) — 0.5
log(X) — X¥2 + 1.2X in configuration 111, and logitz(X) = log(2/3) + 0.4X in configuration
IV. We fitted a correctly specified logistic regression model logitz(X, y) = 11 + X in
configurations I, 11, and 1V, and logitz(X, y) = 1 + 15 log(X) + 15XY2 + y,X in configuration
I11. We conducted 1000 simulations with sample sizes of 200 and 400. Table 3 shows that
under the correct imputation model, the imputation tests have empirical sizes close to the
nominal level 0.05 and high powers in detecting differences between the two cumulative
incidence functions for cause 1, whereas the test obtained by the complete case analysis
results in larger empirical size and less power compared to the imputation methods. Note

that in configurations I vs. I11 and 1 vs. IV with 5,{") >0, the complete case test has higher
power than the imputation tests. This is because the complete case analysis can overestimate
cumulative incidence when deaths with missing cause of failure occur late in follow-up.

To justify the robustness of the imputation test, we fitted an incorrectly specified logistic
regression model logita(X, y) = y1 + » log(1 + exp(=X)) in configurations I, 11, I1l, and IV.
We generated data from the same scenario as before. We conducted 1000 simulations with
sample sizes of 200 and 400 (Table 4). Even with misspecified imputation model, the
imputation tests result in empirical sizes close to the nominal level and high powers.

4. Application: Effect of tamoxifen on breast-cancer specific mortality in

women with early stage breast cancer

4.1. Background

We illustrate the proposed methods using data from a randomized clinical trial in early stage
breast cancer, obtained from the National Surgical Adjuvant Breast and Bowel Project
(NSABP). The NSABP is a U.S. National Cancer Institute sponsored multi-center clinical
trials group that conducts research into the treatment and prevention of breast and colorectal
cancers. Tamoxifen is an estrogen-like compound used in the treatment of breast cancer
[31].

Between 1982 and 1988, 2892 women with estrogen receptor-positive breast tumors and no
axillary node involvement were enrolled in NSABP Protocol B-14, a double-blind
randomized trial comparing five years of tamoxifen (20 mg/day) with placebo. The primary
trial endpoints were overall survival (time surviving after surgery, with an event being death
from any cause) and disease-free survival (time free of tumor recurrence, new breast cancer
in the opposite breast, other cancers, or death from any cause preceding these events).
Findings indicated a strong positive effect of tamoxifen on disease-free survival [32], and
with longer follow-up duration, a significant reduction in overall mortality [33]. The latter
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endpoint (overall mortality) is used as a conservative approach in that it avoids complexities
of accurate ascertainment of cause of death and also requires that the net effect of treatment
be a longer lifetime. However, most of the influence on improvement in overall survival
arises from avoidance of death from breast cancer. Thus cause-specific mortality (especially,
breast cancer-specific mortality) is of interest. While information on cause of death was
desired and requested, because the endpoint was overall survival, missing cause of death
data were not rigorously resolved, and so there is a substantial portion of cases with missing
cause. Table 5 shows vital status for 2817 trial eligible patients included in this analysis. Of
patients who died, 20.9% of patients assigned to placebo and 26.3% of patients assigned to
tamoxifen had missing cause of death.

We applied our multiple imputation methods to estimate cumulative incidence of breast
cancer-specific death on tamoxifen and placebo. In each group, the logistic imputation
model for 7(X) included time since diagnosis which was statistically significantly associated
with breast cancer-specific mortality among those with complete cause of death information
(R =1, §>0). Figure 1 shows estimates of cumulative incidence of death due to breast
cancer from 10 multiple imputations and the complete case estimates obtained by excluding
patients with missing causes of death, along with their corresponding 95% pointwise
confidence intervals (CI) given in (3). As shown in Figure 1(a) and (b), the estimates of
cumulative incidence of breast cancer death in the tamoxifen group are lower than those in
the placebo group in both multiple imputation and complete case analyses. In Figure 1(c)
and (d), patients in the tamoxifen group from the multiple imputation methods have 10-year
cumulative incidence of breast cancer death (with 95% confidence interval) of 11.7% (10.0—
13.6%), while in the placebo group, 10-year cumulative incidence is 15.4% (13.5-17.4%).
The complete case estimates are 9.8% (8.3-11.6%) for the tamoxifen group and 13.4%
(11.6-15.3%) for the placebo group. The 10-year cumulative incidences of breast cancer
death from the complete case analysis are 16% on tamoxifen and 13% on placebo lower than
those from the multiple imputation methods. These differences continue to grow as follow-
up lengthens.

In order to compare cumulative incidences of breast cancer death between tamoxifen and
placebo groups, we computed the multiple imputation test based on 10 imputations and the
complete case test. The test statistics (p-value) for breast cancer death are —3.746 (0.0002)
for the multiple imputation test and —3.903 (0.00009) for the complete case test, both
indicating that tamoxifen significantly reduces mortality from breast cancer. The result from
the complete case test is very similar to that from the multiple imputation test. This may be
because cumulative incidences of death due to breast cancer in both tamoxifen and placebo
groups are underestimated to a similar extent by the complete case analysis (see Figure 1).

5. Discussion

We investigated multiple imputation methods for nonparametric inferences of the
cumulative incidence function in the presence of missing causes of failure. Under the
missing at random assumption, we develop asymptotic theory for multiple imputation
methods to estimate the cumulative incidence function nonparametrically and perform a test
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for comparing the cumulative incidence functions in two samples. These procedures are
straightforward to implement. When there are no missing causes of failure, our inference
procedures reduce to those in Lin [9] and Pepe’s test with a martingale-based variance
estimator [24, 28]. Simulation studies show that our multiple imputation methods perform
well, even if the model for imputation is misspecified. The simulations also show that our
improper imputation approach is slightly more efficient compared to the proper imputation
[5]. In supplemental analyses, we show that the complete case analysis can either
underestimate or overestimate cumulative incidence, depending on whether deaths with
missing cause occur early or late in follow-up. In the breast cancer example, estimates of
cumulative incidence of breast cancer death in both tamoxifen and placebo groups from the
complete case analysis were lower than those from the multiple imputation methods. Since
cumulative incidences of breast cancer death in both groups are underestimated to a similar
extent by the complete case analysis, the complete case test provided a similar result to the
multiple imputation test for comparing breast-cancer specific mortalities between the two
groups. Thus, the complete case test is unlikely to be biased for comparing differences
between the cumulative incidence functions in two samples where the missing cause of
death mechanism is the same in each group.

We proposed nonparametric inferences of the cumulative incidence function with missing
cause of failure under the assumption of missing at random when we observe (X;, R;, Rj) (i
=1, ..., n). Ina practical setting, covariate information may be available and one may
include auxiliary covariates in the imputation model to make the missing at random
assumption more plausible, as the methods of [2]. In the case, our multiple imputation
methods for nonparametric inferences of the cumulative incidence function with missing
causes of failure are applicable incorporating auxiliary covariates. A nonparametric
estimator of the cumulative incidence function can be obtained by imputing missing cause of
failure from a Bernoulli distribution with success probability 7(W;, y)Aand averaging
nonparametric estimators across several imputed data sets, where W; = (X, Zj), Zj is
auxiliary covariates, and the success probability 7(W;, y)Acan be obtained by fitting a logistic

regression model, logit(TW;,y)=1V;" . under the missing at random assumption. The
variance of the multiple imputation estimator can be estimated by V4(t) in equation (A.8)
with replacing 7(X;, y)Aby (Wi, y)Aand mAXi, y)Aby TAW;, y)Ain equation (A.5). The variance
esEimator of the [nultiple imputation test in two samples can be obtained by replacing 7, (Xi,
n) by m,(Wir, ») in (B.3) and (X, n) by 7(Wj, n) in equation (B.6).

We assumed that the cause of failure is missing at random. Unfortunately, assumptions
about the missing mechanism such as the missing at random are not testable from the
observed data [5, 34]. Thus, one may conduct sensitivity analyses to assess the robustness of
inferences to departures from the missing at random assumption [5, 6, 35].

We used the Aalen-Johansen estimator for nonparametric estimation of the cumulative
incidence function. This is based on the assumption that the censoring time C is independent
of (T, £). When the censoring time is only independent of (T, &) conditional on covariates,
the Aalen-Johansen estimator is unbiased if the censoring distribution does not depend on
covariates (i.e., Pr(C > t| Z =z) = Pr(C > t) for covariates Z) and hence censoring is
independent of covariates. However, the estimator may be biased if censoring depends on
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covariates [36]. In that case, Binder et al. [36] proposed an alternative estimator to the
Aalen-Johansen estimator by using a regression model for the censoring time. Thus, when
the censoring time is only independent of (T, &) given covariates, our imputation methods to
estimate nonparametrically the cumulative incidence function with missing cause of failure
are valid if censoring is independent of covariates. However, if censoring depends on
covariates, alternative estimators proposed by Binder et al. [36] may be used. Similar
derivations used in our paper may be applicable to multiple imputation inferences for the
alternative estimators.

In this paper, we discussed multiple imputation inferences for nonparametric estimation of
the cumulative incidence function with two types of failure in the presence of missing
causes of failure. When there are more than two causes of death, the missing cause can be
imputed from a multinomial distribution with probabilities estimated by using a parametric
modeling under the missing at random assumption. A multinomial logistic regression can be
considered as a parametric imputation model. In that case, the variance formula can be
obtained following asymptotic theory given in Appendix A along with the influence
function expansion of the maximum likelihood estimators of parameters in a multinomial
logistic imputation model.

When the imputation and analysis models agree (i.e., congenial as defined in [29]), results
from the proper multiple imputation approach may be similar to those from our improper
multiple imputation methods, as shown in the simulation studies. When covariate
information is available and censoring depends on some covariates, one may include
covariates (including auxiliary covariates) in the imputation model to make the missing at
random assumption more plausible and use a regression model for the censoring time. In
that case, the imputation and analysis models may then be uncongenial, and Rubin’s
variance formula may produce some bias in the variance estimates of the multiple
imputation estimates, as noted in [29]. Note that we derive variance estimators for the
multiple imputation estimators directly. This may suggest that our multiple imputation
method is more efficient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A

Define the counting process notation Nyij(t, R, 7) = I(Xj < t, Dyj(Ri, ) = 1), Yi() = I(Xj = 1),
and Y(t)=)_ Yi(t). Let

My (t, By, ) =Ny (t, Ri, ) — [ oA (w) Vi (w)du.

Let AkAj(t) be the cumulative cause-specific hazard estimate for cause k from the jth imputed
data set that can be expressed by the counting process notation as

n1’2{A|:j(t) - A(D)} is asymptotically equivalent to
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71/2210 deu u, R, §)+op(1),  k=L2. (a1

Using the consistency of S(:), Taylor expansion and integration by parts as described in Lin
[9], Uyj(t) = nl/Z{Flj(t) - F1(t)} from the jth imputed data set can be expressed as

Uy () =n"/? | [4S(w)d{Ar; ()= A1 () }+[4{ S () = S(u) }dhs (u)
~ 2 ~
| () {Asy () -Aa (@)} 3 [45(0){Ang )~ A} ()] +0, (1)

/2 | [l Ry~ 8a(}= 3 [{FO-F()}d{As ) -2} o, 1)
Using (A.1) and S(t) = 1 - F1(t) = Fa(t), Ugj(t) = nl/Z{Fl}(t) - F1(t)} is given by

Uyi(t)=n"2>" fij(3,t)+0,(1), (A2)

=1

where

tn{l Fy(uw)=Fy(8)}dMij(u, Ry, y) o A F1(8) = F1 (u) M i (u, Riy )
Y (u) 0 Y (u)

flj('% )

To establish the asymptotic theory for single imputation and multiple imputation estimates,
we use the methods described in Lu and Tsiatis [2] or Tsiatis et al. [22]. Consider the

centered sum H;(7, )= . ,1{fu Y t)=py (7:1)}, where pie (7, t) = E{fii( )}. Then
‘1/2{HJ(;/, t) = Hj(»o, )} converges in probability to zero [37]. Using the convergence of the
centered sum and Taylor series expansion,

Uy;(t)=n—1/2 _gnlfij (Y0, £)+n2{ s (4, t)— 15 (70, ) 40, (1)

n T
:nil/zv;fz‘j(%,t)-i-{%#f (”/o,t)} n/2(5—=0)+0p(1).

Using arguments similar to those in Tsiatis et al. [22],

iy (0,t)=E [”{I‘Flg((; L1, < )P =01, (X070)|

which is estimated by
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0o T {1 FlJ(X) FZJ(X)} R
—#f (4, ):; { V(X0 I(X; < t)I(RiZO)Tv(Xi,V)J )

where subscript j means that the corresponding estimate is obtained from the jth imputed
data set and 7 (X, y)za_aﬂ(xi’ 7)-

The asymptotic normality of yfollows from the influence function expansion

n2(A—r0)=n"2>"¢(0;,70)+0,(1),

=1

where O; = (Rj =1, § >0, X)),

Dy;—7(Xi,70) }

#Oi 0)=7 7 (o) (Xiy ) (Fi=1,8:>0) [W(Xiﬂo){l—W(Xiﬁo)}

and J(yp) is the information matrix

J(y0)=E [ &0 R = (XKoo}

Applying the approximation for n¥2(y— ), Uyj(t) is equal to

T
_1/22 [fz7(’7’07t)+{ 5 (Y0, )} #(0i,7) | +op(1). (A3)

This is a sum of independent and identically distributed mean zero random variables, and the
central limit theorem proves asymptotic normality. Its variance is given by

n{1—-F1(X;)—F>(X;)}
Y (X;)

2 0 T
Vi (0)=E{ fi;(70.1)® }+{£Hf (VOJ)} J () E { I(X; <)
X {Pr(51>0|XZ)+PI‘(R7:1,57>0|XL)}7T7(XL770):| )

where E{fj;(70, 1)®2} is the asymptotic variance of n1’2{F1A(t) - F1()} when all causes of
failure are observed and is estimated by
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2

Z{l F2jy(X )Flj( )} ](Xi <t, Dlij<Rz,’)’ +nz{F1] Flj(Xi)} I(Xi < t,Dzij(Ri,’A)’):l),

Y(X;)?
and Dyij(R;, y)Ais the imputed value of Dy; from the jth imputed data set as

) Dy if Ri=1,
Doii(R: . A)=
21]( za7) { 1—D1ij(Ria'AY) ifRiZO-

Foranyj (j =1, ..., m), the variance Vy;(t) is estimated by

Y (X)) =1 (A.

5)

V()= §1J(t)+{ 0 i (%t)} 1(@)271: |:{1_F2.7'(Xi)_F1j(Xi)}

i=1

X {I(&L>0)—|—I(Rl:1,5l>0)}7T,7(X“’A)/):| .

For multiple imputation, Uq(t) = nl’z{Flzt) - F1(t)} is asymptotically equivalent to

n‘lui {%jilfij(’)’o,t)-i-{%uf (’yU,t)}Tgb(Oi,'yo)} +o,(1). (AS6)

This is a sum of independent and identically distributed mean zero random variables, and the
central limit theorem yields the asymptotic normality. Its variance is given by

Vi(t)=V4;(t)
-(1-1/m)E [[{1—F2(Xi)—F1(t)}2+{F1(t)—F1(Xi)}zl

n2

Y(X:)® an

X I(XZ S t)Tl’(Xi, ’70){1—71’()(1‘, 70)}PT(RZ=0|X1):| .

The variance Vq(t) is estimated by

nz [{1—ﬁ2j(Xi)—ﬁ1j ()} +H{F () —Fy (Xz‘)ﬂ (A8)

=
2
IA

t)W(Xiﬂ){l—W(Xi,%)}I(RFO)] :
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APPENDIX B

Suppose that there are two independent competing risk samples with missing cause of
failure. In group | (I = 1, 2), the observed data consist of (Rj;, Xji, Riigip) (i=1, ..., nj), where
R; is the missingness indicator in group I, X;; = min(Tj, C;)), and & = I(Tj < Cj))&. For the
ith individual from the jth imputed data set in group I, define the counting process notation

Nkiji(t, Rit, ) = 10X < t, Diji(Rir, 1) = 1), Yi(t) = 1(Xj = 1), and ?z(t>=2i;Yu<f>- Let
]\’#[kijl(ta Rila ’Y):Nkijl(ta Rila 7)_ff)A§cl) (U)Y;l (u)du
The test statistic for single imputation can be written as

ning

Q.= [T ()= P u— 5 )~ P ()] [T [ (PP ()~ ()]

n1+n9

Under the null hypothesis Ho: £ (1)=F® (t)forall t< 7,

ning
ni+nq

Q.- 15085 =Y a5 {55 )~ )]

Using (A.2) and changing the order of integration, n1/2 [O{F ( )— Fl(l)(u)}du is given by

O]
I/ZIO{FU%( ) (l) (u)}du
_nl—l/2Z [‘Z)’{ un{1-Fp Y(lss) u)}d]\rfujl(SyRilu’A}/l)} du

—fo{ “WCH\J%I(S Riz,’vl)} du] +0p(1)

_ F, (s T o
=] 1/22 [lom {(T i (s( Ylis)jSFfl)(u)du} Ml Fas )

D (s A
+ fgnl{(T—s)ﬁ—]L— 17O (w) du}d]\f[glﬂ(s,Ril,”yl)] +o,(1)
_1/2 Z sog) (Y15 7)+0p(1),

Yi(s)  Yi(s)

where yfis the maximum likelihood estimator of yin group | and

1 - 1-FW (s ol
<P£J)(% 7)=/om {(T—S) yf(s)( )_Vll(s)Jst )(U)du} dMyy(s, Ri, )

; B 17O )du} dM (s, R
+f0nl (T_S) Yi(5) _71(3)‘[5 1 (u) u '2ijl(3, ilap)/)'
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To establish the asymptotic theory for single imputation and multiple imputation tests, we
use the methods described in Lu and Tsiatis [2] or Tsiatis et al. [22]. We consider the
centered sum for cpf-? (y,7)in group |, H ol Z {<P —19(~,7)}, where
/Lg)('y, T)ZE{gol(»? (7, 7)}. Let yop be the true value of y. Then

71/2{H(”(% T)— HJ(»Z) (yo1, T) } converges in probability to zero [37]. Using the
convergence of the centered sum and Taylor series expansion, and applying the

approximation for n/*(,—~~,) in group I, n1/2f0{F ) (u)— F" () }du is equal to

ny
RO

=1

+op(1), (B.1)

19]
99U>(’70la T)+{ 7”90 ) (Yo, T)} Y (Ou, 1)

where using arguments similar to those in Tsiatis et al. [22],

{1-P (xa)- R (xa) }
?l(Xil)

0
8—%#59[)(70177)217 {(T_Xil) I(Xy < 7)Pr(Ry=0[Xy)m,, (Xiﬁoz)} .

This is a sum of independent and identically distributed mean zero random variables, and the
central limit theorem yields the asymptotic normality. Its variance is given by

1-F (Xa)— B (Xa)

T
=B w1 { gD )} T B {m {w—xm T

x I(Xy < 7){Pr(6;>0|X;;)+Pr(Ry=1, 6;;>0|X;;) } 7, (Xilﬁol)} ,

where E{gog-) (o1, 7)®?} is the asymptotic variance of nl/ ? I {Filj (u)—Ffl)(u)}du when all
causes of failure are observed and is estimated by

u 1-PY) (X)) A
Cl] ()= Z {(TXil) 71?&1) ’ Yz(X 1) fX ZF (u)du I(Xil < 7, Diu(Ra, 4;)=1)

o A 1 a0 ’ .
+nli§:1 (7=Xa) ?l](Xilj _VZ(X;L)'[XZ-ZFU (w)du o I(Xi < 7, Dagi(Rit, 71)=1)-

Foranyj(j=1, ..., m), the variance l/f? (1) is estimated by
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n () ()
l/)(l) iA() ’ 514 l IV — 1- F2] (X> F (XLl)
4= CIJ( " {8 # O )} ! (%); L{( i) Y i(Xa) (B.
3)
X I(Xy < 7){I(64>0)+I(Ry=1,8;>0)}m, (Xﬂ,&l)] ,

where

A (1 l
—A yT)=— T—Xi I‘XvZ STIRZ:OW Xi,A
ot (315 7) nz; ( 1) 5 (X < 7)I(Ry=0)7, (X, %1)

Therefore, the variance estimate of the test statistic Qg is given by

2 _ N2 A(l) A PN e
aQs_n1+n2 (T) n1+n2 (T)

Under the null hypothesis Hy, the test statistic for multiple imputation is written as

ning

Qu= [fa{ﬁP<u)—Ff”<u>}du—fs{ﬁ§”<u>—Ff”<u>}du .

ni1+ne

Using (B.1), n/* [7 {F ( )—F" (u) }du is asymptotically equivalent to

m_1/2§: [ Z%; 701,7)4—{—7/&,; (701,7)}T¢(l) (Oila%l)} +op(1). (B.4)

i=1 j=1

This is a sum of independent and identically distributed mean zero random variables, and the
central limit theorem yields the asymptotic normality. Its variance is given by
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D (r) =1 (1)~ (1-1/m)

x I(Xy < T)W(Xil,701){1—7T(Xi17”/ol)}Pf(RilZOXiz)]

nlz{(T—Xil)F;l(l)(Xil)—_ ! T o0 (u)du}

2
+E

YVi(Xa) Yi(Xy) X !

X I( Xy < 7)m(Xig, yor){1=7(Xir, yor) }Pr( 11—0|Xiz)H .

The variance (" (r) is estimated by

Yz (Xa)  Yi(Xa)' X

m n l—ﬁél:) X
() %Zvl)m A-1/m)=>" {md {(T_X”) ?zéf(a)l)_?z(Xu)

mi i=1

X I(Xy < T)W(Xila’A}/Z){l_ﬂ-(Xil;’?l)}](Rilzo):|

2
lj(le) 1 - A(l_)u .
+”IZ { Yl(le) Yl(Xil)inlFlj( )d }

X I(X’Ll < 7)77 7.la’7l){1 7T( ll)ﬁ/l)}‘[(Rll:O)]] .

We obtain the variance estimate of the test statistic Qy as

~ ny (1 AN
&2 —I/g) 1l )(7‘).
Qum ni+ne ni+nq
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Figure 1.

Cumulative incidence estimates
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(b)

—— Complete case estimates on tamoxifen

- - Complete case 95% Cl on tamoxifen
Complete case estimates on placebo
Complete case 95% CI on placebo

Time (Years)

(d)

Multiple imputation estimates on placebo
- - Multiple imputation 95% CI on placebo
Complete case estimates on placebo
Complete case 95% CI on placebo

5 10 15

Time (Years)

Estimates of cumulative incidence of breast cancer death with 95% pointwise confidence
intervals (CI) by the multiple imputation method and complete case analysis. The upper
panels show results by analysis and by group, whereas the lower panel shows results by

group and by analysis.

Stat Med. Author manuscript; available in PMC 2015 November 20.

20



Page 25

Leeetal.

256'0 060000 960000 060000 00000  OT=w (G0

8v6'0  20T00'0 S0TOO'0 20TO0'0 060000 T=w %0€

T96'0  28000'0 980000 280000 8.0000- 0T=W

€66'0 20T00'0 €60000 €60000 G86000- 2D (0'se'1-) =

096'0 28000°0 S8000°0 280000 ¥.0000-  OT=w (4 W)

8G6'0 T6000'0 680000 160000 €0000-  T=w %02 00¢€

6v6'0 G8200'0 992000 G8200°0 GL00000-  OT=W

T88'0 629000 L/E00'0 ¥6E000  ¥OSKO0 20 (9g°0- 'T0-) =

9v6'0 €82000 92000 €82000 820000~  OT=wW (CD)

Zv6'0  80€00'0 182000 80E000 2S0000-  T=w %0%

8v6'0 192000 ¢92000 T92000  ¢¢r000  OT=W

986'0  L9€00'0 6TE000 LEE000  OELTO0 20 (T-'T0-) =

G¥6'0 ¥92000 652000 ¥92000  €81000  OT=W (% ")

Tv6'0  €62000 €/200°0 €62000  00TOO0 T=w %0€

¥S6'0 162000 L0000 962000 89200°0-  OT=W

L€8'0 985000 ¢ZE00'0 E€EE000  0E0S00- 20 (T1'8e1-) =

0S6'0 762000 S6200°0 62000 L9T000-  OT=w (% 1)

6v6'0 OPE00'0 €2€000 OPEO0'0 99T000-  T=w %0Y

T96'0 082000 962000 082000 L9T00°0- O0T=W

0/L'0 189000 82000 062000 1G2900- 2D (950 ‘8€'7-) =

€G6'0 6/2000 982000 6/2000 290000~  OT=w (CD)

Ly6'0  E€T€00'0 TTE000 €IE000 €Y0000-  T=w %0€

€G6'0 €¥200'0 952000 ¢¥e000 291000~  0T=W

vv6'0 982000 €2000 ¥.2000 G90T00- 0D (0'se'1-) =

1660 82000 1S2000 872000 T¥I000-  OT=W (% ")

6v6'0 792000 ¥92000 ¥92000 ZPTO00-  T=w %02 00T
dd SN (A3 (den  (Pd)seig PO Buissiw o4 u

9g6ee’0=(20=1"4

T alqel

NIH-PA Author Manuscript

‘]apouw uoireInduwl 19814109 8Y) Japun S} NsaJ UONR|NWIS

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Stat Med. Author manuscript; available in PMC 2015 November 20.



Page 26

Leeetal.

NIH-PA Author Manuscript

*[] 10 spoyiawi uo paseq suoneindwi Jadoid 0T ,OHH*E

876'0 160000 T60000 TE0000  €00000  OT=W

LT/0 €6E00°0 62T000 OvTO0'0  0E0S0°0 20 (9€0-'1°0-) =

6¥6'0 160000 060000 T60000  8I0000  OT=W (G

6€6'0 660000 960000 660000 TTO000-  T=w %0%

8G6'0 880000 680000 880000 600000  OT=W

9z6'0 €YT00'0 80TO00  STTO00 89100 20 (T-'10-) =

9560 680000 280000 680000  ST0000  OT=W (% ")

096'0 G6000°0 260000 S60000 €00000-  T=w %0€

G96'0 £6000'0 SOTOO'0 €60000 96000°0-  0T=W

9890 2GE00'0 OTTO00 L0TOO0 €S6K00- OO (T1'8e1-) =

656'0 ¢60000 00TO00 260000 890000-  OT=W (CD)

6v6'0 90T00'0 O0TTO00 90T000 6.0000-  T=w %0Y

€56'0 T60000 00TO00 T60000  2£0000  OT=W

2870 07000 60000 ¥60000 C€ET900- 0D (950 '8€'T-) =
do 3SIN (N3 (d)en (d)seilg POUBDIN Buissiw 95 u

96ee0=(,0=1)"d

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Stat Med. Author manuscript; available in PMC 2015 November 20.



Page 27

Leeetal.

0S6'0 860000 TOTO0'0 860000 L0TO00-  OT=W (G0

0v6'0  TTT000 O0TT000 TTT000 $S0000-  T=w %0€

096'0 T8000'0 280000 T80000 200000  OT=W

Zv6'0 960000 €60000 /80000 E€¥6000- 2D (0'se'1-) =

6G6'0 T8000'0 280000 T8000'0 2000000  OT=w (4 W)

6G6'0 S8000'0 160000 G8000'0 G20000-  T=w %02 00¢€

€v6'0 682000 192000 682000 800000  OT=W

788'0 GG900'0 8LE00'0 66£000  L90S0°0 20 (9g°0- 'T0-) =

9v6'0 882000 92000 882000  TY0000  OT=w (CD)

Zv6'0  8T€00'0 182000 8IE000 091000 T=w %0%

¥G6'0 292000 092000 292000 680000  OT=W

Zv6'0  €9€00'0 8TE000 TEE000  L6LT00 20 (T-'T0-) =

9560 €92000 652000 €92000  95T000  OT=wW (% ")

GG6'0 782000 ¥.Z00'0 €82000 860000 T=w %0€

GG6'0 61€00'0 0TE00'0 6I€000 20000°0-  OT=W

9v8'0 €8500'0 €2€000 0SE000  TEQYO0- 20 (T1'8e1-) =

GG6'0  22€00'0  60€00°0 22€000  LETOO0  OT=w (% 1)

¥G6'0  89£00'0 9E€00°0 89E000  €6T000 T=w %0Y

€G6'0  G0£00'0 TOE00'0 GOE00'0  G2TO00-  OT=W

6G.'0 289000 12000 00€00'0 9.T1900- 2D (950 ‘8€'7-) =

€G6'0 GOE00'0 862000 SOE00'0 /20000  OT=w (CD)

0960 €€€00'0 22E00'0 €EE000  TL000O T=w %0€

7660 §G200'0 952000 Y5000  9600000-  OT=W

GE6'0 862000 €2000 062000 G68000- OO (0'se'1-) =

G¥6'0 852000 ¥S2000 8G2000  8¥0000-  OT=W (% ")

Gv6'0 92000 992000 9/2000 TYO000-  T=w %02 00T
dd SN (A3 (den  (Pd)seig PO Buissiw o4 u

9g6ee’0=(20=1"4

¢ ?dlqel

NIH-PA Author Manuscript

‘|]apouw uoneIndwi 1984100U1 8] Japun S}Nsal LoNeINWIS

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Stat Med. Author manuscript; available in PMC 2015 November 20.



Page 28

Leeetal.

NIH-PA Author Manuscript

*[] 10 spoyiawi uo paseq suoneindwi Jadoid 0T ,OHH*E

2660 T6000'0 160000 T60000 870000  OT=W

0TL'0 20Y00'0 621000 OPT000  0ZIS00 20 (9€0-'1°0-) =

2560 160000 060000 T60000  GL0000  OT=w (G

GG6'0 860000 S6000°0 860000  T9000°0 T=w %0%

vv6'0 680000 880000 680000 9.T0000-  OT=W

€26'0 6€T00'0 80TO00 TTO00  S6VI00 20 (T-'10-) =

v¥6'0 160000 880000 T60000 €¥T000-  OT=W (% ")

vv6'0 660000 €60000 660000 6£TI00°0-  T=w %0€

096'0 €0T00'0 90T000 €0T000 00000  OT=W

20L0 /v€O0'0 0TTO00 €TTO00  9€8Y00- 20 (T7'8e1-) =

8v6'0 €0T000 SOTO00 €0TO00  TETO00  OT=W (CD)

GE6'0  €2T00'0 GTTO00 €2T000  SGETO0O T=w %0Y

Gv6'0 860000 20T000 860000 9ST000-  OT=W

27’0 86Y00°0 ¥60000 660000 GIEY00- 0D (950 '8€'T-) =
do 3SIN (N3 (d)en (d)seilg POUBDIN Buissiw 95 u

96ee0=(,0=1)"d

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Stat Med. Author manuscript; available in PMC 2015 November 20.



Page 29

Leeetal.

Ceye 1)
. . . _ m~ (1)
260 8210 0S0°0 0T=wW
9680 9210 €500 T=w %02 00v
[49A] ITT0 2.0°0 20 (TT'8e1-) =
Ceye 1)
. . _ _ (m~ (1
6650 0600 6700 0T=wW
2950 6600 9500 T=w %0Y
€690 1100 6500 20 (950 '8€'1-) =
Ceye 1)
. . _ _ ™ (1
£99°0 6,00 500 0T=wW
6790 G600 1500 T=w %0€
8620 8500 S0T'0 20 (9g°0- 'T0-) =
(g 11)
. . _ _ (m™ (1
G850 2600 900 0T=wW
9950 680°0 500 T=w %07
69€°0 9700 960°0 20 (T-'10-) =
Ceye 1)
. . _ _ ™ (v
8150 G100 500 0T=wW
8r50 0.00 0900 T=w %0€
1090 GL00 2900 20 (0'8e'1-) =
(o 11)
. . . _ (™ (1
6590 880°0 0S0°0 0T=wW
¥€9°0 G800 9500 T=w %02 002
Al SA | 111 SA'| 11 'SA | POYIBIN | Co_am‘_Jchoo ul mc_mm__.t % u
(50'89z-)= (50'9¢-)= (50'99°2-) =
Ceye 1) Coye 1) Coye 1)
(@) (@ (@~ (@ (@) (@
Al pue ‘111 ‘11 suoireanBiyuod ui Buissiw 94071
‘(0 = 2) Z dnoub 1oy sjapow uonelauab ay) 01 puodsaliod Al pue ‘|11 ‘11 suoneinbijuod pue

‘paxiy st yaiym ‘(T = ) T dnoub 1oy |apow uoiressusb ayj si | uoneinbiyuod ‘siamod aredaipul (Al “SA | pUB 1] “SA ) SUWNJOI Py} pue puodas ayl “(I] 'SA 1)
uwIN|09 1414 3Y) 01 Spuodsaliod oLIeUdIS SISaYI0dAY [[nu 8yl [apow uoneindwi 1931409 8yl Japun S1s8] a|dwes-oM] Jo siamod pue sajes uonaalas [eaudw3

€9lqel

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Stat Med. Author manuscript; available in PMC 2015 November 20.



Page 30

Leeetal.

NIH-PA Author Manuscript

8260 ¥0Z°0 0200 20 (TT'881-) =
Ceye 1)
. . _ _ (m~ (1
958°0 8210 9500 0T=W
6280 0zT'0 1500 T=w %0y
606°0 9T 6500 20 (950 '8e'1-) =
( ope 1)
. . _ _ m™ (
8180 8TT°0 7500 oT=wW
1980 LTT°0 1500 T=w %0€
1890 ¥90°0 €170 20 (9g°0- 'T0-) =
(g 1)
. . _ _ (m™ (1
898°0 6TT°0 6700 0T=W
2280 6270 0500 T=w %01
ZTL0 1500 8ET0 20 (T-'T0-) =
Ceye 1)
. . _ _ m™ (1
9880 1210 0500 0T=W
198°0 8170 1900 T=wW %0€
1680 GTT0 1900 20 (0'8e'1-) =
Al 'SA | 111 'SA | 11 'SA | POy | uoneanBiyuod ul Buissiw o4 u
(50'89z-)= (50'9¢-)= (50'592-) =
Ceye 1) Coye 1) Coye 1)
(@) (@ (@~ (@) (@) (@
Al PUE ‘I1] ‘11 Suonreanbiyuod ui Buissiw 9401

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Stat Med. Author manuscript; available in PMC 2015 November 20.



Page 31

Leeetal.

Ceye 1)
. . . _ m~ (1)
1160 evT 0 8700 0T=wW
1880 9T 0 9700 T=w %02 00v
0020 S0T°0 G800 20 (TT'8e1-) =
Ceye 1)
. . _ _ (m~ (1
9650 8100 6700 0T=wW
7850 880°0 €500 T=w %0Y
0990 L0T'0 T.0°0 20 (950 '8€'1-) =
Ceye 1)
. . _ _ ™ (1
€90 ¥60°0 1500 0T=wW
090 ¥80°0 0900 T=w %0€
2620 G900 S0T'0 20 (9g°0- 'T0-) =
(g 11)
. . _ _ (m™ (1
7850 2600 €500 0T=wW
G550 1170 500 T=w %07
0EV'0 €500 L0T°0 20 (T-'10-) =
Ceye 1)
. . _ _ ™ (v
629°0 0600 2500 0T=wW
0650 ¥80°0 ¥90°0 T=w %0€
€650 ¥90°0 ¥90°0 20 (0'8e'1-) =
(o 11)
. . . _ (™ (1
¥59°0 v20°0 9500 0T=wW
790 G800 G500 T=w %02 002
Al 'SA | 111 'SA | 11 'SA | POYIBIN | uoneanbiyuod ul Buissiw o4 u
(50'89z-)= (50'9¢-)= (50'99°2-) =
Ceye 1) Coye 1) Coye 1)
(@) (@ (@~ (@ (@) (@
Al pue ‘111 ‘11 suoireanBiyuod ui Buissiw 94071
(0 = 2) Z dnoub 1oy sjapow uoireIauab ay) 01 puodsaliod Al pue ‘|1 ‘|1 suoneinBijuod pue ‘paxiy Si

yoiym ‘(T = 7) 1 dnoub 1oy |apow uonrauahb ayl si | uoneinbpuo) ‘siamod ayealpul (Al “SA | pue ]| "SA |) SUWN|0I pPAIY) pue puodas ayl “(1] 'SA |) uwnjos
1541} 3Y) 01 SpPU0dsali09 OLIeUSIS SISAYI0dAY [INu 8y ‘[apow uolreindwil 193.1102Ul 3Y) J3pun S$1s9) ajdwies-om] Jo siamod pue sarel uonodalas [earndw3

v alqel

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Stat Med. Author manuscript; available in PMC 2015 November 20.



Page 32

Leeetal.

NIH-PA Author Manuscript

7€6°0 16T'0 1900 20 (T7T'88'T-) =
( ope 1)
. . _ _ m™ (
1880 T€T°0 G700 oT=wW
1580 YET'0 G500 T=w %01
¥26°0 19T°0 1900 20 (950 '8e'1-) =
(g 1)
. . _ _ (m™ (1
906°0 8210 0900 0T=W
7880 T€T0 6500 T=w %0€
8190 €900 LTT°0 20 (92°0-'T0-) =
Ceye 1)
. . _ _ m™ (1
9580 8ET°0 G700 0T=W
2280 7r1°0 G700 T=wW %0%
G190 ¥90°0 810 20 (T-'10-) =
€980 ZIT0 2500 0T=W uonenb3
0r80 2210 ¥50°0 T=wW %0€
188°0 0210 0900 20 (0'8e'1-) =
Al 'SA | 111 'SA | 11 'SA | POy | uoneanBiyuod ul Buissiw o4 u
(50'89z-)= (50'9¢-)= (50'592-) =
Ceye 1) Coye 1) Coye 1)
(@) (@ (@~ (@) (@) (@
Al PUE ‘I1] ‘11 Suonreanbiyuod ui Buissiw 9401

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Stat Med. Author manuscript; available in PMC 2015 November 20.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duasnuely Joyny vd-HIN

Leeetal.

Table 5

Vital status among women from the NSABP B-14 randomized trial.

Status/Cause of Death

Treatment Arm

Placebo Tamoxifen Total

Alive 919 1001 1920

Breast cancer 241 155 396
Other cause 150 142 292
Unknown 103 106 209
Total 1413 1404 2817
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