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Abstract

We propose a nonparametric approach for cumulative incidence estimation when causes of failure 

are unknown or missing for some subjects. Under the missing at random assumption, we estimate 

the cumulative incidence function using multiple imputation methods. We develop asymptotic 

theory for the cumulative incidence estimators obtained from multiple imputation methods. We 

also discuss how to construct confidence intervals for the cumulative incidence function and 

perform a test for comparing the cumulative incidence functions in two samples with missing 

cause of failure. Through simulation studies, we show that the proposed methods perform well. 

The methods are illustrated with data from a randomized clinical trial in early stage breast cancer.
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1. Introduction

In studies of time to event data, competing risks, where individuals may fail from one of 

several mutually exclusive causes, are frequently present. For example, after cancer 

diagnosis and treatment, patients may die of cancer but also may die of other causes prior to 

death from cancer. In such a case, medical investigators may be interested in predicting the 

probability of dying of cancer by a particular time t in the presence of death from other 

causes. The probability is defined by the cumulative incidence function

(1)
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where T is the time to failure and ε ∈ {1, 2, … K} is the cause of failure. This quantity is 

useful in the analysis of competing risks in the sense that it reflects the risk of the cause of 

interest without ignoring the presence of other competing events. Another useful quantity in 

the analysis of competing risks is the cause-specific hazard function defined by

which is the instantaneous rate of cause k at time t in the presence of other competing risks. 

The cumulative incidence function given in (1) can be expressed as a function of all cause-

specific hazards as

where  is the overall survival function and 

 is the cumulative cause-specific hazard function for cause k.

In competing risk studies, it may be known that a failure has occurred but the failure type 

may be unknown. For example in the cancer example, the cause of death may be unknown 

or missing for some patients due to incomplete reporting or documentation, or other reasons. 

The simplest way to deal with missing causes of failure may be to exclude subjects with 

missing causes from the analysis. However, such an approach will result in information loss 

and may yield biased results. Goetghebeur and Ryan [1] and Lu and Tsiatis [2] proposed 

methods for estimating regression parameters under the cause-specific proportional hazards 

model for competing risk data with missing cause of failure. Gao and Tsiatis [3] and Lu and 

Liang [4] proposed inference procedures for estimation of regression parameters under a 

linear transformation model and an additive hazards model for competing risks with missing 

cause of failure, respectively. Bakoyannis et al. [5] used multiple imputation to estimate 

regression parameters for the proportional subdistribution hazards model. Moreno-Betancur 

and Latouche [6] proposed a general framework for regression modeling of the cumulative 

incidence function with missing causes of failure using pseudo-values.

However, methods for estimating the cumulative incidence function in the presence of 

missing cause of failure have not been widely studied. Recently, Lee et al. [7] proposed 

multiple imputation methods for estimating the cumulative incidence function with missing 

cause of failure under the cause-specific proportional hazards model. Nicolaie et al. [8] used 

vertical modeling to estimate the cumulative incidence function with missing cause of 

failure. In this paper, we propose nonparametric inferences for the cumulative incidence 

function with missing cause of failure using methods in Lin [9] and Lu and Tsiatis [2]. 

Assuming missingness is random conditional on the observed data, we impute missing cause 

of failure multiple times and estimate the cumulative incidence function by averaging 

nonparametric cumulative incidence estimators obtained from each of several imputed data 

sets. We prove the asymptotic normality of the cumulative incidence estimators obtained 
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from multiple imputation methods and derive a consistent variance estimator for the 

cumulative incidence estimators. We describe how to construct confidence intervals for the 

cumulative incidence function and perform a test for comparing two cumulative incidence 

functions in the presence of missing cause of failure. The performance of the proposed 

methods are extensively evaluated by simulation studies. Finally, we apply the methods to 

study the influence of tamoxifen treatment on mortality from breast cancer, using data from 

a randomized clinical trial in early stage breast cancer.

2. Inference procedures

For simplicity, we consider two competing events, ε ∈ {1, 2}. Define X = min(T, C), where 

T and C are the failure time and censoring time, respectively. We assume that the censoring 

time C is independent of (T, ε). Let δ = I(T ≤ C)ε, where I(·) is an indicator function. When 

causes of failure are known for all subjects, the observed data consist of (Xi, δi) (i = 1, …, n).

A nonparametric estimator of the cumulative incidence function (called the Aalen-Johansen 

estimator [10]) is given by

(2)

where Ŝ(t−) is the left-continuous Kaplan-Meier estimator [11] and Λ̂
k(t) is the Nelson-

Aalen estimator [12] for Λk(t). Aalen [13] first established the uniform consistency and weak 

convergence of the Aalen-Johansen estimator using a non-homogeneous Markov process 

formulation. Recently, variance estimation of the Aalen-Johansen estimator in small samples 

has caused some discussion [14, 15, 16]. Aalen’s variance formula [13] is generally smaller 

than the so-called Greenwood estimator in small samples, resulting in narrow confidence 

intervals and inflated type I error rates (more power). Building off Aalen’s work [13], Lin 

[9] presented a martingale-based estimator for the asymptotic variance of the Aalen-

Johansen estimator. Lee and Fine [17] note that Lin’s martingale-based variance estimator 

equals the Greenwood type estimator given in Equation (7) of Allignol et al. [18] in the 

absence of ties. As an alternative to Aalen’s work [13], we use Lin’s result for variance 

estimation of the Aalen-Johansen estimator.

Define the counting process notation Nki(t) = I(Xi ≤ t, εi = k), Yi(t) = I(Xi ≥ t), 

, and . Let . Lin 

(1997) showed that

where
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by the martingale theory,  converges weakly to a zero-mean Gaussian 

process, and the variance can be consistently estimated by

When cause of failure is missing for some patients, the cumulative incidence estimator and 

its variance may be obtained from the above after excluding those with the missing cause 

information. However, such an approach may lead to biased inferences. We propose 

multiple imputation methods (referred to as improper multiple imputation) for 

nonparametric estimation of the cumulative incidence function with missing cause of failure.

2.1. Multiple imputation method

Lu and Tsiatis [2] proposed multiple imputation methods to estimate the proportional 

hazards regression parameters for competing risks data with missing cause of failure. In this 

section, we propose a nonparametric approach for estimating cumulative incidence with 

missing cause of failure using imputation methods described in Lu and Tsiatis [2].

Define the missingness indicator Ri, that is, Ri = 1 if the cause of failure is known and Ri = 0 

if the cause of failure is missing or unknown. When the failure time is censored, we set Ri = 

1 since this is known and it is not related to missing cause of failure. The observed data 

consist of (Ri, Xi, Riδi) (i = 1, …, n). We assume that the cause of failure is missing at 

random [19], which implies that given δi(> 0) and Xi, the probability that the cause of failure 

is missing depends only on the observed information Xi, not on the unobserved δi. That is,

Let D1i = I(δi = 1) and π(Xi) = Pr(δi = 1 | Ri = 0, δi > 0, Xi). When the cause of failure is 

missing, we impute missing D1i values from the conditional distribution of D1i given the 

observed data as in Lu and Tsiatis [2]. D1i has a Bernoulli distribution with success 

probability π(Xi) which can be specified by a parametric model with an unknown parameter 

γ. It is natural to fit the logistic regression model for π(Xi), logitπ(Xi, γ) = γ1 + γ2Xi, where γ 

= (γ1, γ2). Let γ0 = (γ01, γ02) be the true value of γ. The assumption that the cause of failure 

is missing at random implies
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Thus we can infer π(Xi, γ0) from the complete cases for whom (Ri = 1, δi > 0). Maximizing 

the likelihood function for the complete cases

yields the maximum likelihood estimator γ̂ of γ. If the model π(X, γ) for π(X) is correctly 

specified, γ̂ is consistent and asymptotically normal under the regularity conditions. The 

asymptotic normality follows from the influence function expansion given in Appendix A. 

Using the maximum likelihood estimator γ̂, the missing value can be imputed as

where D1ij(Ri, γ̂) is the imputed value of D1i from the jth imputed data set, j = 1, …, m, and 

is randomly selected to be 1 or 0 from a Bernoulli distribution with success probability π(Xi, 

γ̂) when Ri = 0. Let F̂
kj(t) be a nonparametric estimator, estimated as in (2), of cumulative 

incidence for cause k from the jth imputed data set. The multiple imputation estimator for 

Fk(t) is given by averaging nonparametric estimators obtained from each of m imputed data 

sets as

As noted in Lu and Tsiatis [2], Rubin [20]’s variance calculation is not applicable here; 

since we generate imputations from the conditional distribution of missing data (D1i) given 

the observed data evaluated at the fixed γ̂ across imputations, our imputation is not proper in 

the sense of Rubin [20]. Wang and Robins [21] indicates that under these conditions, 

Rubin’s variance will yield an inconsistent estimator for the sampling variance. We derive 

variance estimators for F̂
kj(t) and F̂

k(t) directly as in Lu and Tsiatis [2] (see Appendix A).

To establish the asymptotic properties for F̂
1j(t) and F̂

1(t), we assume that the parametric 

model for π(X) is correctly specified. Using the methods described in Lu and Tsiatis [2] or 

Tsiatis et al. [22], we show that U1j(t) = n1/2{F̂
1j(t) − F1(t)} and U1(t) = n1/2{F̂

1(t) − F1(t)} 

are asymptotically equivalent to (A.3) and (A.6) which converge weakly to mean zero 

Gaussian processes with respective variances V1j(t) and V1(t) given by equations (A.4) and 

(A.7) in Appendix A. The variances can be consistently estimated by V̂
1j(t) and V̂

1(t) in 

equations (A.5) and (A.8).

Note that we imputed missing causes of failure from the conditional distribution of missing 

data based on the maximum likelihood estimation of γ. The second term of V1j(t) in (A.4) 

accounts the variability of γ̂ from single imputation. When there are no missing causes of 
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failure, the second term vanishes since  and our inference procedures reduce 

to those in Lin [9]. Equation (A.7) shows that V1(t) ≤ V1j(t) for all m and V1(t) is decreased 

as the number of imputations m is increased, indicating an improvement in efficiency from 

multiple imputation over single imputation. Although more imputations provide more 

efficient estimators, the number of imputations should be determined based on the 

magnitude of V1j(t) and the second term in equation (A.7). In practice, a few imputations 

(such as 5–10) would be sufficient to achieve good efficiency.

2.2. Confidence intervals

Pointwise (1 − α) confidence intervals for F1(t) can be constructed based on a 

transformation of F1(t) to let F1 be bounded by 0 and 1 and improve the coverage 

probability. Denote K(t) = n1/2ϕ(t) [g{F̂
1(t)} − g{F1(t)}], where g is a known function with 

non-zero continuous derivative g′ and ϕ is a weight function which converges to a non-

negative bounded function. By the functional delta method, the process K(t) is 

asymptotically equivalent to ϕ(t)g′{F̂
1(t)}U1(t), where U1(t) = n1/2{F̂

1(t) − F1(t)}. Pointwise 

(1 − α) confidence intervals for F1(t) are given by

where zα/2 is an upper α/2 percentile of the standard normal distribution. With g(x) = log{− 

log(x)} and ϕ(x) = F̂
1(t) log{F̂

1(t)}V̂
1(t)−1/2, pointwise (1 − α) confidence intervals for F1(t) 

are given by

(3)

2.3. Two-sample tests

We consider a test which compares the cumulative incidence functions in two samples. Let 

 be the cumulative incidence function for cause 1 in group l (l = 1, 2). With two 

competing risk samples, we are interested in testing the null hypothesis 

for all t ≤ τ, where τ is the observed largest time point. Gray [23] proposed a test comparing 

weighted averages of the subdistribution hazards in several groups. Pepe [24] proposed a 

test based on the integrated weighted difference between the cumulative incidence estimates 

in two samples. Lin [9] proposed a Kolmogorov-Smirnov type statistic which compares the 

maximum difference between the cumulative incidence estimates in two samples. Pepe’s 

test and Lin’s test directly compare the cumulative incidence functions in two samples while 

Gray’s test compares subdistribution hazards in several groups. Pepe’s test is sensitive to 

stochastic ordering alternatives  with  for some t and can 

be used as an alternative to Gray’s test when the cumulative incidence functions cross [24, 

25]. Lin’s test uses the Kolmogorov-Smirnov type statistic which is rank-based thus it may 
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share some shortcomings of the rank statistic. As noted in Pepe and Fleming [26], the 

Kolmogorov-Smirnov type statistic may be sensitive to a large difference over a short period 

of time but can be very insensitive to a moderate difference over a long period of time. The 

latter case is of more interest in practice. Among the three tests, we focus on Pepe’s test to 

directly compare the cumulative incidence functions in two samples.

Let  be the Aalen-Johansen estimator of  in group l (l = 1, 2). Pepe [24] developed a 

test statistic  for comparing two cumulative incidence functions, where

 is a variance estimator of Q and nl is the number of subjects in group l. Here, W(·) is a 

data-dependent weight function used to ensure stability of a test statistic under the null 

hypothesis  for all t ≤ τ. In practice, the weight function should be 

chosen based on alternative hypotheses and the choice of the weight function is analogous to 

that for weighted Kaplan-Meier statistics [26, 27]. A decreasing (increasing) weight function 

gives less weight to differences between two cumulative incidence estimates over later 

(early) time periods. Under the null hypothesis  for all t ≤ τ, the test 

statistic  has an asymptotic standard normal distribution. Pepe [24] notes that 

method of moment type estimator  tends to be too small and underestimates the variance, 

resulting in larger type I errors. As an alternative to method of moment type estimator , 

Bajorunaite and Klein [28] proposed a martingale-based estimator for the variance of the 

statistic Q. Through simulation studies, they demonstrated that the method of moment type 

estimator underestimated the true variance and Pepe’s test with this variance estimator had 

larger type I errors, especially when the sample size was small, while the test with the 

martingale-based variance estimator performed well. Hence, we use Bajorunaite and Klein’s 

result for variance estimation of the statistic Q.

In the presence of missing cause of failure, we modify Pepe’s test statistic by using an 

imputation estimator for . Let  be a nonparametric estimator of the cumulative 

incidence function for cause 1 from the jth imputed data set in group l and  be the 

multiple imputation estimator obtained by averaging ’s from m imputed data sets in 

group l. To simplify the presentation, we let W(t) = 1. Then the statistic Q can be defined by

for single imputation and
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for multiple imputation. To establish the asymptotic properties for QS and QM, we assume 

that a parametric model for π(X) is correctly specified. We derive variance estimators for QS 

and QM in Appendix B. Under the null hypothesis  for all t ≤ τ, we show 

that QS and QM have asymptotic normal distributions with respective variances

and

where  and  are given in (B.2) and (B.5) in Appendix B. The variances can be 

consistently estimated by replacing  and  with their estimators  and 

 given in (B.3) and (B.6). Note that when there are no missing causes of failure, our 

test statistic reduce to Pepe’s [24] test statistic with the martingale-based variance estimator 

proposed by Bajorunaite and Klein [28] since  in (B.1).

3. Numerical studies

Simulation studies were conducted to evaluate the performance of the proposed estimators 

for the cumulative incidence function when the cause of failure is missing. Cumulative 

incidence estimators and corresponding variance estimators were examined under various 

missingness mechanisms, followed by evaluations of performance for the two-sample tests.

3.1. Performance under correct imputation model

The cumulative incidence functions for cause 1 and 2 are assumed to be F1(t) = π1{1 − 

exp(−v1tθ1)} and F2(t) = π2{1 − exp(−v2tθ2)} with (π1, π2, v1, v2, θ1, θ2) = (2/3, 1/3, 1, 0.8, 

1, 1) as in configuration I described in Section 3.1 of Peng and Fine [25]. The type 1 and 2 

failures were generated from a Bernoulli distribution with success probability Pr(ε = 1) = π1. 

The failure times (T) were generated from the conditional distribution of T given ε = k, Pr(T 

≤ t | ε = k) = Fk(t)/Pr(ε = k) for k = 1, 2. The censoring times (C) were generated from a 

uniform distribution U(0, 7.2). The observed times (X) were obtained by min(T, C) and the 

range of X was 4.568 on average. Under this setting, on average, we had 57% failures from 

cause 1, 28% failures from cause 2, and 15% censoring. We generated the missingness 

indicator R from logitPr(R = 0 | δ > 0, X) = η1 + η2X. With different choices of η’s, we 

generated 20, 30, and 40% missing causes of failure. Following Rubin’s taxonomy of 
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missingness [19], given δ > 0 and X, if the probability that the cause of failure is missing 

does not depend on the unobserved cause of failure δ, the missingness mechanism is called 

missing at random (MAR), otherwise missing not at random (MNAR). If the missingness 

probability is constant, the missingness mechanism is called missing completely at random 

(MCAR). In Table 1, the first scenario indicates MCAR case and the second to fifth 

scenarios correspond to MAR case. Note that from the missing at random assumption, π(X) 

= Pr(δ = 1 | R = 0, δ > 0, X) = Pr(δ = 1 | δ > 0, X). Thus π(X) is related to the ratio of the 

cause-specific hazards for cause 1 and 2, that is, λ1(x)/λ2(x) = π(x)/{1 − π(x)}. By this 

relationship, the true model for π(X) is logitπ(X) = log(5/2) − 0.2X since 

 for k = 1, 2. We fitted a correctly specified logistic 

regression model logitπ(X, γ) = γ1 + γ2X. We conducted 1000 simulations with sample sizes 

of 100 and 300. Table 1 shows the true value of F1(0.7), bias of F̂
1(0.7), empirical variance 

(Var(F̂
1)), averages of the variance estimate (E(V̂

1)), mean square error (MSE), and 

empirical coverage probabilities (CP) for 95% confidence intervals given in (3) from single 

imputation (m = 1), 10 imputations (m = 10), and the complete case analysis (CC) obtained 

by excluding subjects with missing cause of failure. Under the correct imputation model, the 

imputation estimate shows that the bias is small and the variance estimate agrees with the 

empirical variance. The empirical coverage probabilities are close to the nominal level. 

Multiple imputation estimates have slightly smaller variance estimates than single 

imputation estimates and have the smallest MSEs. However, the complete case estimates 

result in larger biases and MSEs, and lower coverage probabilities compared to the 

imputation estimates. Supplemental analyses (see Figures 1–3 in Supplementary Materials) 

show that the complete case analysis can either underestimate or overestimate cumulative 

incidence, depending on whether deaths with missing cause occur early or late in follow-up. 

In either case, the imputation method performs well.

To deal with missing cause of failure, Bakoyannis et al. [5] considered Rubin’s multiple 

imputation procedure under the MAR assumption, which is referred to as proper imputation. 

Their imputation methods can be applied to nonparametric estimation of the cumulative 

incidence function with missing cause of failure by using proper multiple imputation to 

impute missing cause of failure. The cumulative incidence function F1(t) can be estimated 

by averaging nonparametric estimators obtained from each of multiply imputed data sets. Its 

variance can be estimated by Rubin’s variance formula , 

where the within imputation variance Wvar is the mean of the variance estimates across m 

imputations and the between imputation variance Bvar is the sample variance of the m 

cumulative incidence estimates. Pointwise 95% confidence intervals for F1(t) can be 

computed by using (3) with replacing z0.025 by , where  is the upper 2.5th 

percentile of a t-distribution with ψ degrees of freedom, ψ = (m − 1)[1 + Wvar/{(1 + 

m−1)Bvar}]2. We compared our imputation procedure (referred to as improper imputation) 

with that of Bakoyannis et al. [5] in the case of nonparametric estimation of the cumulative 

incidence function with missing cause of failure. As an imputation model for methods of 

Bakoyannis et al. [5], we fitted a correctly specified logistic regression model logitπ(X, γ) = 

γ1 + γ2X. As shown in Table 1, under the correct imputation model, the multiple imputation 

estimates from 10 proper imputations (m* = 10) show that the biases are small and the 
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variance estimates agree with the empirical variance. The empirical coverage probabilities 

are close to the nominal level. However, the variance estimates from our imputation 

methods are smaller than those from Bakoyannis et al. [5]. This is because we derive 

variance estimators for imputation estimators directly. The MSEs of both methods are 

similar. This is because the proper multiple imputation estimators are consistent and 

unbiased, and its variances can be correctly estimated by Rubin’s variance formula when the 

imputation and analysis models agree (i.e., congenial as defined in [29]).

3.2. Performance under misspecified imputation model

Our imputation estimators are obtained based on the maximum likelihood estimation of γ 

from a parametric model specified for π(X). Therefore, the estimators may be biased if the 

parametric model is misspecified [30]. To justify the robustness of the imputation 

estimators, we fitted an incorrectly specified logistic regression model logitπ(X, γ) = γ1 + γ2 

log(1 + exp(−X)), where we generated data from the same scenario as before. We conducted 

1000 simulations with sample sizes of 100 and 300. In Table 2, the biases, variance 

estimates, and MSEs of the imputation estimates are small even if the parametric model is 

misspecified. The variance estimates agree with the empirical variances, and the empirical 

coverage probabilities of 95% confidence intervals are close to the nominal level. 

Supplemental analyses (see Supplemental Figures 4–6) confirm that the imputation method 

performs well under a misspecified parametric model.

Table 2 shows results from proper multiple imputation of Bakoyannis et al. [5] under the 

misspecified imputation model logitπ(X, γ) = γ1 + γ2 log(1 + exp(−X)), where we did not use 

a non-parametric bootstrap method as suggested in [5] to avoid biases in the variance 

estimates  obtained by Rubin’s variance formula under misspecification of an 

imputation model: because we found that the use of the bootstrap method for variance 

estimation was not necessary. The multiple imputation estimates show that the biases and 

variance estimates are small even if the imputation model is misspecified. The variance 

estimates agree with the empirical variances, and the empirical coverage probabilities for 

95% confidence intervals are close to the nominal level. The variance estimates from our 

improper multiple imputation methods are slightly smaller than those from [5]. The MSEs of 

both approaches are similar.

3.3. Additional evaluations for two-sample tests

Additional numerical studies were conducted to evaluate the performance of the proposed 

test in two samples with missing cause of failure. As described in Section 3.1 of Peng and 

Fine [25], we considered configurations II, III, and IV along with configuration I; (π1, π2, 

v1, v2, θ1, θ2) = (2/3, 1/3, 1, 1.2, 1, 1) in configuration II, (2/3, 1/3, 1, 1.2, 0.5, 1) in 

configuration III, and (1/2, 1/2, 0.8, 1.2, 1, 1) in configuration IV. We generated the sample 

indicator Z from a Bernoulli distribution with success probability 0.5. When Z = 1 (denoted 

by group 1), we generated data from configuration I, while we generated data from 

configuration II, III, or IV when Z = 0 (denoted by group 2). The censoring times (Cl) were 

generated from a uniform distribution U(0, 7.2) for group 1 and from a uniform distribution 

U(c1, c2) for group 2, giving the censoring proportion of 15% for each group l (l = 1, 2). As 

noted in Peng and Fine [25], the cumulative incidence functions for cause 1 are identical 
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under configurations I and II, there is a crossover of the cumulative incidence functions for 

cause 1 under configurations I and III, and the cumulative incidence function for cause 1 

under configuration I is stochastically larger than that under configuration IV. For each 

group l (l = 1, 2), we generated the missingness indicator Rl from 

, where Xl = min(Tl, Cl). With different choices of 

η(l)’s, we generated 20, 30, and 40% missing causes of failure for group 1, and 10% missing 

causes of failure for group 2. The true model for π(X) is logitπ(X) = log(5/2) − 0.2X in 

configuration I, logitπ(X) = log(5/3) + 0.2X in configuration II, logitπ(X) = log(5/6) − 0.5 

log(X) − X1/2 + 1.2X in configuration III, and logitπ(X) = log(2/3) + 0.4X in configuration 

IV. We fitted a correctly specified logistic regression model logitπ(X, γ) = γ1 + γ2X in 

configurations I, II, and IV, and logitπ(X, γ) = γ1 + γ2 log(X) + γ3X1/2 + γ4X in configuration 

III. We conducted 1000 simulations with sample sizes of 200 and 400. Table 3 shows that 

under the correct imputation model, the imputation tests have empirical sizes close to the 

nominal level 0.05 and high powers in detecting differences between the two cumulative 

incidence functions for cause 1, whereas the test obtained by the complete case analysis 

results in larger empirical size and less power compared to the imputation methods. Note 

that in configurations I vs. III and I vs. IV with , the complete case test has higher 

power than the imputation tests. This is because the complete case analysis can overestimate 

cumulative incidence when deaths with missing cause of failure occur late in follow-up.

To justify the robustness of the imputation test, we fitted an incorrectly specified logistic 

regression model logitπ(X, γ) = γ1 + γ2 log(1 + exp(−X)) in configurations I, II, III, and IV. 

We generated data from the same scenario as before. We conducted 1000 simulations with 

sample sizes of 200 and 400 (Table 4). Even with misspecified imputation model, the 

imputation tests result in empirical sizes close to the nominal level and high powers.

4. Application: Effect of tamoxifen on breast-cancer specific mortality in 

women with early stage breast cancer

4.1. Background

We illustrate the proposed methods using data from a randomized clinical trial in early stage 

breast cancer, obtained from the National Surgical Adjuvant Breast and Bowel Project 

(NSABP). The NSABP is a U.S. National Cancer Institute sponsored multi-center clinical 

trials group that conducts research into the treatment and prevention of breast and colorectal 

cancers. Tamoxifen is an estrogen-like compound used in the treatment of breast cancer 

[31].

Between 1982 and 1988, 2892 women with estrogen receptor-positive breast tumors and no 

axillary node involvement were enrolled in NSABP Protocol B-14, a double-blind 

randomized trial comparing five years of tamoxifen (20 mg/day) with placebo. The primary 

trial endpoints were overall survival (time surviving after surgery, with an event being death 

from any cause) and disease-free survival (time free of tumor recurrence, new breast cancer 

in the opposite breast, other cancers, or death from any cause preceding these events). 

Findings indicated a strong positive effect of tamoxifen on disease-free survival [32], and 

with longer follow-up duration, a significant reduction in overall mortality [33]. The latter 
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endpoint (overall mortality) is used as a conservative approach in that it avoids complexities 

of accurate ascertainment of cause of death and also requires that the net effect of treatment 

be a longer lifetime. However, most of the influence on improvement in overall survival 

arises from avoidance of death from breast cancer. Thus cause-specific mortality (especially, 

breast cancer-specific mortality) is of interest. While information on cause of death was 

desired and requested, because the endpoint was overall survival, missing cause of death 

data were not rigorously resolved, and so there is a substantial portion of cases with missing 

cause. Table 5 shows vital status for 2817 trial eligible patients included in this analysis. Of 

patients who died, 20.9% of patients assigned to placebo and 26.3% of patients assigned to 

tamoxifen had missing cause of death.

4.2. Results

We applied our multiple imputation methods to estimate cumulative incidence of breast 

cancer-specific death on tamoxifen and placebo. In each group, the logistic imputation 

model for π(X) included time since diagnosis which was statistically significantly associated 

with breast cancer-specific mortality among those with complete cause of death information 

(R = 1, δ > 0). Figure 1 shows estimates of cumulative incidence of death due to breast 

cancer from 10 multiple imputations and the complete case estimates obtained by excluding 

patients with missing causes of death, along with their corresponding 95% pointwise 

confidence intervals (CI) given in (3). As shown in Figure 1(a) and (b), the estimates of 

cumulative incidence of breast cancer death in the tamoxifen group are lower than those in 

the placebo group in both multiple imputation and complete case analyses. In Figure 1(c) 

and (d), patients in the tamoxifen group from the multiple imputation methods have 10-year 

cumulative incidence of breast cancer death (with 95% confidence interval) of 11.7% (10.0–

13.6%), while in the placebo group, 10-year cumulative incidence is 15.4% (13.5–17.4%). 

The complete case estimates are 9.8% (8.3–11.6%) for the tamoxifen group and 13.4% 

(11.6–15.3%) for the placebo group. The 10-year cumulative incidences of breast cancer 

death from the complete case analysis are 16% on tamoxifen and 13% on placebo lower than 

those from the multiple imputation methods. These differences continue to grow as follow-

up lengthens.

In order to compare cumulative incidences of breast cancer death between tamoxifen and 

placebo groups, we computed the multiple imputation test based on 10 imputations and the 

complete case test. The test statistics (p-value) for breast cancer death are −3.746 (0.0002) 

for the multiple imputation test and −3.903 (0.00009) for the complete case test, both 

indicating that tamoxifen significantly reduces mortality from breast cancer. The result from 

the complete case test is very similar to that from the multiple imputation test. This may be 

because cumulative incidences of death due to breast cancer in both tamoxifen and placebo 

groups are underestimated to a similar extent by the complete case analysis (see Figure 1).

5. Discussion

We investigated multiple imputation methods for nonparametric inferences of the 

cumulative incidence function in the presence of missing causes of failure. Under the 

missing at random assumption, we develop asymptotic theory for multiple imputation 

methods to estimate the cumulative incidence function nonparametrically and perform a test 
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for comparing the cumulative incidence functions in two samples. These procedures are 

straightforward to implement. When there are no missing causes of failure, our inference 

procedures reduce to those in Lin [9] and Pepe’s test with a martingale-based variance 

estimator [24, 28]. Simulation studies show that our multiple imputation methods perform 

well, even if the model for imputation is misspecified. The simulations also show that our 

improper imputation approach is slightly more efficient compared to the proper imputation 

[5]. In supplemental analyses, we show that the complete case analysis can either 

underestimate or overestimate cumulative incidence, depending on whether deaths with 

missing cause occur early or late in follow-up. In the breast cancer example, estimates of 

cumulative incidence of breast cancer death in both tamoxifen and placebo groups from the 

complete case analysis were lower than those from the multiple imputation methods. Since 

cumulative incidences of breast cancer death in both groups are underestimated to a similar 

extent by the complete case analysis, the complete case test provided a similar result to the 

multiple imputation test for comparing breast-cancer specific mortalities between the two 

groups. Thus, the complete case test is unlikely to be biased for comparing differences 

between the cumulative incidence functions in two samples where the missing cause of 

death mechanism is the same in each group.

We proposed nonparametric inferences of the cumulative incidence function with missing 

cause of failure under the assumption of missing at random when we observe (Xi, Ri, Riδi) (i 

= 1, …, n). In a practical setting, covariate information may be available and one may 

include auxiliary covariates in the imputation model to make the missing at random 

assumption more plausible, as the methods of [2]. In the case, our multiple imputation 

methods for nonparametric inferences of the cumulative incidence function with missing 

causes of failure are applicable incorporating auxiliary covariates. A nonparametric 

estimator of the cumulative incidence function can be obtained by imputing missing cause of 

failure from a Bernoulli distribution with success probability π(Wi, γ̂) and averaging 

nonparametric estimators across several imputed data sets, where Wi = (Xi, Zi), Zi is 

auxiliary covariates, and the success probability π(Wi, γ̂) can be obtained by fitting a logistic 

regression model, , under the missing at random assumption. The 

variance of the multiple imputation estimator can be estimated by V̂
1(t) in equation (A.8) 

with replacing π(Xi, γ̂) by π(Wi, γ̂) and πγ(Xi, γ̂) by πγ(Wi, γ̂) in equation (A.5). The variance 

estimator of the multiple imputation test in two samples can be obtained by replacing πγl(Xil, 

γ̂
l) by πγl(Wil, γ̂

l) in (B.3) and π(Xil, γ̂
l) by π(Wil, γ̂

l) in equation (B.6).

We assumed that the cause of failure is missing at random. Unfortunately, assumptions 

about the missing mechanism such as the missing at random are not testable from the 

observed data [5, 34]. Thus, one may conduct sensitivity analyses to assess the robustness of 

inferences to departures from the missing at random assumption [5, 6, 35].

We used the Aalen-Johansen estimator for nonparametric estimation of the cumulative 

incidence function. This is based on the assumption that the censoring time C is independent 

of (T, ε). When the censoring time is only independent of (T, ε) conditional on covariates, 

the Aalen-Johansen estimator is unbiased if the censoring distribution does not depend on 

covariates (i.e., Pr(C > t | Z = z) = Pr(C > t) for covariates Z) and hence censoring is 

independent of covariates. However, the estimator may be biased if censoring depends on 
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covariates [36]. In that case, Binder et al. [36] proposed an alternative estimator to the 

Aalen-Johansen estimator by using a regression model for the censoring time. Thus, when 

the censoring time is only independent of (T, ε) given covariates, our imputation methods to 

estimate nonparametrically the cumulative incidence function with missing cause of failure 

are valid if censoring is independent of covariates. However, if censoring depends on 

covariates, alternative estimators proposed by Binder et al. [36] may be used. Similar 

derivations used in our paper may be applicable to multiple imputation inferences for the 

alternative estimators.

In this paper, we discussed multiple imputation inferences for nonparametric estimation of 

the cumulative incidence function with two types of failure in the presence of missing 

causes of failure. When there are more than two causes of death, the missing cause can be 

imputed from a multinomial distribution with probabilities estimated by using a parametric 

modeling under the missing at random assumption. A multinomial logistic regression can be 

considered as a parametric imputation model. In that case, the variance formula can be 

obtained following asymptotic theory given in Appendix A along with the influence 

function expansion of the maximum likelihood estimators of parameters in a multinomial 

logistic imputation model.

When the imputation and analysis models agree (i.e., congenial as defined in [29]), results 

from the proper multiple imputation approach may be similar to those from our improper 

multiple imputation methods, as shown in the simulation studies. When covariate 

information is available and censoring depends on some covariates, one may include 

covariates (including auxiliary covariates) in the imputation model to make the missing at 

random assumption more plausible and use a regression model for the censoring time. In 

that case, the imputation and analysis models may then be uncongenial, and Rubin’s 

variance formula may produce some bias in the variance estimates of the multiple 

imputation estimates, as noted in [29]. Note that we derive variance estimators for the 

multiple imputation estimators directly. This may suggest that our multiple imputation 

method is more efficient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A

Define the counting process notation Nkij(t, Ri, γ) = I(Xi ≤ t, Dkij(Ri, γ) = 1), Yi(t) = I(Xi ≥ t), 

and . Let

Let Λ̂
kj(t) be the cumulative cause-specific hazard estimate for cause k from the jth imputed 

data set that can be expressed by the counting process notation as

n1/2{Λ̂
kj(t) − Λk(t)} is asymptotically equivalent to
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(A.1)

Using the consistency of Ŝ(·), Taylor expansion and integration by parts as described in Lin 

[9], U1j(t) = n1/2{F̂
1j(t) − F1(t)} from the jth imputed data set can be expressed as

Using (A.1) and S(t) = 1 − F1(t) − F2(t), U1j(t) = n1/2{F̂
1j(t) − F1(t)} is given by

(A.2)

where

To establish the asymptotic theory for single imputation and multiple imputation estimates, 

we use the methods described in Lu and Tsiatis [2] or Tsiatis et al. [22]. Consider the 

centered sum , where μf (γ, t) = E{fij(γ, t)}. Then 

n−1/2{Hj(γ̂, t) − Hj(γ0, t)} converges in probability to zero [37]. Using the convergence of the 

centered sum and Taylor series expansion,

Using arguments similar to those in Tsiatis et al. [22],

which is estimated by
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where subscript j means that the corresponding estimate is obtained from the jth imputed 

data set and .

The asymptotic normality of γ̂ follows from the influence function expansion

where Oi = (Ri = 1, δi > 0, Xi),

and J(γ0) is the information matrix

Applying the approximation for n1/2(γ̂ − γ0), U1j(t) is equal to

(A.3)

This is a sum of independent and identically distributed mean zero random variables, and the 

central limit theorem proves asymptotic normality. Its variance is given by

(A.

4)

where E{fij(γ0, t)⊗2} is the asymptotic variance of n1/2{F̂
1(t) − F1(t)} when all causes of 

failure are observed and is estimated by
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and D2ij(Ri, γ̂) is the imputed value of D2i from the jth imputed data set as

For any j (j = 1, …, m), the variance V1j(t) is estimated by

(A.

5)

For multiple imputation, U1(t) = n1/2{F̂
1(t) − F1(t)} is asymptotically equivalent to

(A.6)

This is a sum of independent and identically distributed mean zero random variables, and the 

central limit theorem yields the asymptotic normality. Its variance is given by

(A.7)

The variance V1(t) is estimated by

(A.8)
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APPENDIX B

Suppose that there are two independent competing risk samples with missing cause of 

failure. In group l (l = 1, 2), the observed data consist of (Ril, Xil, Rilδil) (i = 1, …, nl), where 

Ril is the missingness indicator in group l, Xil = min(Til, Cil), and δil = I(Til ≤ Cil)εil. For the 

ith individual from the jth imputed data set in group l, define the counting process notation 

Nkijl(t, Ril, γ) = I(Xil ≤ t, Dkijl(Ril, γ) = 1), Yil(t) = I(Xil ≥ t), and . Let

The test statistic for single imputation can be written as

Under the null hypothesis  for all t ≤ τ,

Using (A.2) and changing the order of integration,  is given by

where γ̂
l is the maximum likelihood estimator of γ in group l and
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To establish the asymptotic theory for single imputation and multiple imputation tests, we 

use the methods described in Lu and Tsiatis [2] or Tsiatis et al. [22]. We consider the 

centered sum for  in group l, , where 

. Let γ0l be the true value of γl. Then 

 converges in probability to zero [37]. Using the 

convergence of the centered sum and Taylor series expansion, and applying the 

approximation for  in group l,  is equal to

(B.1)

where using arguments similar to those in Tsiatis et al. [22],

This is a sum of independent and identically distributed mean zero random variables, and the 

central limit theorem yields the asymptotic normality. Its variance is given by

(B.

2)

where  is the asymptotic variance of  when all 

causes of failure are observed and is estimated by

For any j (j = 1, …, m), the variance  is estimated by
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(B.

3)

where

Therefore, the variance estimate of the test statistic QS is given by

Under the null hypothesis H0, the test statistic for multiple imputation is written as

Using (B.1),  is asymptotically equivalent to

(B.4)

This is a sum of independent and identically distributed mean zero random variables, and the 

central limit theorem yields the asymptotic normality. Its variance is given by
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(B.

5)

The variance  is estimated by

(B.

6)

We obtain the variance estimate of the test statistic QM as
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Figure 1. 
Estimates of cumulative incidence of breast cancer death with 95% pointwise confidence 

intervals (CI) by the multiple imputation method and complete case analysis. The upper 

panels show results by analysis and by group, whereas the lower panel shows results by 

group and by analysis.
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Table 5

Vital status among women from the NSABP B-14 randomized trial.

Status/Cause of Death

Treatment Arm

TotalPlacebo Tamoxifen

Alive 919 1001 1920

Breast cancer 241 155 396

Other cause 150 142 292

Unknown 103 106 209

Total 1413 1404 2817
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